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Abstract

This paper examines the basins of attraction of random Boolean networks, a very general
class of discrete dynamical systems, in which cellular automata (CA) form a special sub-
class. A reverse algorithm is presented which directly computes the set of pre-images (if
any) of a network's state. Computation is many orders of magnitude faster than exhaustive
testing, making the detailed structure of random network basins of attraction readily
accessidle for the first time. They are portrayed as diagrams that connect up the network's
global states according to their transitions. Typically, the topology is branching trees
rooted on attractor cycles.

The homogeneous connectivity and rules of CA are necessary for the emergence of
coherent space-time structures such as gliders, the basis of CA models of artificial life. On
the other hand random Boolean networks have a vastly greater parameter/basin field
configuration space capable of emergent categorisation.

I argue that the basin of attraction field constitutes the network's memory; but not
simply because separate attractors categorise state space - in addition, within each basin,
sub-categories of state space are categorised along transient trees far from equilibrium,
creating a complex hierarchy of content addressable memory. This may answer a basic
difficulty in explaining memory by attractors in biological networks where transient
lengths are probably astronomical.

I describe a single step learning algorithm for re-assigning pre-images in random
Boolean networks. This allows the sculpting of their basin of attraction fields to approach
any desired configuration. The process of learning and its side effects are made visible. In
the context of many semi-autonomous weakly coupled networks, the basin field/network
relationship may provide a fruitful metaphor for the mind/brain.

Introduction

Recent work in unravelling the global dynamics of discrete dynamical systems such as cellular
automata3! and, more generally, of random Boolean networks323334 allow their basins of
attraction to be explicitly portrayed. These are diagrams that connect up the network’s global states
according to their transitions - typically, the topology is branching trees rooted on attractor cycles.
The diagrams are efficiently constructed with a reverse algorithm that directly computes a state's set
of pre-images (if any).

Following Hopfield®, I argue that attractors constitute the networks “content addressable”
memory; but not simply because separate regions of state space flow to energy minima - in addition,
states space is categorised hierarchically along transient trees far from equilibrium.
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Above. A basin of attraction of a random Boolean network (N=13, [q wiring rule,-table

3,12,6 86, 01010110
7,114 4, 00000100
331 196, 11000100
11,39 52, 00110100
8,75 234, 11101010
A , 181 100, 01100100
Right. The random Boolean network wiring/rule parameters. Wiring v f&o g‘l"l’ggi;g
and rules were assigned at random, except that the neighbourhood 926 6 00000110
000 — 0. 10 511 94, 01011110
11 271 74, 01001010
In continuous deterministic dynamical systems, all possible time | 12 784 214, 11010110

series make up the vector field which is represented by the system's | '3 147 188 10111100

K=3). The basin links 604 states, of which 523 are garden of Eden
states. The attractor has period 7. The direction of time is inwards
Jrom garden of Eden states to the attractor, then clock-wise. The basin
is one of 15, and is indicated in the basin of attraction field in figure
2
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phase portrait, an idea introduced by Poincaré. This is the field of flow
imposed on phase space by the systems dynamical rule. A set of attractors, be they fixed point, limit
cycles or chaotic, attract various regions of phase space in the basin of attraction Jield. Analogous
concepts apply to discrete deterministic dynamical systems, such as cellular automata (CA) and the
more general case, random Boolean networks, which are noise free and update synchronously. An
important difference, however, is that transients can merge onto one successor state far from
equilibrium in these discrete systems, whereas in continuous systems they cannot.

Neither does Hopfield's model® support deterministically merging transients because his
updating method is randomly asynchronous, and thus non-deterministic. It is open to debate
whether synchronous or asynchronous updating in a local network is more or less biologically
plausible. However, synchronous random networks have greater potential as content-addressable
memory systems because not only sttractors categorise state space. Sub-categories of state space are
also categorised by a reliable time-series of unique states along each transient tree far from



the basin in figure 1

Figure 2.

The basin of attraction field a random Boolean network (N=13, K=3). The 2!3=8192 states in
state space are organised into 15 basins, with attractor period ranging from 1 to 7. The number of
States in each basin is: 68, 984, 784, 1300, 264, 76, 3IP6, 120, 64, 120, 256, 2724, 604, 84, 428.
Figure 1 shows the arrowed basin in more detail, and the network's wiring/rule scheme.

equilibrium, creating what is effectively a complex hierarchy of content addressable memory.

The range of topologies of basins of attraction, and the potential for emergent complex
categorisation of network states, suggests that the basin of attraction field, a mathematical object in
space-time, is the network's cognitive substrate - the ghost in the machine32. A basic difficulty in
explaining memory by sttractors in biological networks has been the probably astronomical
transient lengths needed to reach an attractor in large networks, whereas reaction times in biology
are extremely fast. The answer may lie in the notion of memory far from equilibrium along merging
transients34.

CA (of whatever dimension) may be regarded as a special random network sub-class with
homogeneous connectivity and rules. Evidence is presented that this local architecture is necessary
for the emergence of coherent space-time structures such as gliders, the basis of CA models of
artificial life. Random network architecture breaks these two basic premises, the wiring/rule
scheme may be arbitrary and different at each cell, though divergence from CA architecture is a
question of degree. An arbitrary wiring/rule scheme implies @ vastly greater parameter space, and
thus basin field configuration space than for CA. Perhaps any basin of attraction field configuration
1s possible. The process of adaptation and learning modifies the network's parameters, its
wiring/rule scheme or size/connectivity, resulting in a modified basin of attraction field. The
stability of the field under small perturbations to parameters is noteworthy.



This paper describes CA and random network architecture, and contrasts their dynamics in
terms of space-time patterns and basins of attraction. The reverse algorithm for computing pre-
images is explained. I suggest that random networks may provide a component for a biological
model; in the context of many semi-autonomous weakly coupled networks, the basin field/network
relationship may provide a fruitful metaphor for the mind/brain.

I describe learning algorithms that automatically re-assign pre-images in a single step. New
attractors can be created and transient trees and sub-trees transplanted, sculpting the basin of
attraction field to approach any desired configuration. The effects and side effects of learning
become immediately apparent by re-drawing the modified basin of attraction field, or some
fragment of it. Such visible learning may lead to useful applications as well as helping to clarify the
process of memory and leamning in a variety of artificial neural network architectures.

Basins of attraction

CA and random networks are both examples of discrete deterministic dynamical systems made up
from many simple components acting in parallel. The dynamics is driven by the iteration of a
constant global-updating procedure (the transition Junction) resulting in a succession of global
states, the system's trajectory. Given a noise free,- deterministic transition function within an
autonomous system (cut off from outside influence), any global state imposed on the network will
seed a determined trajectory (though it may be unpredictable). In fact the system may be regarded as
semi-autonomous, in the sense that a global initial state must be imposed or perturbed from outside
to set the system going along a new trajectory. The system also needs a channel to communicate its
internal state to the outside.

