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Abstract

What do we mean by complexity in the changing patterns of a discrete dynamical system?
Complex one-D CA rules support the emergence of interacting periodic configurations - gliders,
glider-guns and compound gliders made up of interacting sub-gliders - evolving within quiescent
or periodic backgrounds. This paper examines gliders and their interactions in one-D CA on the
basis of many examples. The basin of attraction fields of complex rules are typically composed of
a small number of basins with long transients (interacting gliders) rooted on short attractor cycles
(non-interacting gliders, or backgrounds free of gliders).

For CA rules in general, a relationship i1s proposed between the quality of dynamical
behaviour, the topology of the basin of attraction field, the density of garden-of-Eden states
counted in attractor basins or sub-trees, and the rule-table's Z parameter. High density signifies
simple dynamics, and low - chaotic, with complex dynamics at the transition. Plotting garden-of-
Eden density against the Z parameter for a large sample of rules shows a marked correlation that
increases with neighbourhood size. The relationship between Z and the A parameter is described.
A method of recognising the emergence of gliders by monitoring the evolution of the lookup
frequency spectrum, and its entropy, is suggested.
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1. Introduction

So called complex cellular automata (CA) rules, such as Conway's 2-D game of life?, support coherent,
periodic, space-time configurations that propagate and interact on a quiescent background. The menagerie
of configurations found have been grouped under various names such as blinkers, gliders, glider-guns,
eaters, space ships, puffer-trains, etc. Langton suggests that such virtual state machines’ may provide the
‘molecular logic’ for artificial life embedded in CA.

In one-D complex CA, analogous phenomena exist within a background that may be quiescent but is
often periodic. These coherent structures are described variously as, solitary.-waves, gliders, virtual
automata, information structures, particle-like structures and domain boundaries. Large scale complex
dynamical behaviour emerges from disordered initial conditions as a result of many local small scale
parallel processes; an instance of self-organisation at the edge-of-chaos®. Gliders are analogous to
autocatalytic sets of polymers, in that a configuration C, sets off a sequence of transformations, —Ca—>
C3—+-- >C), with catalytic closure. Members of such sets have a survival advantage in occupying space,
and the set acquires its own identity as an observed object at a higher level.

The possibility of a new level of description of dynamical behaviour, on the basis of observed glider
collision rules without reference to the underlying low level CA rules, illustrates the concept of
emergence, and may underlie the elusive notion of complexity. Gliders may eject or absorb a regular glider
stream, or spontaneously combine to form compound gliders, which then interact at yet higher levels of
description. The process could unfold without limit in large enough systems.

A CA may be regarded as a parallel processing computer!S. Collisions between gliders, creating new
gliders that collide in their turn, may encode logical operations supporting universal computation28.15. A

-CA may alternatively be viewed as a logical universe with its own local physics, with gliders as artificial
molecules, from which more complex gliders with the capacity for self-reproduction and other essential
functions of biomolecules might emerge, leading to the possibility of life-like behaviour”.

-"How simple can a CA be and still exhibit complex behaviour? How and why is complcx1ty able. to:-,
- emerge? What do we mean by complexity and emergence in the changing patterns of a discrete dynamical
system? To begin to answer these questions it may be helpful to examine a relatively large sample of CA
rules with glider-like properties that appear complex to us, but whose architecture is as simple as
possible. In one-D CA, a few complex rules have been identified which feature emergent gliders. Among
the 256 binary 3-neighbour rules (the elementary rules!S) where an exhaustive search is practical, there are
2 sets of rules identified as complex®17, rule 54 and 110 (and their equivalents). Some examples of
complex rules in S-neighbour rule-space, have been documented!6:10.1.21 Other examples are derived
from one-D CA with more complicated architectures8. 16, such as a value range greater than binary.

In appendices 2 and 3, this paper presents a sample of about 60 subjectively complex one-D binary
rules; the neighbourhood size is generally 5, with a few examples of 6 and 7. Figures 1 and 15 show
typical examples. Complex rules are supposed to be rare!%; most rules are simple or chaotic. However,
complex rules can be found relatively easily by a method of artificially selecting random mutations similar >
to the proposal by Lil0. As the neighbourhood increases the search becomes. harder because the search
space grows exponentially. A rule is selected at random from a likely region of rule space according to the
Z parameter. As the space-time pattern iterates, the rule is mutated by random bitflips, bitflips-back, or
bitflips that raise or lower Z, to select borderline rules until a complex space-time pattern is recognised.
Alternatively, starting from a complex rule, other complex rules may be easily found, suggesting that
related complex rules separated by small Hamming distances occur in clusters in rule space. Possible
methods of automating the search by monitoring the frequency spectrum of neighbourhood lookup. and
the variation of the spectrum'’s entropy, is suggested.
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Figure 1.

A typical space-time pattern and basin of attraction field of a K5 rule that supports emerging gliders, taken
from the sample in appendix 2 (2.17). Left: a typical space-time pattern, system size 200, periodic
boundary conditions, 480 time-steps from the top down. Top centre: the basin of attraction field, system
size 16, showing the 9 non-equivalent basins from a total of 15 in state space. Top right: basin field data
%for key see appendix 2.1) and below a gmiph of garden-of Eden density (vertical ax;z? against system size,

or N=1to 18. Bottom centre: a detail o

glider interactions. Bottom right: the
Aratio and Z parameter.

e number 1n hex, its

The basin of attraction field provides another, global, perspective for assessing complex rules, and
may be contrasted with the basin fields of rules in general presented in2!. The idea that complex.rules
occur at a phase transition in rule space based on Langton's A parameter320, is extended on the basis of
the more focused Z parameter2!, which is-shown to provide a good indication of the density of garden-of-
Eden states in state space (G-density). G-density i1s a good measure of the degree of convergence,
independent of system size, of the dynamical flow seen in the topology of the basin of attraction field.
High density signifies simple dynamics, and low - chaotic, with complex dynamics at the transition.
Graphs of G-density against the rule table's Z parameter for a large sample of rules shows a marked
correlation, becoming more focused for larger neighbourhoods. : '

The availability of a relatively large sample of rules yielding space-time patterns that feature
interacting gliders allows an attempt at a comparative description of what constitutes complex dynamics,
in contrast to the simple or chaotic dynamics more generally apparent in CA behaviour space.



Complexity in One-D Cellular Automata 5
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Figure 2.

One-D CA architecture, periodic
boundary conditions. Neighbourhood
size, K = 5, system size N. Updating
1s synchronous in discrete time-steps.

2. One-Dimensional CA architecture

A CA i1s a self-contained discrete dynamical system, where space is a lattice of cells with a regular
geometry. Cells update their values, chosen from a finite alphabet, as an invariant function of a standard
neighbourhood template (the neighbourhood). Updating is synchronous in discrete time-steps.

This paper considers the simplest CA architecture. The alphabet's size is just 2 (0,1). Space is a one-
dimensional ring of N cells (periodic boundary conditions). A cell's neighbourhood (size K) is a
continuous zone of up to 9 cells at the same time-step; odd sizes are centred, even sizes have an extra cell
on the left. Most examples in this paper are for K=5 (radius 2) neighbourhoods; a diagram of the system is
shows in figure 2. The direction of time is from the top down.

Consider a periodic one-D lattice with N cells and a size K neighbourhood. rest and rright are the
neighbourhood radii to the left and right, where X = reft +1+ rright. The time evolution of the i-th.cell is

given by,
1) _ (0 C(f) (f) 0 ()
C; ‘f(C' o Cig €y Ciyqg G

1—Tept i+ I'W)
to satisfy periodic boundary conditions, for x<1, C,=Cp4y: forx>N, C,=C,_y

A neighbourhood of size K has 2K permutations of values. The most general expression of the
function f is a lookup table (the rule table) with 2K entries, giving 22X possible rules. Sub-categories of
rules can also be expressed as simple algorithms, Boolean derivatives!2, totalistic rules or threshold
functions. The number of effectively different rules is reduced by symmetries in the rule table!42!. By
convention!3-2! the rule table is arranged in descending order of the values of neighbourhoods, and the
resulting bit string converts to the decimal or hexadecimal rule number. For example, the rule table for the
K=3 rule 30 (hex le) is,

7 6 S 4 3 2 1 0  <«neighbourhoods (decimal)

111 110 101 100 011 010 001 000 <« neighbourhoods (binary
rule-table» 0 0 0 1 1 1 1 (—out%?ns ® )

The rule table for the K=5 rule 906663673, hex 36 0a 96 9, is .
neighbourhoods 31— O (shown vertically)

leftcel= 1111111111111111 0000000000000000

1111111100000000 1111111100000000

centrecell > 1111000011110000 1111000011110000

. 1100110011001100 1100110011001100

rightcell >1010101010100101 1010101010101010
rule-table> 001 1011000001010 1001011011111001 «outputs

K > 5 rules are referred to by their hexadecimal rule numbers for simplicity, but K=3 rules are also
referred to by their more familiar decimal rule numbers.
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Top: the basin of attraction field of a X7 complex rule consisting
of 89 basins, the 11 non-equivalent basins are shown. System size
= 16. Equivalent transient trees are squressed agan from their
%arden-o Eden states. Centre: a detail of the second basin. Bottom
eft: data on each basin and the field is given in the table according
to the key in appendix 2.1. The K7 rule number in hex is 3b 46 9¢
Oe e4 f7 fa 96 {9 3b 4d 32 b0 e dO &0, (see appendix 3.6).
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3. Space-time patterns and basins of attraction
In this paper, two aspect of CA behaviour will be related, space-time patterns and the basin of attraction
field. .

A space-time pattern represents a single determined trajectory through state-space. An initial pattern or
seed assigned to the lattice at time ¢, sets off a succession of patterns at times #,, L,, t,... by the iteration
of the CA rule. The future dynamics is determined yet unpredictable; there seems in general to be no short
cut for knowing the future more efficiently than the actual iteration itself!8. The sequence of iterated
states is a trajectory, and may be represented by a space-time pattern diagram.: This is shown as successive
rows of cells (the circular lattice is opened out), coloured according to value; O-white, 1-black. The
direction of time is down. A CA state has just one successor, but may have an arbitrary number of
predecessors (its pre-images). States with no pre-images are so called garden-of-Eden states because they
cannot be reached by normal CA evolution, they can only be imposed from outside. Although a seed
determines a single future, each iteration may have many past histories.

The state-space of a CA with N cells is 2V. Any path inevitably encounters a repeat of a previous state,
and must lead to a state cycle (the attractor cycle). The attractor may have just one state, a stable point
cycling to itself, or may have an arbitrarily long period”. The set of all possible paths leading to the same
attractor, including the attractor itself, make up a basin of attraction, a concept familiar from continuous
dynamical systems. State-space is typically divided into many basins, the basin of attraction field.

Any trajectory is just one particular path within a basin of attraction. A transient is the portion of the
trajectory outside the attractor cycle and usually merges with other transients to form a branching tree
with garden-of-Eden states as the leaves. A sub-tree is a branch of the transient tree. Basins of attraction
typically have a topology of trees rooted on cycles. They are mathematical objects in space-time that link
the system's global states according to their dynamical transitions.