A trajectory is one particular path within a basin of attraction, familiar from continuous
dynamical systems. In a finite network of size N and value range ¥ there are IV global states. Any
path must inevitably encounter a repeat. When this occurs the system has entered and is locked into
a state cycle (the attractor). Many trajectories typically exist leading to the same attractor. The set
of all such trajectories, including the attractor itself, make up a basin of attraction. This is
composed of merging trajectories linked according to their dynamical relationships, and will
typically have a topology of branching transient trees rooted on the attractor cycle (though this may
be a stable point - an attractor cycle with a period of 1).

Separate basins of attraction typically exist within state space. A transition function will, in a
sense, crystallise state space into a set of basins, the basin of attraction field, a mathematical object
~«1n space-time which constitutes the dynamical flow imposed on state space. If represented as a
- graph the field is an explicit portrait of the network’s entire repertoire of behaviour. It includes all
possible trajectories.

Basins of attraction are portrayed as computer diagrams in the same graphic format as
presented in “The Global Dynamics of Cellular Automata”3!.-Various other names are sometimes
used, for example, flow graphs, state transition graphs, networks of attraction. Global states are
represented by nodes, or by the state's binary or decimal expression at the node position. Nodes are
linked by directed arcs. Each node will have zero or more incoming arcs from nodes at the previous
time-step (pre-images), but because the system is deterministic, exactly one outgoing arc (one out
degree). Nodes with no pre-images have no incoming arcs, and represent so called garden of Eden
states. The number of incoming arcs is referred to as the degree of pre-imaging (or in degree).

Figure 1 shows a typical basin of attraction of a random Boolean network (it is part of the
basin of attraction field shown in figure 2). F igure 4 shows the basin of attraction field of a CA



‘where many symmetries are evident, a major difference between the topologies of the two systems.

In the graphic convention, the length of transition arcs decreases with distance away from the
attractor, and the diameter of the attractor cycle asymptotically approaches an upper limit with
increasing period. The forward direction of transitions is inward from garden of Eden states to the
attractor, which is the only closed loop in the basin, and then clockwise around the attractor cycle.

Typically, the vast majority of nodes in a basin of attraction lie on transient trees outside the
attractor cycle, and the vast majority of these states are garden of Eden states. A transient tree is the
set of all paths from garden of Eden states leading to a particular state on the attractor cycle. A
transient sub-tree is the set of all paths from garden of Eden states leading to a state within a
transient tree, as indicated in figure 1.

Computing transient trees or sub-trees, and basins of attraction, poses the problem of finding
the complete set of pre-images of any global state. The trivial solution, exhaustive testing of the
entire state space, rapidly becomes intractable in terms of computer time as the network's size
increases beyond modest values. A reverse algorithm for 1-D CA, that directly computes the pre-
images of a global state, with an average computational performance many orders of magnitude
faster than exhaustive testing, was recently introduced3!. Section 4 sets out a general direct reverse
algorithm32 for random Boolean networks (which includes CA of arbitrary dimension), and which
may be generalised for random networks with a greater value range. :

Cellular Automata

A CA is sometimes described as a discretised artificial universe with its own local physics!4. Space
is a lattice of cells with a particular geometry; each cell contains a variable from a limited range
(often just O or 1). All cells update synchronously as time advances in discrete steps. The updating
rule is the same for all cells, and depends-only on local relations, usually a closed symmetrical
neighbourhood.

Conversely, one could say that the homogeneous neighbourhood template defines a given
space, and if the CA is finite, implies periodic boundary conditions (i.e. a circle of cells for 1-D, a
toroidal surface for 2-D). Finite 1-D CA architecture is illustrated in figure 3 where cells are
arranged in a circle. Time steps are shown in sequence from the top down.

celll cellN

Figure 3.

1-D finite CA architecture, K=5, each
cell has the same wiring template and
rule. Boundary conditions are periodic
by definition. The network is synchro-
nously updated in discrete time-steps.
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Figure 4.
An example of 1-D, K=5 complex CA dynamics, the rule number is 906663673
Left. the space-time pattern from a random initial state, N=200, 480 time-steps; gliders (and a
lider-gun) emerge against a checkerboard background afier an initial sorting out Dhase .
op right. The basin of attraction field for the same rule, N=16. The 2! states in state space are
organised into 17 basins of attraction, only the 11 non-equivalent basins are shown. The number
of states in each basin, and the number of each type, is as follows (from left to right), 30928(1),
6(1), 220(4), 23808(1), 1136(2), 1972(2), 2064(1), 568(1),"448(2), 144(1), 26(1). Note the basin
gmmetry ue to Zguivalent transient trees.
Bottom right. 4 detail of typical glider interactions.

The neighbourhood template (the wiring scheme) extends to the previous time step only; there
are no connections to the more distant past.

Consider a periodic 1-D lattice with N cells and an odd number of connections, K. [K/2] is the
integer neighbourhood radius. The time evolution of the i-th cell is given by

i) = S L)

to satisfy periodic boundary conditions, for x<1, Cy=Cpnuy i forx>N, C,=C,

If the value range=V/ there are I& permutations of values in a neighbourhood of size K. The
most general expression of the function f is a look-up table (the rule table) with V* entries, giving



VVE possible rules. There are also sub-categories of rules that can be expressed as simple
algorithms, Boolean derivatives22, totalistic rules or threshold functions. The number of effectively
different rules is reduced by symmetries in the rule table?3!. By convention? the rule table is
arranged in descending order of the values of neighbourhoods, and the resulting bit string converts
to the decimal rule number. For example, the rule table for rule 30 V=2, K=3) 1s,

111 110 101 100 Ol1 010 001 000 neighbourhoods
0 0 0 1 1 1 1 0 outputs (O or 1)

rule-table

Some CA support coherent space-time structures. Periodic self sustaining configurations,
known variously as particles, solitary waves and gliders, may emerge and propagate across the
lattice, as in Conway's 2-D game of life3. For simplicity I will call all such configurations gliders
though their velocity may vary between zero and the system's ‘speed of light’, equal to the
neighbourhood radius per time-step.

The emergence of gliders characterises complex rules, which are said to occur at a phase
transition in rule space balanced between simple and chaotic behaviour!4, the so called edge of
chaos. From an initial random state, a limited number of glider types emerge after an initial sorting
out phase, and continue to interact for an extended period of time. Collisions between gliders may
produce new gliders that collide in their turn. So called glider guns may eject other gliders at
periodic intervals. These complex interactions can encode logical operations supporting universal
computation30.14. Von Neuman's original self reproducing automaton!? and subsequent examples
of glider reproduction have lead to the notion of artificial life!3.15.