Access to these objects opens up a new area of phenomenology. They provide a global perspective on
CA dynamics, in addition to the study of space-time patterns alone. The relative length-and bushiness.of
~ trees; and other features of basin field topology, reflect space-time phenomena. . .. . . e

4. Computing pre-images

Constructing a basin of attraction or subtree poses the problem of finding the pre-images of each state. A
possible method is to exhaustively test the entire state space, but this becomes computationally intractable
as the network's size increases beyond modest limits.

Algorithms have recently been invented2!.22, however, for computing pre-images directly, without
exhaustive testing. The network's dynamics can be run backwards in time; backward trajectories will, as a
rule, diverge. A reverse algorithm that directly computes pre-images for one-D cellular automata. was
presented in The Global Dynamics of Cellular Automata®!; and a general direct reverse algorithm for
random Boolean networks (which includes higher dimensional cellular automata) in The Ghost in the
Machine??. The computational performance depends on the extent to which the neighbourhood size X, is
smaller than the system size N. Provide that K < N, on average the performance is many orders of
magnitude faster than exhaustive testing, making basin portraits for these systems accessible.

“The attractor period cannot , however, exeed 2-A1, where M is the number of states in state space made up of
repeating segments on the circular lattice?!.
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5. Drawing basins of attraction and subtrees
Basins of attraction are portrayed as computer diagrams in the same graphic format as presented in2l.

Global states may be represented by nodes, or by the state's binary, decimal or hexadecimal expression at

the node position. Nodes are linked by directed arcs. Each node has one outgoing arc (one out degree) and
zero or more incoming arcs from nodes at the previous time-step. Nodes with no pre-images have no
incoming arcs, and represent garden-of-Eden states. The number of incoming arcs 1s referred to as the
degree of pre-imaging (or in degree).

Figure 3 shows the basin of attraction field of a K7 CA with:16.cells.from-the examples of complex
rules in appendix 3. The CA has organized the 65536 states in state-space into a field with 89 basins of
attraction. Because of rotation symmetry in the circle of cells, many of these basins, and also transient
trees within basins, are equivalent to each other. Only the 11 non-equivalent basins in the basin of
attraction field are shown. If a basin has equivalent transient trees, only one example of each equivalent set
of trees is shown in full, the others are indicated only by their garden-of-Eden states. Data on the field is
shown according to the key in appendix 2.

6. The Z-parameter and basin topology
Various parameters, calculated directly from a CA's rule table, have been. proposed to predict CA
behaviour and mark the phase transition between order and chaos, notably Langton's A parameter’-8 and
the equivalent idea of internal homogeneity introduced earlier by Walker!3. 1 have proposed a new
parameter2l, Z, which avoids many of the exceptions inherent in A and tracks behaviour more closely.
Whereas A simply counts the fraction of 1s in a binary rule table, Z takes into account the allocation of
rule-table values to sub-categories of related neighbourhoods.

Suppose that we know part of a pre-image (a partial pre-image) of an arbitrary CA state, and attempt
to deduce the value of successive cells from left to right. The Zj.s parameter is the probability that the

-next cell to the right:in the partial pre-image has.a unique-value, and is calculated directly from the CA

" rule table by counting deterministic neighbourhoods, defined below. Zyight is the converse-from right to

Aratio o5

0.0

left. The Z parameter itself is the greater of Zjep and Zrighs.
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Figure 4. :
The relationship between Aratio and the Z parameter for K5, K7 and K9 rules. Each graph shows 2200
rules chosen at random but biased to include a representative spread of Aratio.

1.0
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If a partial pre-image ends with a pattern corresponding to a deterministic neighbourhood, then the
next cell must have a unique value, thus preventing the partial pre-image from bifurcating into two valid
partial pre-images, and restricting the potential for growth in the number of pre-images. This is the basis
of the reverse algorithm for determining pre-images presented in?!, where the leading edge of each partial
pre-image is continuously checked for a match with a deterministic neighbourhood.

Z 1s a probability, so varies between 0 and 1. If Z is high, the number of pre-images of an arbitrary
CA state is likely to be small relative to system size. If Z=1 it was shown in?! that maximum in-degree
cannot exceed 2X-1, and if only one of Zet or Zyighs =1, maximum in-degree must be smaller than 2K-1.
Conversely, if Z is low, the in-degree is likely to be relatively high (if*Z=0, all state space becomes a
single pre-image fan).

For CA rules 1n general, the quality of dynamical behaviour, simple—complex—chaotic is reflected by
the degree of convergence of dynamical flow seen in the topology of the basin of attraction field. Consider
a transient sub-tree with n nodes linked by -1 edges. In the space of all possible topologies there are two
extreme cases. Maximum convergence occurs where 7-1 nodes converge in one step onto a single node;
here the garden-of-Eden density is close to 1. Minimum convergence occurs where the nodes are strung
out in a chain with pre-imaging never exceeding one; here the garden-of-Eden density is close to 0.
Between these two extremes, it is possible to imagine a spectrum of degrees of convergence that describe
the topology in terms of the "bushiness" of typical transient trees, high convergence for short and dense
trees with many branching points of high in-degree, and low for long sparse trees, with few branching
points of low in-degree. ,

A simple measure that seems to capture the degree of convergence (independently of system size) is -
the density of garden-of-Eden states (G-density) counted in attractor basins or sub-trees: High density
signifies high convergence and simple dynamics, low density signifies low convergence and chaotic
dynamics, with complex dynamics balanced at the transition.

By predicting the probable in-degree of an arbitrary CA state, the Z parameter predicts G-density and
convergence. This in tumn relates to attractor cycle and transient length, and the number and size of

‘separate basins. The table below shows varying aspects of behaviour of increasingly large CA arrays as the
Z parameter varies from 0 to 1 (Wolfram's behaviour classes!516 are shown in brackets).
phase transition
simple (class 1&2) = complex (class 4) =¥ chaotic(class 3)

Z parameter (0 - 1) low ~05-08 high
convergence high balanced low

garden of Eden density converges to 1 balanced converges to 0
transient, attractor length very short moderately long  very long

7. Calculating the Z-parameter
The procedure to derive Z from the rule table is described below (refer to The Global dynamics of
Cellular Automata?! for a fuller discussion relating specifically to K3 and K rules). :
Let ng = the count of rule-table entries belonging to deterministic pairs of nmghbourhoods such that,
the neighbourhood, ay,as,..ax.1,1 — T...(its output)
and ay,ay,.ag.1,0 > T (not T)
The probability that the next cell is determined on the basis of deterministic pairs is given by

Ry = ng2K a first approximation of Zigpr , as deterministic pairs occur with the hlg.hest probability in a
random rule-table. - '
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Let ng.; = the count of rule-table entries belonging to deterministic 4-tuples of neighbourhoods
(where "*" is a wildcard value. 0 or 1 with equal validity) of such that,

the neighbourhood, ay,a3,..ag.o,1, * 57T (its output)

and ay,ay,..ag2,0, * ->T

The probability that the next cell is determined on the basis of deterministic 4-tuples is given by
Rg.y=ng.12K

Let ng_o = the count of rule-table entries belonging to deterministic 8-fuples of neighbourhoods such
that,

the neighbourhood, ay,as,..ag.3,1, *, * ->T (its output)

and ay,a,..ag3,0, *, * >T

The probability that the next cell is determined on the basis of deterministic 4-fuples, is given by
Rg.p=ng92K

This procedure is repeated if necessary to count rule-table entries belonging to deterministic
16-tuples of neighbourhoods, 32-tuples of neighbourhoods etc,... up to the special case of just one
2K _tuple of neighbourhoods which occupies the whole rule-table.

The probability that the next cell is determined on the basis of at least one of these procedures is
given by the following expression (order of the probabilities makes no difference to the result),

Ziep = Rg + Rg-1(1-Rg) + Rg2(1-Rg + Rx-1(1-Rg))) + R 3(1-Ri-2(1-Ri + Rk (1-R))) + ...
Which simplifies to . . .

Ziep = R + Rg1(1-Rg) + Rg-o(1-Rk-1)(1-R) + R 3(1-Re)(1-Re-1)X(1-Re) + ..

s K1
And may be expressed as* 7 0= Ryt Z Rx.;
=1 J=K—i+1

K
[1(1-Rr))
where R; =n#2K, and n; = the count of rule-table entries belonging of deterministic 25--tuples. . . .-
A converse procedure gives Zpight, and the Z parameter = the greater of Zjep and Zpighy.

For example, take the K5 rule b9 89 3a fO 3 with a rule table set out in the conventional order (higher
value neighbourhoods on the left). Left-to-right n-tuples are conveniently positioned in adjacent clusters.
To calculate Zip, count rule-table entries belonging to deterministic n-fuples of neighbourhoods.

Deterministic n-tuples are indicated thus "_.", " I Metc

neighbourhoods 31— 0 (shown vertically)

leftcell» 1111111111111111 0000000000000000
1111111100000000 1111111100000000

centrecell- 1111000011110000 1111000011110000

. 1100110011001100 1100110011001100

nghtcel» 1010101010101010 101010101010101290

ruetables 1011100110000110 0011101011110000 <«outputs
b bt gl ) byt g N by M e ———

n5=16, Rs=16/32=05, ng=4, Rq=4/32=0.125, n3=1, R3=8/32=0.25
Ziep=0.5 +0.125(1-0.5) +0.25(1-(0.5+ 0.125(1-0.5))) = 0.5 + 0.0625 + 0.109375 = 0.671875

To calculate Zyghr, the diagram of neighbourhoods is reflected about its centre-cell axis, and the
rule-table entries are rearranged according to the revised order (only asymmetric neighbourhoods change
position). This groups right-to-left n-tuples in the same adjacent clusters as in the conventional order

* Acknowledgements to Guillaume Barreau and Phil Husbands for deriving this expression.
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above. Count rule-table entries belonging to deterministic n-tuples of neighbourhoods. Deterministic n-
tuples are indicated as above.

re-ordered neighbourhoods (shown vertically)

leftcell»» 1010101010101010 101010101010101090
1100110011001100 1100110011001100

centrecell-» 111100001 1110000 1111000011110000

) 1111111100000000 1111111100000000

rghtcell- 111 1111111111111 0001000000000000

ruletable>s 1011100011010110 0001001011111000 <«outputs
ot e o b — et -

ns=16, R5=16/32=0.5, n4=4, R4=4/32=0.125

Zright = 0.5+ 0.125(1-0.5) = 0.5 + 0.0625 = 0.5625, Zieft > Zright, s0 Z= 0.671875

8. Relating the A parameter and Z

The A parameter and Z are related because 4 indicates of the probability of the value of Z. Exceptions to
A's predictions of CA behaviour are due to the fact that A only measures the proportions of the different
values in the rule table, irrespective of the distribution. The three graphs in figure 4 show Aratio plotted
against Z for a sample of K=5, 7 and 9 rules. Aratio = 2 x the ratio of Os or 1s in the rule table, whichever

is the less. This normalises the A parameter, making Os and 1s equivalent, for direct comparison-with Z. ~ " -

Aratio is plotted against Z for 2200 random rules for each K. The rule sample was biased to include a -
representative spread of Aratio values by varying the probability of setting a 1 in the rule table from 0.05 to
0.5, in 0.05 steps. An equal mix of Os and 1s gives the highest probability of high Z values, at Aratic = 1 (4
= 0.5). However even at this setting of 4 high Z values are unlikely to be thrown up at random as they
depend on unlikely distributions in the rule table. High Z values may be evolved (see below), but this is
not done in the Aratio - Z graphs.