Examples of such edge of chaos dynamics can be found in the simplest CA, for example the
much studied k=3, 1-D, rule 110!7. An example of a complex K=5, 1-D CA rule (from amongst
many others33) is shown in figure 4. 1-D CA dynamics is conveniently represented as a space-time
pattern diagram. The cylinder in figure 3 is split between cells 1 and N and flattened out. A time-
series of global-states is represented as in figure 4, with space across (rows of black and white
squares) and time running from the top down.

- Previous work on the structure and topology of CA basins of attraction3! have shown that
there are a number of general constraints to CA dynamics, which are reflected in their basin of
attraction fields. They do not necessarily apply to random networks. The constraints relate to
various symmetries and hierarchies within state space and rule space, summarised below.

1. Rotation symmetry (the number of repeating segments in the bit pattern) is conserved. In a

transient, rotation symmetry can not decrease over time; in an attractor cycle, rotation
© symmetry must remain constant. In symmetric rules the same principles apply ‘to ‘bilateral

symmetry.

2. Rotation equivalent states (that differ only by any rotation of the circular lattice) are embedded

in equivalent behaviour. This results in basins of attraction with identical topology, but rotated

states. Symmetries within basins occur if a sequence of rotation equivalent states repeat in the

attractor cycle; transient trees with identical topology, but rotated states, will be rooted on the

repeats.

Rule-space can be divided into symmetry categories by transformations within rule tables.

4. Equivalence classes and rule cluster relationships exist in rule space due to transformations
between rule tables.

w



A parameter, Z, was developed in3! to capture correlations between a CA's rule table and its
behaviour/basin field topology. The Z parameter is measured directly from the rule table and relates
to Langton's A parameter!3.14 and the equivalent concept of internal homogeneity introduced earlier
by Walker?3. Whereas A simply counts the fraction of 1s in a binary rule table, Z takes into account
the allocation of rule table values to sub-categories of related neighbourhoods. Behaviour
predictions on the basis of Z avoid the exceptions characteristic of A. The Z parameter predicts
various interrelated aspects of basin field topology such as the degree of pre-imaging (the
convergence of state space) and the density of garden of Eden states in state space. These in turn
relate to attractor cycle and transient length, and the number and size of separate basins. The table
below shows varying aspects of behaviour of increasingly large CA arrays as the Z parameter
changes from 0 to 1 (Wolfram's behaviour classes2%:30 are shown in brackets).

phase transition

simple (class 1&2) =» complex (class4) = chaotic (class 3)

garden of Eden density ~ converges to 1 balanced converges to 0
transient, attractor length  very short moderately long very long
Z parameter (0 - 1) ~ 0-0.6 ~06-038 ~08-1

' The variation of garden of Eden density against the Z parameter for 1-D CA is examined in35.
All =3 rules. and X=5 totalistic rules are included, and a sample of complex K=5 rules. A strong
inverse correlation was found. Complex rules are rare, but are most likely to occur in a distinct but
broad band of Z. Related correlations may exist for random Boolean networks.

Random Boolean Networks

The idea of randomly connected multi-function networks as dynamical systems with a
- corresponding field containing all lines of behaviour can be traced back to Ross Ashby, in his book -
Design for a Brain?. Random Boolean networks (sometimes called Kauffman's model), have been
investigated for a considerable time by Stuart Kauffman in theoretical biology and complex
systems®10.11, specifically to model gene regulation underlying embryonic development. Others
have studied variations of random Boolean networks in the context of memory in the immune
network, for instance?8, and in complex systems in general23-26.16_ The studies have built statistical
data on network dynamics from many separate forward simulations. The focus of interest has often
been to gain an insight into the topology of basin of attraction fields in relation to a range of
possible system parameters.

Random Boolean network architectures are in many ways similar to weightless {(or logical)
neural networks!, where standard memories (RAMs) hold each cell's look-up table. Classical neural
network architectures use weighted connection and threshold functions. A random Boolean
network may be regarded as a discrete generalisation of a sparsely connected classical neural
network. Connections with higher weights may simply be replaced by multiple couplings, and the
threshold function applied. However, a threshold function is a tiny sub-class of the P#X possible
CA rules.

Random Boolean networks may be viewed as generalised (disordered) CA32, breaking two
basic premises of CA architecture by allowing arbitrary wiring and/or rules at each cell. The effect
on behaviour of deviating from either or both of these premises by degrees will be discussed below
(see figures 8,9,10). Not surprisingly, coherent space-time patterns and emergent complex



structures such as gliders, characteristic of CA, are progressively degraded. A relatively small
number of basins with low period attractors typically emerge.

Random Boolean networks have a vastly greater parameter space, and thus behaviour space,
than CA. The various symmetries and hierarchies that constrain CA dynamics previously described
need no longer apply. Consequently it might be conjectured that any arbitrary basin of attraction
field configuration is possible given the right set of parameters. There is no limit to the speed of
propagation across the network. The notion of space and the ‘speed of light’ lose significance as

the homogeneous wiring/rule scheme of CA is progressively scrambled, though this can occur by
degrees.

OOO OO O OOOO network at time ¢

e wiring scheme

@ pseudo neighbourhood
OOO0OOODOOOO000 network at time #+1

‘Figure 5. Random network architecture. Each cell in the network synchronously updates its .
value according to the values in a pseudo neighbourhooz}, set by single wire couplings to .
arbitrarily located cells at the previous time-step. Each cel may have a different wiring/rule

scheme. The system is iterated.

A random Boolean network implies a value range of 2 (0 or 1), but in principle the arguments in
this paper could equally apply to a network where cells have more than two values. As in CA, the
global state of a network of N cells is the pattern resulting from values assigned to each cell, froma
finite range of values ¥ (usually ¥=2). Each cell synchronously updates its value in discrete time
steps. The value of a cell C; at #+1 depends on its particular CA rule, fi » applied to a notional or
pseudo neighbourhood, size K. Values in the neighbourhood are set according to single wire
couplings to arbitrarily located cells in the network at time ¢. The system is iterated. The system's
parameters are set by specifying the pseudo neighbourhood wiring and CA rule for each of the N
cells. Each cell may have a different wiring/rule scheme (but not necessarily). Once set, the
networks wiring/rule scheme is fixed over time.