1 T T T 1 T ~r -r
s
°°: o
. S L ‘,0338 2 4
: .o 8
G-density °
oL_. . - ,
20 0 S 1
: system size, N Z parameter
(@) (b)
Figure 5.

G-density plotted against (a) system size, N, for N=1 to 18 and (b) the Z parameter (for N=18), for the
sample of 38 complex rules in appendix 2. Graph (a) shows superimposed t);;lots for all the rules. Separate

l%hs for each rule are shown in appendix 2. The G-density is based on the complete basin of attraction
teld. _
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G-density plotted against the Z parameter for X5, K7 and K9 rules. Each graph shows over 1000 rules
chosen at random but biased to include a representative spread of Z values.

The graphs show a cloud of points diverging above the x=y diagonal, closer to it for lower Aratio, but
with Z < Aratio. The Aratio - Z relationship is more focused towards the left edge of the cloud for larger X,
because higher values of Z are less likely to be thrown up at random in a larger rule-table. For smaller K
more points on the graph are superimposed as the values of both Z and Aratio may take on specific values
only, with a smaller range for smaller K.

9. Garden-of-Eden density - variation with system size

has been plotted for the K3 (elementary) rules, the K5 totalistic rules, and for the sample of complex rules
in appendix 2. For each rule, the complete basin of attraction field was generated for each value of N, and
a count made of the number of garden-of-Eden states. These graphs are in appendix 1. A superimposed
plot for the sample of complex rules in appendix 2 is shown in figure 5b

The graphs in appendix 1 are presented in order of increasing Z. After an initial unstable phase for
low N values, the plot generally stabilises; the G-density increases but to a progressively smaller extent
with increased N, possibly to converge asymptotically to a stable value in the limit. Larger systems require
testing to confirm this conjecture. Where Z=1 (the limited pre-image rules?!), the plot behaves
exceptionally; generally G-density approaches zero for greater N, or oscillates periodically.

Rules in the same equivalence class have equivalent behaviour and thus identical G-density for a
given N. It also appears to be the case that complimentary rules (rule table entries flipped) have identical
G-density. Although no proof of this statement is offered, it has been confirmed by many trials. Thus it
has been assumed that the same graph showing G-density-against N is valid for all rules in a rule cluster?!.
The graphs have therefore been plotted for 48 K3 rule clusters and 20 K5 totalistic code clusters.

10. Garden-of-Eden Density and the Z parameter

A number of plots of G-density against the Z parameter have been made. Again, for each rule, the whole

basin of attraction field was generated. This was plotted against the rule's Z parameter computed from its
rule table.

1.0
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Figure 7.

Gliders with various velocities and their backgrounds. The hex rule numbers and relevant appendix pages
are shown.

Appendix 1 shows graphs of G-density against the Z parameter for all K3 rules and K5 totalistic rules
for system size 18. The same plot is shown in figure 5b for the sample of complex rules in appendix 2.

Figure 6 shows three graphs of G-density plotted against the Z parameter for a sample of k=5, 7 and
9 rules. Each sample plots over 1000 rules. The rule sample was biased to include a representative spread
of Z values by biasing A (as described above for the plot of Aratio against N). However, values in the high
ranges of Z had to be evolved. This was done by starting with an unbiased random rule table and flipping
(flipping back if necessary) random bits until the required Z parameter threshold was achieved.

The plots produce a characteristic cloud of points with an inverse correlation between G-density.and
Z, becoming more focused towards the left edge with higher K. The reason for the abrupt change in

-~ ~direction of the cloud at G-density ~ 3.7 and.Z ~ 5.5 is unclear.. These values probably correspond. to, the.

most crowded area of rule-space, at the phase transition between order and chaos. Complex rules are most
frequently found in this area.

The intention of these plots was to investigate, for the first time, the characteristic G-density of CA,
and how G-density varies with system size. In addition, to what extent Z was able to predict G-density,
and thus the convergence of state-space and basin field topology. It is clear that for the vast majority of
rules, garden-of-Eden states occupy a high proportion of state-space. Rules with lower Z have higher G-
density, increasing with system size at a faster rate. Rules with Z = 0.5 - 0.65, in or near the abrupt change
in direction of the cloud of points in the graph, have moderate G-density that increases only slowly with
system size, or may even decrease. Rules with high Z have low G-density which decreases.with system
size, and at a faster rate for higher Z.

How representative these plots are of much larger system sizes is unclear. Although generating, the
basin field for large systems is impractical, generating a subtree is feasible. The G-density of a subtree
may give a good indication of G-density for the field.

11. Complex Rules and Gliders

~ Whether or not a rule is described as complex hag, depended tog gsnam extent on a subjective appraisal
‘6F its dynamical behaviour évident in ‘typical space-time patterns For K < 5 rules there is a characteristic
structure to the pattern, which is recognisable even when space-time patterns appear chaotic. This
becomes less obvious for larger K.
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Figure 8.
Glider -collisions against a
background of all 0s. K5

rule 5¢ 6a 4d 98.
(appendix 2.4).
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Appendix 2 and 3 presents a sample of about 60 complex 1-D rules with glider-like characteristics.

" These rules where evolved by the method already described, or found by accident. Several are borrowed
from other sources!:10.17.21 or are well-known examples from the literature. Although there are countless
such complex rules, they are buried in an even vaster rule-space, and relatively few have been available for
study.