The i-th cell C; has its neighbourhood wiring connections chosen as WaWop Wik
Connections are assigned to any of the N cells in the network, including C; itself. Duplicate
-connections are allowed, giving NX possible alternative wiring options. The i-th cell's rule §; is
chosen from VX alternatives in rule-space. The time evolution of the i-th cell is given by

The number of alternative wiring/rule schemes that can be assigned to a given network tumns
out to be vast even for small networks, and is given by

(¢
w” ’

Ci(t+1) =j;(c‘(:’)l’c )

N N
S= (N X ) x (VV‘) for example, a network where V=2, N=16, k=5, §=2%2



this basin in
greater detail

rule... 193
table... 0110100
cell  wiring
1 1471
2 285
3 911,11
4 1328
s 101110
6 151313
7 551
8 13210
9 1,115
10 14,910
112,53
12 5109
13 382
14 41,14
15 12,10,15

Figure 6.
Top Left. The basin of attraction field of a randomly wired, single rule network (non-local CA).
N=15 K=3, rule 193 The 2'5=32768 states in state space are organised into 4 basins of
attraction. The total number of states in each basin is as follows (with attractor period - in
brackets): 24 (1), 26926 (22), 3498 (17), 2320 (11). The field has 27057 garden of Eden states,

arden of Eden density = 0.823.

ttom left. The last basin shown in ireater detail (farden of E density = 0.823).

Bottom right. The pseudo neighbourhood wiring scheme.

Intermediate architecture

A spectrum of intermediate architectures is possible between CA and fully random networks as
indicated in figure 7. The two main categories are 8 homogeneous rule but random wiring, or
homogeneous wiring but a random rule mix. Within each category there are may possible variations.

10



homogeneous rule
varying degrees of random wiring

cellular automata random networks

\ homogeneous wiring template
varying degrees of rule mix

Figure 7. Intermediate architectures between CA and fully random networks.

Homogeneous rule - Random Wiring

A variety of constraints can be imposed on random wiring, for instance in Hopfield's model8
only symmetric wiring is allowed. Connections to a cell may be constrained to be distinct,
Duplicate connections would correspond to unequal weights on single input lines!0.

An example of the space-time pattems of a network with a homogeneous rule but fully
scrambled wiring is given in the lower half of figure 8a. Space-time patterns appear random until
the onset of periodic behaviour at the attractor. This is not surprising because totally random wiring
destroys the continuity of space - geometrically the network becomes N-dimensional. However the
pattern density (the density of 1s) tends to settle and fluctuate at a characteristic mean-field level,
though bi-stablility is also possible as in figure 9a. The mean-field pattern density probably relates
to the rule's internal homogeneity or A parameter.

Fluctuations are sometimes large with extended periods. The trace of the pattern density (as in
figures 8b) is somewhat reminiscent of the EEG (electro-encephalogram) measure of the mean
excitatory state of a patch of neurons in the brain.

Networks with partially and totally random wiring (non-local CA) have been studied by Li6.
He found that complex rules may result in a form of edge of chaos dynamics in these systems, by
the emergence of cooperations among 8 cluster of components, which he calls coherent clusters. He
also found evidence that the magnitude of density fluctuations becomes smaller for larger systems.

Walker23-26 has studied basins of attraction by statistical methods for a k=3 neighbourhood
where only the two outer wires were randomised (each cell is connected to itself). The system
retains some notion of space. A spectrum of constraints on random wiring could be imposed in a
similar way to retain a degree of spacial information in a network of given dimension and geometry.

-A varying proportion of wires from the neighbourhood could be set at random. Random wiring
could be confined to a local periodic zone of a certain radius; this seems to produce sub-attractors
as in figure 9b. Connecting each cell to itself could be mandatory, or excluded. Kauffman's random
Boolean network models!! generally do not constrain random. wiring, except that the number of
connections per cell, K, is constant, and often set at X=2.

To illustrate how coherent space-time structures are degraded by randomising Jocal CA wiring,
figure 8a shows the space-time pattern of a complex CA rule, k=5, N=150. Gliders emerge from a
random seed. After approximately 240 time-steps, the wiring is totally randomised (but not the
rule), All coherent space-time structure appears to be destroyed. Figure 8b shows the pattemn
density against time; irregular periodic fluctuations are apparent.

11
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Figure 8. Single rule, local and random wiring, (hon-local C4), N=150, K=35, rule 3162662612

a) The space-time pattern of a complex rule with local wiring from a random initial state. After
about 240 time steps, the wiring scheme has been totally randomised,

b) Shows the pattern density (density of 1s) in successive global states analogous to an EEG.

€) The space-time pattern of the same rule from anotier random initial state. At the times
indicated, 2% o]p the wires (15 out of 750) are cumulatively randomised,
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Figure 9. Examples of the space time patterns and pattern density plots in non-local CA (single
rule/random wiring), N=150.

a) K=5 rule 2129193089 with random wiring. This is a threshold rule set at 0.5 (majority rule)
but with the end bits flipped, ie 111—0 and 000->1. Note the bi-stable pattern density.

b) K=3 rule 193 with random wiring constrained to a 10 cell wide local periodic zone. Sub-
attractors emerge.

Randomising the wiring of the CA in stages will progressively transform a structured space-
time pattern to.a seemingly random pattern. Figure 8c shows the space-time pattern of the same
complex CA from another initial random state. At the intervals indicated, 2% of all available wires
(randomly selected) are cumulatively randomised (15 wires out of 750). Coherent structure is
progressively eroded. Eventually, the space-time pattern will look like the lower half of figure 8s.

Homogeneous Wiring - Random rule mix

A network's rule mix may be assigned at random, or the choice may be restricted to any
combination of sub-categories of rules from rule-space; for instance rules with a particular setting
of the Z parameter, only additive rules??, only threshold functions, or only canalizing functions!?,

13
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In homogeneous wiring/mixed rule networks, periodic structures confined within vertical
bands will rapidly emerge within the CA space (frozen islands and isolated islands of variable
elements!¥). A random rule mix tends to compartmentalise space, depending on the degree of rule
heterogeneity, the vertical features are local sub-attractors, In random networks (with both random
wiring and mixed rules) local vertical features repidly emerge for K=2 rules due to frozen islands,
but become less dominant as K increases. At k=5, space-time patterns appear chaotic, but with
some residual vertical features (see figure 10a). The mean-field pattern density probably relates to
the mean internal homogeneity or A parameter of all the rules in the network, corrected to allow for
the proportion of output couplings from each cell.

Figure10a shows the space-time pattem of a homogeneous wiring/mixed rule network. Frozen
islands and local sub-attractors emerge from a random initial state, After approximately 240 time
steps, the wiring has been totally randomised (but not the rule scheme), resulting in the loss of all
coherent structure, though some vertical features are evident. F igure10b shows the pattern density.
Figure 10c shows the space-time pattern of the same homogeneous wiring/mixed rule network from
the same initial random state. At the intervals indicated, 4% of all available wires (randomly
selected) are cumulatively randomised (30 wires out of 750). Frozen island structure is
progressively eroded. Eventually, the space-time pattern will look like the lower half of figure 10a.

Comparative Global Dynamics, CA <> random networks .
Although there is much work to be done given the enormous behaviour space open to investigation,
a few general observations can be made on the basin of attraction field topology of random Boolean
networks, and intermediate architectures, on the basis of many computer runs to reconstruct basins
of attraction to date.

The various symmetries and hierarchies that dominate CA basin field topology3}, as in figure
4, are absent in random Boolean networks; though some symmetries are still evident in small
randomly wired networks with a single homogeneous rule, or a limited rule mix. This lack of
constraint on the basin of attraction field topology, and their enormous parameter space, suggest
that random networks (or a network of networks) are an ideal vehicle for emergent categorisation,
and might be described as having the potential for brain-like behaviour.

%

wiring rule,-table

8,13,10 51, 00110011
4,43 55, 00110111
13,10,6 11, 00001011
8,12,8 166, 10100110
33,3 77, 01001101
1,99 182, 10110110
13,11,2 122, 01111010
6,2,11 188, 10111100
4,2,2 207, 11001111
9,12,6 112, 01110000
296 6 00000110
11,13,9 63, 00111111
6,106 56, 00111000

..-p-.-uomqo\uawn'—g
WN-O

Figure 11. The basin of attraction field of a random Boolean network with only one attractor,
period 6. N=13, K=3. The 213=8192 states in state space are all linked into one basin of
attraction. The network’s wiring/rule scheme is set out in the table.
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On the other hand, CA are discrete approximations of physical systems!3, characterised by
local connections. Just as the physical world has the potential for the spontaneous emergence of
life, under certain edge of chaos conditions CA seem to support the spontaneous emergence of
analogous complex dynamical phenomena such as gliders. In tumn, a key property of life is the
emergence of complex networks with non-local connections, biological systems are replete with
non-local connections, from brains to economics.

The basin structure of random Boolean networks is extremely varied, but for parameters set at
random, the number of basins and their attractor periods is generally very small and increases only
slowly with system size, whereas in some categories of CA the growth may be exponential.
Examples of just one attractor with a short period taking up the entire state space are not
uncommon, as the example in figure 11 for a N=13, K=3 network.

The surprisingly small number of attractors with small periods ties in with Kauffman's
studies!! for large random Boolean networks (for N up to 10,000). He reported that for k=2
networks, attractor cycles and the number of alternative attractors increased as VYN, and at a
increasing rate with greater K.

A systematic investigations of the topology and structure of basins of attraction for random
Boolean networks and various intermediate architectures, using the tools now available, has yet to
be done.

Computing Pre-Images in random Boolean networks

The construction of a single basin of attraction poses the problem of finding the complete set of
pre-images of a given network state. The trivial solution is to exhaustively test the entire state
space. Every state that is linked together in the basin would Tequire exhaustive testing. This
- -obviously becomes intractable in terms of computer time as the network's size increases:beyond
modest limits. To overcome this problem, methods have been invented for computing pre-images
directly, without exhaustive testing. The network's, dynamics can, in effect, be run backwards in
time; backward trajectories will, as a rule, diverge. A reverse algorithm that directly computes pre-
images for one-dimensional CA was presented in “The Global Dynamics of Cellular Automata’31.
I'set out below a general direct reverse algorithm for random Boolean networks32.

Consider a random Boolean network with N cells, with a pseudo neighbourhood size K. The
algorithm will be demonstrated for N=10, K=3. An equivalent algorithm applies for larger N and K.
For convenience, the system is represented as a 1-D array, Ay,4,,...,Ay,...,Ap. Each cell, A, (valye 0
or 1), has & pre-set wiring/rule scheme (possibly selected at random). The wiring scheme is given
by, A; (wy,wy,w3) where wy is 8 number between 1 and N signifying the position of the wire
connections from first branch of the pseudo neighbourhood, and so on. The rule scheme is given
by, A; (T3 Tg...,Tp), the K=3 rule table. In the example below the wiring scheme for A4 is w;=7,
w,=6 and w4=3.

P, P, Py P, Py Pg¢ P, Py Py Py

pre-image . . . oo o o 000
wiring scheme . . .

pseudo neighbourhood . . . WiWa Wy

known state . . . oo DWD 00o0o0o

Ay Ay Ay Ay Ag Ag Ay Ag Ay Ay
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To derive the pre-images of an arbitrary global state, consider a candidate pre-image as an
emply array, consisting of empty cells. The cells are empty because their values are unknown, and
unallocated as either O or 1. Empty cells are denoted by the wild card symbol s, known cells (with
values established as 0 or 1) are denoted by the symbol Q.

Consider a known network state, 4,,4,,...,4 N and the empty pre-image state Py,P,,...,Py.

empty pre-image . . . WoW W W W™ W W™ W
wiring scheme . . .

pseudo neighbourhood

known state . . . 000000000

Ay Ay Ay Ay Ag Ag A, Ag Ag Ay

Starting with the first cell of the known state, A,, the valid pseudo neighbourhood values,
consistent with the value of 4, are assigned to separate ‘copies of the empty pre-image according to
the wiring scheme 4,,(w, sW3,W3). As there will be a mix of Os and 1s in the rule table, only some
of the 8 possible pseudo neighbourhoods will be valid. If, say, 3 are valid, 3 partial pre-images

{with some cells known, and some empty) will be generated. For example, given the k=3 rule 50 at
A,, with a rule table as follows,

111 110 101 100 Ol1 010 001 000 ...neighbourhoods
rule-table... 0 0 1 1 0 0 1 0 ...outputs (O or 1)

If A;=1, then only 3 outputs match 4,, Tg, T, and T}, corresponding to the neighbourhoods
101, 100 and 001. These valid neighbourhoods are allocated to 3 empty arrays according to the
wiring scheme, say 4,(3,7,1). Each of the 3 arrays now have some of their cells allocated as Os or
1s, and are termed partial pre-images, as illustrated below.

Py P, Py Py Pg Pg¢ P, Pg Py Py
Tg partialpre-image 1... 1 % 1 % % % 0 ¢ % ¢
Ty partial pre-image2... 0 &% 1 % % % 0 % %™ %
Ty, partialpre-image3... 1 % 0 % % % 0 % ™% =
wiring scheme . . .
pseudo neighbourhood
known state . . . 0000000000

Ay Ay A3 Ag As Ag Ay Ag Ag Ay

The procedure continues with the next cell of the known state, A, (though the order may be
arbitrary). Say that the value of Aj has 5 (out of 8) valid pseudo neighbourhoods in its rule table,
Ay(TTg,...,Tp). The pseudo-neighbourhoods are allocated to 5 copies of each of the partial pre-
images that were generated at A, according to the wiring scheme Ay(wy,wy,w3).
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If the allocation of a value to a given cell conflicts with the value already assigned to that cell,
then the partial pre-image is rejected. Otherwise, the partial pre-image is added to the partial pre-
image stack. The allocation will be valid if it is made to an empty cell, or to a known cell with an
equal value. Valid allocation increases the size of the partial pre-image stack, conflicts reduce the
size of the stack.