Appendix 2 presents 36 rules, each with a typical space-time pattern, 200 cells x 480 time-steps, a
detail showing glider collisions, and the basin of attraction field including significant.data for.a system
size 16. Appendix 3 presents 26 further rules, each with a typical space-time pattern, 150 cells x 460
time-steps, showing the lookup frequency histogram and entropy plot along side (described below). The
space-time patterns shown were, to a limited extent, selected for an interesting view of glider interactions,
by varying the initial random seed. The complex rules in this paper show gliders emerging rapidly in small
systems, but other rules that might appear chaotic at this scale may be complex at a larger scale, requiring
a longer time for wider gliders to emerge. :

What are the essential features of complex one-D CA behaviour based on our sample? Complex
dynamics occurs if a limited set of self-sustaining configurations emerge from random initial states, and if
the interactions between configurations persist for an extended time before settling into a relatively short
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attractor. The configurations are static, or propagate at various velocities up to a maximum, the system's
speed of light. They exist against a uniform or periodic space-time background which of necessity has
simultaneously emerged. The background may be simple such as a checkerboard, or a more complex
pattern. For simplicity, I will use the name gliders for such self-sustaining configurations, even if the
glider has zero velocity.

Although there are borderline cases, complex space-time patterns are generally easily recognised in
contrast to patterns that stabilise rapidly to fixed points or short periods on the one hand, or where
chaotic patterns persist on the other. The borderline cases verge either on stable or chaotic behaviour.
Chaotic behaviour may also contain distinct chaotic backgrounds or domains3, where Jiltering 1s required
to uncover domain walls analogous to gliders.
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Figure 10.
Examples of glider-guns. The hex rule numbers and relevant appendix pages are shown.
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The complex rules (and some borderline cases) in our sample are illustrated in descending order of
their Z parameter in appendix 2. As Z increases, the basin of attraction field tends to include larger basins
with longer transients, with a lesser degree of pre-imaging and thus smaller G-density. A plot of Z against
G-density for system size 18, for all the rules in appendix 2 is shown in figure 5b.

The space-time patterns in appendix 2 and 3 (and extensive simulations) show many examples of
gliders within a periodic space-time background or a uniform background. Some examples are given in
figure 7. A uniform background (all white or black) has a period of one in both space and time. Gliders
my be regarded as solitary waves within the background. Gliders may-have the special property of
solitons!, preserving their shape after interacting with other solitons. For a neighbourhood radius 7, glider
velocity varies from O to a maximum of r cells per time step towards the left or right A glider
configuration that repeats at each time-step, i.e. with period one, is limited to velocities of 0,1,2,...,r per
time-step. Gliders with periods greater than one may have intermediate fractional velocities. A glider's
attributes are the background pattern and period (on both sides of the glider), the glider's period and
velocity, its changing diameter, and the list of its repeating configurations. The same description might be
applied recursively to each sub-glider component of a compound glider.

Iz Figure 11.
/ ?’pf 2 A glider colliding with a compound

‘ghder creating a complex glider-
. K§ e 8 ed 71 06.
%:gpendxx 3.5). .

D

Far left: a glider with a large diameter and period. The diameter
varies between 22 and 42 cel%s, the period is 402 time-steps. Left: a
collision between two large gliders creating a third large ghder. K5
rule 82 26 dc 23 (appendix 3.2). :

S
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A compound glider made
up of two independent
R o v gEders locked mnto a cycle
Figure 13. of repeating collisions.

A glider with a period of 106 time-steps. K5 rule 89 ed 71 06,

K5 rule b5 1e 9c €8 (also figure 15) (appendix 3.5).

From an random seed, a limited number of different glider types emerge after an initial sorting out
phase and continue to interact by collisions for an extended time, for example figure 1. Collisions
‘between two glider types often result in a third glider type (or more). One or both of the gliders may
~survive a “collision with ‘a‘possible shift in trajectory, or both gliders - may be extinguished.- Often.a
collision initially results in a complex interaction phase, before the final outcome emerges. The outcome
of a collision is sensitive to the point of impact relative to the space-time period of each glider.

The emergence of gliders implies the emergence of one or more periodic backgrounds. A glider
generally represents a dislocation of varying width in the background, which is often out of phase on
either side of the glider, analogous to fracture planes in a crystal lattice. Alternatively, a glider may be
seen as the zone that reconciles the two areas of out-of-phase background. A glider may separate two
entirely different backgrounds, acting as the boundary. The example in figure 9 has three different -
backgrounds. Gliders that eject a stream more or less complex sub-gliders at regular intervals, as in figure
10, and gliders that survive by absorbing a regular glider stream, as in figure 7d, are relatively common in
our sample. They are analogous to glider-guns and eaters in the game of life2. Because a regular glider
stream is essentially the same as a regular periodic background, a glider-gun creates a background, and a
glider-eater absorbs a background. Glider-guns/eaters are thus equivalent to a glider forming the-boundary
between two backgrounds.

Both the period and diameter of a glider may be considerable. The diameter may show a large
variation within the period. The example in figure 13 shows a glider with a period of 106 time-steps. The
example in figure 12, shows a the glider with a period of 402 time steps; its diameter varies between 22
and 42 cells. A further example in figure 12 (the same rule) shows a collision between two large gliders

creating a third large glider. Obviously such gliders and interactions can only emerge in a large enough
system.
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The existence of compound gliders made up of sub-gliders colliding periodically may be expected in
large enough systems. Compound gliders could combine into yet higher order’ gliders, and the process
could unfold hierarchically without limit. The example in figure 7d shows a compound glider made from a
glider-gun-and a parallel glider-eater which absorbs the sub-glider stream; the compound glider can have
an arbitrary diameter. A compound glider-gun is shown in figure 10d. Figure 11 shows a compound glider
colliding with two simple gliders creating a compound glider-gun. The compound glider 1s made of two
independent gliders locked into a cycle of repeating collisions, a detail is shown in figure 14.

Compound gliders are analogous to the complex glider/gun/eater interactions engineered by Conway
to make logical gates and an external memory in his demonstration that the game of life? is a universal
Turing machine.