This procedure is repeated in tum for the remaining cells, «A3,Ay,...,Apn . At each successive
cell, more partial pre-images may be added to the stack, but also rejected. The size of the stack will
typically vary according to a Gaussian distribution. If the stack size is reduced to zero at any stage
then the known state 4,,4,,...,4 ~ has no pre-images; it is a garden of Eden state. In general, the
vast majority of states in state space turn out to be garden-of-Eden states.

Note that the order in which cells in Ajy,A,,...,Ay are taken is entirely arbitrary. For the most
efficient computation, that minimises the growth of the partial pre-image stack, the order should
correspond to the greatest overlap of wiring schemes.

When the procedure is complete, the final stack may still have empty cells, signifying that
these cells are not sampled by any wiring couplings. Final stack arrays with empty cells are
duplicated so that all possible configurations at empty cell positions are represented.. The resulting
pre-image stack is the complete set of pre-images of the given state, without duplication. An

“equivalent, but extended, procedure is used for K=5 rules. In this case the wiring/rule scheme._is.
specified for each cell in the array Aq,A,,...,Ap; as follows,

the wiring scheme... 4, (wy,w,,w3,w,ws) the rule scheme.... 4; (T33,T3q,.-,Tp)

The general reverse algorithm for computing pre-images works for fully random networks or
- any degree of intermediate architecture, which of course includes CA of any dimension - the wiring
scheme is simply set accordingly. In principle, the algorithm will work for any size of pseudo
neighbourhood, X, and any value range, V. Provided that K- <N, the slgorithm is many orders of
magnitude faster than the exhaustive testing of state space, the only previous method available.

This information is used to construct the pre-image Jan, from the given state to its set of pre-
images (if any). The pre-image fan for each pre-image is then computed, and so on, until only
garden of Eden states remain. In this way transient trees (or sub-trees) may be constructed. Basins
of attraction (or the complete basin of attraction field) are constructed by first running the network
forward to reveal the attractor cycle, then computing each transient tree in tun. The method, and
the graphic conventions, are explained more fully in 3!,

‘Memory, far from equilibrium.

Memory far from equilibrium along merging transients may answer-a basic difficulty in explaining
memory by attractors in biological neural networks. A view of the brain as a complex dynamical
system made up of many inter-linked specialised neural networks is perhaps the most powerful
paradigm currently available. Specialised neural networks may consist of further sub-categories of
semi-autonomous networks, and so on, which contribute to re-setting or perturbing each other's
global state. A biological neural sub-network is nevertheless likely to be extremely large; as a
dynamical system the time required to reach an attractor from some arbitrary global state will
probably be astronomical. This may be demonstrated with a simple K=5 random Boolean network
with a few hundred cells. Even when an attractor is reached, it may well turn out to be a long cycle
or a8 quasi-infinite chaotic attractor. The notion of memory simply as attractors seems to be
inadequate to account for the extremely fast reaction times in biology.
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A discrete dynamical system with synchronous updating categorises its state space reliably along
transient trees, far from equilibrium, as well as at the attractors. A network that has evolved or
learnt a particular global dynamics may be able to reach memory categories in a few steps, possibly
- just one. Moreover, the complex transient tree topology in the basin of attraction field, makes for a
much richer substrate for memory than sattractors alone, allowing hierarchies of memory sub-
categories.

Deterministic transient tree topology, as described in- this paper, requires synchronous
updating in the network, though asynchronous updating might conceivably produce analogous
phenomena provided that the updating was deterministic, and not random as in Hopfield's model8.
Deterministic asynchronous updating could be implemented by adding an extra parameter to a
random network model; the length of each wire coupling as proposed by Harvey et al’, possibly in
discrete intervals. A standard speed of signal transmission applied to a network with variable
discrete length wires is equivalent to a network with only single length wires, but couplings to
network states before the previous time step, for example a cell at time ¢ might have connections to
cellsat -2, ¢-3,... as well as to ¢-1.

A difficulty with this model is that a given network state at a particular instant may have
multiple successors, and would be likely to occur many times in an enlarged state space.

- - -Alternatively, the states in the system's state space would need to consist of multiple time-steps, not. . .

just one. Network architecture with ‘higher order in time’30 or ‘historical time reference’3! may be
worth pursuing but is beyond the scope of this paper.

There is evidence that the firing of nearby biological neurons is strictly related in time. Phase
locking of spike discharges between neighbouring cells has been observed, extending up to 7mm
across the cortex*21:27, Synchronous firing may be mediated by interneurons, which lack axons2,
or mechanisms relying on close physical proximity between neurons (their dendrites, cell bodies
and axons). Gap junction effects (physical connections between neurons made by large macro
moleculles), and ephaptic interactions (the local electrical field) serve to synchronise local neuronal
activity18,

A biological model

A random Boolean network may serve as a model of a patch of semi-autonomous biological
neurons whose activity is synchronised. A cell's wiring scheme models that sub-set of neurons
connected to a given neuron. Applying the CA rule to a cell's pseudo neighbourhood models the
non-linear computation that a neuron is said to apply to these inputs to decide whether or not to fire
at the next time-step. This is far more complex than a threshold function20. The biological
computation may be a function of the topology of the dendritic tree, the microcircuitry of synaptic
placements and intrinsic membrane properties. Networks within cells based on the cytoskeleton of
microtubules and associated protein polymers may be involved, suggested by Hameroff et al56 as
the neuron's ‘internal nervous system’. There appears to be no shortage of biological mechanisms
that could perform the role of a CA's rule-table.

The cells in a random Boolean network are arranged in an orderly array for convenience only,
but their location may be arbitrary. One presumes that the actual location of neurons in the brain
has been optimised through evolution to achieve high density by minimising the average length of
connections that occupy space and consume resources.

The network has been re-drawn as a brain-like model in figure 13; a semi-autonomous
population of 27 idealised neurons distributed in 3 dimensions. Each neuron (figure 12) receives a
post-synaptic excitatory (1) or inhibitory (0) signal from up to 5 neurons in the population
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Figure 13

A random  Boolean
network (N=27, K=5)
represented as a semi-
autonomous population of
idealised neurons. Neu-
rons may have input and
output links to other
networks.

(possibly including itself) via its 5 dendrites (K=5), and computes a response signal to its axon
according to its particular 32 bit rule-table applied to its pseudo-neighbourhood. The updating of
axonic response is synchronous, and the process is iterated in discrete time steps.