~ An example of a kind of self-reproduction is seen in rule 3a 48 b5 c4 (appendix 2.6), where gliders
eject close mirror image copies of themselves with opposite velocity. A third glider kills off the
reproducing gliders, thus checking overcrowding.

12. Neighbourhood lookup frequency and entropy

Gliders and backgrounds are built from a set of self sustaining configurations that emerge from an
initial chaotic phase, crowding out all the other many possible configurations, to dominate the CA's future
space. An initial random seed contains all 2K K-neighbour configurations with equal probability. It is
likely to be a garden-of-Eden state, because as has been shown experimentally, garden-of-Eden states
usually make up a large proportion of state space.

As the CA evolves through the initial sorting out phase, some neighbourhoods will feature more
frequently, others less. The frequency that each of the neighbourhoods in the rule-table is "looked up” at a
given time-step can be represented by a histogram, or lookup spectrum, as in figure 15, which distributes
the total of N' lookups among the 2X neighbourhoods (shown as the fraction of maximum lookups N,
where N=system size, K=neighbourhood size). The entropy of the lookup histogram, S, at time-step £ 1s.

given by,
2540 ®
§=-5[ 4o 24

i=1
Where Qﬁ') 1s the lookup frequency of neighbourhood i at time ¢.

Figure 15 shows two complex rules as set out in appendix 3. This illustrates a typical lookup
frequency histogram of the very last time-step A superimposed frequency spectrum (2K points
corresponding to the histogram values) is plotted alongside each time-step in the space-time pattern. The
entropy of the lookup frequency spectrum is also shown for each time step on the same graph.

Because the initial state is set at random, the 2K points in the lookup frequency histogram will-be
distributed close together at low values, corresponding to an equal probability of all neighbourhoods; the
entropy will be correspondingly high. The evolution of the frequency spectrum for successive iterations of
the CA, and the frequency spectrum entropy, is characteristic of the quality of the dynamics.

In simple behaviour the frequency spectrum will rapidly become highly unbalanced, with most
neighbourhoods never looked at (their lookup frequency = 0); the few remaining high frequencies settle
on constant or periodic values; the entropy will settle at a low constant or periodic value, corresponding to
a fixed point or short cycle attractor. Simple behaviour produces extremely short and bushy transient trees
with a high G-density.
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Figure 15.

Two examples of complex space-time patterns as presented in appendix 3. System size 150 with periodic

boundary conditions. 460 time-steps from a random seed. An example of the lookup frequencg histogram

is shown for the last time-step. A superimposed frequency spectrum 1s ;})‘lottcd alongside each time-step,
c .

with 2K points corresponding to the histogram values; the entropy at each time-step 1s also shown on the
same plot. Rule numbers are shown in hex.

In chaotic behaviour, the frequency spectrum will fluctuate chaotically at low values, and the entropy
will fluctuate chaotically within a narrow high band, corresponding to dynamics on very long transients or
cycles, analogous to strange attractors in continuous dynamical systems. The very long and sparse
transient trees have a low branching incidence and low G-density.

In complex behaviour, the frequency spectrum becomes unbalanced, breaking up into high and low
strands that exhibit large chaotic fluctuations, reflected in large chaotic fluctuations in entropy. The
distinct characteristics of these measures could form the basis of an automatic procedure for identifying
complex rules. As in simple behaviour, a proportion of neighbourhoods is never looked at again after the
initial sorting out phase, these neighbourhoods are, in a sense, leached out of the system. After an
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extended time, (100s or 1000s of time-steps) the system settles onto a short attractor cycle. The high
strands in the superimposed frequency spectrum are the frequencies of the emergent background (or
multiple high strands for multiple backgrounds). The low strands are the frequencies of interacting
gliders. Glider interactions sometimes produce a short-lived chaotic phase after which glider dominance is
re-established.

In the sample of complex rules in appendix 3, the entropy of the lookup frequency histogram is
shown alongside each time-step. The entropy starts off high for the random seed and the initial sorting out
phase. It then fluctuates erratically at a lower level during the glider interaction phase, and settles at a
periodic or constant minimum level at the attractor cycle.

13. Glider interactions and basins of attraction

It is possible to identify classes of configurations that make up different components of the basin of
attraction field in complex CA. In states chosen at random, all configuration occur with equal probability,
including potential background and glider configurations. Such randomly chosen states make up the
majority of state space, and correspond to garden-of-Eden states, or states just a few steps forward in time
from garden of Eden states. They occur in the initial sorting out phase of the dynamics and appear as short
bushy dead end side branches along the length of long transients, as well as at their tips.

States dominated by glider and background configurations are special cases, thus a small subcategory

“of state-space. They constitute the glider interaction phase,-making up the main lines of flow within the
long transients. Gliders in the interaction phase can be regarded as competing sub-attractors, with the final
survivors persisting in the attractor cycle. A detail of a typical transient tree of a complex rule is shown in
figure 16.
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Above: a detail showing the topology of a
typical transient tree n a complex rule.
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25488 states.
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Finally, states made up solely of non-interacting gliders configurations (i.e. having equal velocity), or
backgrounds free of gliders. must cycle and therefore constitute the relatively short period attractors.
Attractor states themselves are a small subcategory of possible glider/background configurations, and thus
form a tiny subcategory of state-space. By simply looking at the space-time patterns of a complex rule
from a number of different seeds, most gliders in its glider repertoire (relative to the system size) may be
identified. A complete list would allow a complete description of all the attractors in state-space, by
finding all possible permutation of non-interacting gliders.

14. Summary and Discussion

This paper describes the emergence and interactions of gliders in one-D CA on the basis of a relatively
large sample of so called complex rules. Gliders propagate and collide against a uniform or periodic
background; new gliders may emerge from glider collisions. Gliders may eject and/or absorb regular
streams of sub-gliders, or spontaneously combine to form compound gliders.