The network's basin of attraction field is implicit in its wiring rule/scheme. In a patch of
biological neurons it would be implicit in the wetware. Recognition (categorisation) of a global
state is automatic and direct according to the particular deterministic trajectory (within the transient
tree of the basin of attraction) that will inevitably follow. Learning new behaviour implies amending
the basin of attraction field by adjusting the wiring/rule scheme, analogous to some physical change
to the wetware's neural architecture and synaptic function. How the appropriate change might occur
in biological networks to achieve a desired novel behaviour is unknown. Hameroff et al5-6 suggest
that cytoskeletal functions may provide retrograde signalling (analogous to back propagation in
artificial neural networks) which may reconfigure intra-neuronal architecture.
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- Fig 14. A network of weakly coupled semi-autonomous random Boolean networks linked to the
environment as a biological model. Each network may consist of a nested hierarchy of networks.

- The system is semi-autonomous because it must be capable of receiving input from outside to -
reset its global state, and also to- communicate its. current internal state.to the outside via feed
forward channels. Thus each neuron in the model has overriding postsynaptic inputs from outside
the population, and a projection axon to targets outside the population.

The model may be elaborated by weakly inter-connecting a number of random Boolean
networks (or perhaps 3-state networks), so that the output of & particular network constituted the
overriding input of another. Communication between networks may be asynchronous, and at a
slower frequency than a particular network's internal synchronous clock. Such an assembly of
networks will have implicit in its particular pattem of connections at any instant, a vastly more
complex but intangible web of interacting basin of attraction fields - the ghost in the machine ?

Learning Algorithms

Whether or not such a model is biologically plausible, it may be useful in its own right as an
artificial neural network where leaming (and its side effects) is visualised as alterations to the
detailed structure of the basin of attraction field. In networks too large to allow basins, or even

+ - - fragments of basins, to be computed, the principles still apply. Separate basins in the basin of

attraction field, and each node onto which dynamical flow converges, categorise state space. All the
network's states other than garden of Eden states are content-addressable memories. Any external
input will automatically initiate a dynamical flow along a unique chain of states. Each successive
state categorises states in its transient sub-tree, far from equilibrium, forming a complex hierarchy
of categorisation culminating at the- attractor. The set of attractors and their branching trees
constitute the network's collective memory.

This section sets out leaming algorithms that ensble a random Boolean network to learn new
transitions from experience (and also to forget). Suppose we want to make the state P; the pre-
image of state 4. Any mismatches between cell values of the actual successor state By (of the
aspiring pre-image, P;) and state A can be corrected in one step by either of two methods, adjusting
the network's wiring or rule scheme. The two methods have very different consequences.
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Figure 16. States Py,P, P;,... etc may be learnt as pre-images of the state A. Distant pre-images
of A may also be leamnt, jor instance as pre-images of Py. Learning A as a pre-image of itse}f
Creates a point attractor. Learning A as a distant pre-image of itself creates a cyclic attractor. If
A is learnt as the pre-image of some other state in the basin of attraction field, the states flowing
into A, its transient sub-tree, may be fully or partially transplanted along with A.

Before leamning starts, a wiring/rule scheme must already be in place. If the relevant
transitions in the basin of attraction field are already close to the desired behaviour, the side
effects of learning will be minimised. The wiring/rule scheme may be selected from an atlas of
basin of attraction fields, such as in3!. It may be pre-evolved from a population of wiring/rule
schemes using a genetic algorithm, or in the worst case assumed at random.

Learning by re-wiring

Consider the state P1, (P1,,P1,,...,P1 N). that the network is to learn as a pre-image of the given
state 4, (A;,45,.../4n). When P1 (the aspiring pre-image) is evolved forward by one time-step
according to its current K neighbour wiring/rule scheme its actual successor state is B1,
(B1,,B1,,..,B1,). If the states P1 and A were selected at random, then B1 will probably have
mismatches with 4 in about N/2 locations.

Pl, P1, Pl P1, Pl Plg P1, Plg Plg Pl

aspiring pre-image P1 ... 0 " O ) ) 53 0 0o _
- correct a mismatch
wiring scheme, K wires . . . —— between Bl,and A,
by moving one wire
pseudo neighbourhood . . .
actual successor state B1. . B1; Bl, Bl, B1, Blg Blg Bl, Blg Bly Bly,
the given state 4 . . . Al Az A3 A4 AS A6 A7 As A9 AN

Suppose that B1,#A, . One wire, or more if necessary) of the cell's wiring couplings is moved
to a new position. We will limit this analysis to single wire moves only. Any move resulting in a
pseudo neighbourhood with opposite output (according to that cell's look up table) will correct the
mismatch. This is a stochastic method as there are likely to be many alternative successful options.

Assuming that P1 has a roughly equal proportion Os and 1s, there will be ~N/2 alternative
positions where a wire move will pick up a changed value. Given K wires there will be sKxN/2
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alternative re-wiring options that will change the pseudo neighbourhood. Assuming the rule at cell
4 has A=0.5, (the proportion of 1s in the rule table), a1/2 of the changed pseudo neighbourhoods
will change the value of Bl so that B1 4=A4 The number of valid re-wiring options to correct each
mismatch is therefore sk'xN/4. The choice for re-wiring may initially be selected at random from
among the valid options to correct each mismatch making P1 the pre-image of 4.

Suppose that another aspiring pre-image, P2 (with an actual successor B2) is to be leant as a
pre-image of A by re-wiring, but without forgetting P1. If B2 47A 4 there will be «xKxN/4 valid re-
wiring options to correct the mismatch. However ~1/4 of the options would change the value of
B1,, forgetting P1 (»1/2 the wire moves would change the pseudo neighbourhood of B1, #1/2 of
which will have outputs different to B1,).

If several pre-images are to be leamt in succession by single wire re-wiring, without forgetting
any previously learnt pre-images, the space of valid re-wiring options for a particular cell will be
reduced by ~1/4 for each mismatch correction. The shrinking of the valid re-wiring space is
sensitive to the initial re-wiring choices, and the order of learning. Some re-wiring choices will be
fitter than others, affecting the capacity of the network to learn that particular set of pre-images.

If the pre-images are close to each other in terms of Hamming distance, there will be fewer
mismatches to correct thus greater leaming capacity. Close pre-images are likely be learnt by
default; the network is able to generalise from examples. . :

- What is the probability of forgetting pre-images on the same fan, or transitions elsewhere in
the basin of attraction field, as a result of learning by re-wiring?

Consider an arbitrary transition X—Y elsewhere in the basin, The probability of forgetting the
transition by moving one wire is given by, Fi=1/4

by moving two wires,  F,=Fy+F;(1-Fy)

n-1 {
by moving n wires,  F, = Z(l“%) . %
1=0

The capacity of the network to learn more states as pre-images of a given state will thus
depend on a number of factors: the original wiring/rule scheme, the similarity of the new pre-
images, the order of leaming, and the choice of re-wiring options. However, the network may
have additional capacity to learn distant pre-images, further upstream in the transient tree as in
figure 16. Note that if the network leams the given state itself as its own pre-image, this will
result in a point attractor. If the state is learnt as a distant pre-image, this will result in a cyclic
attractor with a period equal to the distance.

Learning by mutating the rule scheme

To correct a mismatch between a cell in 4 and the corresponding cell in the successor of an
aspiring pre-image, P;, by mutating the rule scheme, one specific bit in that cell's rule table is
flipped (changed from 0—1 or 1—0). There is only one option, certain to succeed. Adding
another aspiring pre-image, by the same method cannot cause P, to be forgotten. This is because
any mismatch between a particular cell in the successor state B, (of the aspiring pre-image, P,)
and 4 can not relate to the same rule table entry that was ‘looked up’ to determine Py's successor.
Otherwise there would have been no mismatch. Any change to correct the mismatch must be to a
different rule table entry; Py's successor cannot be affected. It turns out that there is no limit to
the number of pre-images of a given state that can be learnt by this method, and no risk of
forgetting previously leamnt pre-images of the state, but of course there may be side effects
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elsewhere in the basin of attraction field.

As an extreme example, all states in state space can be made the pre-images of any arbitrary
state A. The two trivial rules with rule tables consisting of only Os or only 1s are allocated to cells
in A according to whether a cell equals 0 or 1. The result will be a basin of attraction field
consisting of a single point attractor. All other states in state space will be garden-of-Eden pre-
images of the point attractor.

Consider the state P1, (P1,,Pl,,...,P1 N). that the network is to learn as a pre-image of the
given state 4, (4;,45,...,/Ax). When P1 (the aspiring pre-image) is evolved forward by one time-step
according to its current X neighbour wiring/rule scheme its actual successor state is B,
(B1,,B1,,...,Bl1,).

P1, P1, P14 P1, Pls Pl¢ P1, Plg Pl, Pl

aspiring pre-image P1... 0 O a 00 00
. correct a mismatch
wiring scheme, K wires . . . between Bl and 4 4
by ﬂip;ging a specific
pseudo neighbourhood . . . bit in the rule at cell 4
actual successor state B1. . B1, B1, B1; Bl Bl4 Bl Bl, Blg Blg Bly,
the given state 4 . .. 'A'l Az -A3 A4 AS A6 A7 As A9 AN

Suppose that B1,#4,. To correct the mismatch, the CA rule at cell 4 is mutated by flipping
the bit in its rule table corresponding to the pseudo neighbourhood at Bl 4 There is only one
option. As the rule table has 2% bits, flipping one bit represents a change of 1/2K in the rule table,
i-e. for 3-neighbour wiring 1/8, for 5-neighbour wiring 1/32. This is the probability -of forgetting
another transition elsewhere in the basin of attraction field, outside the immediate pre-image fan
where the probability of forgetting = 0. For larger K the probability of a rule table bit flip resulting
“in forgetting some arbitrary transition, X—» ¥ becomes smaller at an exponential rate as K increases.
It was shown in3! that a 1 bit mutation (to each cell, i.e. flipping a total of N bits) in a 5-neighbour
CA resulted generally in a small change in the basin of attraction field.

Consider an arbitrary transition X—»¥ elsewhere in the basin. The probability of forgetting the
transition by one bit-flip is given by,  Fy=1/2K

by two bit-flips, Fy=Fy+Fy(1-Fy)

»-1 1/ { 1
by n bit-flips, Fo=>11-
y mbit-flips 2= 21 Vo) Yo

If a set of pre-images to be leamt are close to each other in terms of Hamming distance, there
will be fewer side effects elsewhere in the basin of attraction field. Again, close pre-images are
likely be learnt by default; and the network is able to generalise from examples.

Sculpting the basin of attraction field

Re-wiring has a much a greater effect on basin structure than mutating the rule scheme, but
in either case the stability of basin structure is noteworthy. Using these methods, point attractors,
cyclic attractors and transient sub-trees can be can be created. Transient sub-trees are sometimes
transplanted along with the repositioned state (see figure 15), indicating how leamt behaviour can
be re-applied in 8 new context. Generalisation is present, because bit patterns in the same pre-
image fan are likely to be close in Hamming distance to each other, and so may be learnt by
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Figure 17. The basin of attraction field of a 5 cell parity sortir;i net-work. The first basin has only
even parity states, the second has only odd parity states. Both basins have point attractors. Bit
patterns are represented by decimal numbers.

- default from-examples. Forgetting involves pruning pre-images and transient sub-trees; and is
achieved by the inverse of the method for leaming. Since it is sufficient to create Just one
mismatch in order to forget, the side effects are minimal as compared with learning.

Figure 15 shows an arbitrary example (with no particular aim) of visible learning (and side
effects) in a 6 cell network with regular wiring but randomly allocated rules. At each learning
~ step, a state (or set of states) is made the pre-image of a target state. Figure 17 shows the basin of
attraction field of a 5 cell network that has been taught to segregate 5-bit strings with odd and
even parity into two separate basins.

Combining wiring and rule scheme adjustments, may result in a powerful method of
cumulative learning (supervised and unsupervised) in random Boolean networks. In future work I
anticipate applying the algorithms to simple recognition tasks, to use genetic algorithms to evolve
improved start parameters of networks prior to learning, to extend the learning methods to
include changes in system size and connectivity, and to investigate assemblies of weakly coupled
semi-autonomous networks.

Conclusions

Whereas CA; embedded as they are in a continuous space with homogeneous laws, provide models
of processes in physics, including the emergence of self organisation and simple life-like
phenomena, random networks may be appropriate as models for the non-local interactions between
living sub-systems typical of biology. Non-local interactions transcend inanimate physics and are
perhaps a key property distinguishing living from non-living matter. Complex non-local networks
with emergent properties occur hierarchically at all scales in biology, from networks of genes
regulating one another within a cellll, to networks regulating entire ecosystems, not to mention
human society and technology.

Understanding the dynamics of abstract random networks may provide insights into biological
networks in general, where concepts analogous to memory may be ubiquitous, take for instance
memory in the immune system.

Non-local interactions, shaped by evolution and learning, allow the emergence of
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unconstrained categorisation in a system's repertoire of dynamical behaviour - its content
addressable memory. The basin of sttraction diagrams of random Boolean networks capture the
network's memory. The diagrams demonstrate that a complex hierarchy of categorisation exists
within transient trees, far from equilibrium, providing a vastly richer substrate for memory than
attractors alone. In the context of many semi-autonomous weakly coupled networks, the basin
field/network relationship may provide a fruitful metaphor for the mind/brain.
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