Gliders may be viewed from many perspectives: as dislocations in the background analogous to
fracture planes in a crystal lattice, as solitary waves, as particles, as structures that convey information, or
as periodic sub-attractors analogous to auto-catalytic sets. Gliders forming the boundary between different
backgrounds are equivalent to glider-guns, or glider-eaters. For a set of gliders to emerge and interact for
an extended time, a rule must be finely balanced between order and chaos. This is reflected in the
evolution of the lookup frequency spectrum, and its entropy.

A global perspective on CA dynamics and rule-space is provided by the notion of the basin of
attraction field. The topology of basins of attraction and sub-trees, and the degree of convergence of state-
space, ties in with the quality of CA dynamics, simple-complex-chaotic, seen in space-time pattemns.
Complex dynamics achieves a fine balance between high and low convergence. The Z parameter predicts
the degree of convergence, which is measured by the garden-of-Eden density. The basin of sattraction
fields of complex rules are typically composed of a small-number of basins with long, moderately bushy,

transients trees rooted on short attractor cycles. Glider interactions belong to the main lines of flow within
the transient trees. Configurations where gliders have ceased to interact make up the attractor cycles.

Gliders seem to be central to our perception of complexity in CA. We perceive gliders as having a
distinct identity.- Their interactions are predictable. A collision-table could be formulated empirically,
without knowing the underlying rule-table mechanism. The collision-table would probably need to hold
much more information than the rule-table. It would need to describe all possible permutations of
collisions at different points of impact between gliders in a given complex CA rule. However, compared to
the rule-table, the collision table would provide a far more useful description of established behaviour,
enabling some prediction of future evolution. On the other hand only the rule-table can account for the
origins of gliders, their emergence by a process of self-organisation from random pattemns. .

Interacting gliders may combine to create compound gliders, interacting at yet -higher levels of
description. A collision table of compound gliders might provide a useful description of established
higher level behaviour with scant knowledge of the underlying sub-glider collisions rules. Compound
gliders could combine into yet higher order gliders, and the process could unfold hierarchically without
limit in large enough systems. This is analogous to describing matter in terms of chemistry as opposed to
the underlying sub-atomic particles, or in terms of bielogy as opposed to the underlying chemistry. There
are any number of further analogies that might be drawn from nature or society. However, the origins of
the higher level entities must refer to the lower level. A system's complexity may be the extent to which it

is able to support such a hierarchy of levels of description. One-D CA provide the simplést possible”

system supporting such complexity.
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16. The Software

The software used for the examples, figures and data in this paper was based partly on developments of
software included with The Global Dynamics of Cellular Automata®!, and on new software. The software
runs on PCs, a version for the Sun is under development. Those interested.in.obtaining the latest version-
of the software should contact the author.
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Appendix 1 - Garden-of-Eden density/ System size graphs

K=3 rules. (X=5 totalistic rules, page 1.4)

The garden of Eden density (G-density) is plotted against system size, N, as N is increased from 1
to 18. The rules in a rule cluster?! have equivalent G-density, so the graphs have therefore been
plotted for 48 K3 rule clusters. The clusters are ordered by the Z parameter (which is indicated) and
secondly by the lowest rule number, in the top left hand comer of each cluster. The plots are based
on the complete basin of attraction field for each value of N.

Below night are graphs of G-density t the Z parameter for all K3 rules
and K5 totalistic rules for N=18. The :ﬁes in a rule clusters have equivalent Z.
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Appendix 1.2

3 rules. G-density plotted against system size, N, for N=1 to 18 continued...

K=

Z = 0.5 continued
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G-density plotted against system size, N, for N=1 to 18 continued...

Z = 0.75 continued
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K=S5 totalistic rules.

The garden of Eden density (G-density) is plotted against system size, N, as N is increased from 1
to 18. The rules in a rule cluster?! have equivalent G-density, so the graphs have therefore been
plotted for 20 K5 totalistic rule clusters. Totalistic rules are identified by their totalistic codel621,
The clusters are ordered by the Z parameter (which is indicated) and secondltf\; by the lowest code
number, in the top left hand comer of each cluster. The plots are based on the complete basin of
attraction field for each value of N.
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Appendix 2 - Sample of complex rules, K=5,

Space-time patterns and the basin of attraction field.

The following characteristics of behaviour are illustrated in appendix 2 for each rule in the sample.
A typical space-time pattern, a detail showing glider interactions, the basin of attraction field, data
relating to the field, and a graph of G-density against increasing system size. A typical layout from

- appendix 2 is annotated below.
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A typical space-time
pattern from a random

block), system size
150 with periodic
boundary conditions.
460 time-steps from
the top down. In some
cases the CA has been
allowed to
further and the last
. 460 time-steps . are
shown.

Complexity in One-D Cellular Automata

Appendix 3.1

Appendix 3 - Sample of complex rules, K=5,6,7.

Space-time patterns, neighbourhood lookup frequency and entropy

The frequency that each of the K neighbourhoods in the rule-table is "looked up" at a given time-
step can be represented by a histogram, or lookup spectrum. A typical lookup histogram (of the very
last time-step) is shown, which distributes the total of N lookups among the 2X neighbourhoods,
(where N=system size). For each rule in the sample, appendix 3 shows a typical space-time pattern,
with a superimposed frequency spectrum (2K points corresponding to the histogram values) plotted
alongside each time-step. The entropy of the lookup frequency spectrum is .also shown for each

time step on the same plot.

A typical layout from appendix 3 1s annotated below.

(or random
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time

ax
-«— neighbourhood 31

e T T O

Lookup frequency
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o - —«— histogram for the
T P last time-step.
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é -« neighbourhood 0
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54._ entropy trace

— lookup frequency trace

B

The rule number in hex, the
Aratio and the Z parameter.
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