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Abstract

A three-state hexagonal cellular automaton, discovered in [36], presents a conceptual
discrete model of a reaction-diffusion system with inhibitor and activator reagents.
The automaton model of reaction-diffusion exhibits mobile localized patterns (glid-
ers) in its space-time dynamics. We show how to implement the basic computational
operations with these mobile localizations, and thus demonstrate collision-based log-
ical universality of the hexagonal reaction-diffusion cellular automaton.
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1 Introduction

Novel computing paradigms and architectures emerged recently, see overview
in [30], include an intriguing field of reaction-diffusion computing [2] whose
aim is to design theoretical models and laboratory prototypes of chemistry-
based computing devices. In reaction-diffusion processors data are represented
by disturbances of the concentration profile of reagents, information trans-
mission by traveling diffusive or excitation waves, and computation by the
interaction of traveling waves. The result of computation is represented as
either dynamical space-time patterns of excitation or as a stationary con-
centration profile. Reaction-diffusion processors have proved to be capable of
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solving a series of problems, from image processing to the control of robot nav-
igation [19,27,3,31,9,4,5]. The processors are specialized; to be universal they
must realize a functionally complete set of logical gates in their space-time
dynamics.

Several logically universal reaction-diffusion devices have been implemented

so far; they include logical gates [33,29] and diodes [20,16,25] in the Belousov-
Zhabotinsky (BZ) medium, and XOR gates in palladium processors [6]. These
designs are structure-determined, because computation is implemented in a
geometrically constrained chemical medium. Essentially, the structure-determined
processors simply imitate conventional computing architectures in novel chem-
ical materials.

There is another class of universal reaction-diffusion processors — dynamical,
or structureless, processors. There information is represented by compact lo-
calized traveling patterns, and logical operations are implemented via collision
between the patterns. The idea originates from the computational universality
of the Game of Life [11], conservative logic and the billiard-ball model [17], and
their cellular-automaton implementations [23]. The compact patterns travel
in space and perform computation when they collide with each other. There
are no predetermined stationary wires — a trajectory of the traveling pattern
is a momentary wire — almost any part of the medium’s space can be used
as a wire. Truth values of logical variables are given by either the absence or
presence of a localization or by various types of localizations (see overview in

[7])-

Results obtained so far in logically universal structureless reaction-diffusion
processors employ localization dynamics in a reaction-diffusion excitable medium
— cellular-automata models on orthogonal lattices [1], numerical simulations
of the Oregonator system [8] and experimental implementations of logical cir-
cuits in the Belousov-Zhabotinsky system with an immobilized catalyst [14].
There are, however, a variety of chemical systems which could potentially be
used to implement dynamical computation [15]; some of them involve compli-
cated chemical reactions with activator and inhibitor species. In the present
paper we aim to fulfill a double objective. First, to give an example of collision-
based computing in a reaction-diffusion system with inhibitor and activator
species (which differs from the ‘classical’ model of an excitable medium). Sec-
ond, to provide an example of localization-based computing in hexagonal cel-
lular automata [26] — so far, we are aware that computational universality
of hexagonal automata was proved by embedding a Fredkin gate [24], but we
have no evidence that hexagonal automata support gliders in the ’classical’
excitable medium model, such as those described for orthogonal lattices in [1].

In our studies we employ the 'beehive’ cellular automaton rule (Sect. 2), dis-
covered by Wuensche [36,37], which exhibits glider dynamics, and allows for



a reaction-diffusion interpretation (Sect. 3). Using the particulars of glider
collision we construct the basic logical gates and signal routing operations
(Sect. 4) sufficient to demonstrate the computational dynamical universality
of the hexagonal cellular automata. Theoretical results obtained in the paper
will be used in future for the experimental implementation of collision-based
computing devices in chemical reaction-diffusion systems.

2 Beehive rule

We can convert the rule transition table presented in [36,37] to a more compact
matrix form M = (m;;), where 0 < i < j < 6,0 <i+j > 6, and m;; €
{0,1,2}:
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Every cell = of the hexagonal lattice updates its state in discrete time ¢
as follows: ™! = mgi (4 ot (), Where ol(z) = {y* = 2 : y € U(x)}|, U is
a hexagonal neighborhood of z. Cell z is not included in its neighborhood,
therefore the state transitions are independent of the states of the cell z itself.
For example, if neighbourhood of cell = has two cells in state 2 and one cell
in state 1 (implying there must be three cells in state 0) then the output can
be read of from the matrix M from the intersection of row 2 and column 1
(mg1 = 2). Note that i represents rows numbered from 0 to 6, and j represents
columns numbered from 0 to 6.

Starting its evolution in a random initial configuration (Fig. 1a) the automa-
ton exhibits mobile localized patterns — gliders — which dominate the lattice
at the concluding phase of development (Fig. 1b-d). The gliders either leave
the lattice due to absorbing boundary conditions or continue traveling undis-
turbed, along non-intersected trajectories, if boundaries are periodic. A glider
is composed of one cell in state 1, which is a head of the mobile localization,
and a tail of four cells in state 2, as shown below in an example of glider
traveling west:



Fig. 1. Development from random initial configuration. Cells in state 1 are shown
as e, state 2 as ©, and state 3 as o.

Detailed analysis of glider dynamics is provided in [36,37], which shows that
there are 21 types of binary collisions (between pairs of basic gliders). Self-
destruction, survival, reflection, conservation and self-reproduction all occur,
depending on the exact point and direction of impact. Self-reproduction can
produce 4, 5 or 6 gliders from a binary collision. Other interactions result
in polymer-like gliders made of subunits. Most notably, a variety of mobile
glider-guns are seen to emerge, which can eject from 1 to 4 (possibly more)
glider streams in different directions.



3 Reaction-diffusion interpretation

The glider’s structure — an active head and following tail — indicates a
possibility of a reaction-diffusion interpretation of the cell state transition
rules. Assume the automaton simulates a chemical medium with three reagents
E (equivalent of cell state 1), I (equivalent of state 2) and S (state 0). A cell
takes state z when all six neighbors are in the state z only for z = 0, therefore
the reagent S can be earmarked as a substrate.

State 1 is at the leading edge of propagating patterns, so E is an activator,
or an excitation state. It was demonstrate in [36] that changing the values of
ten entries in the matrix M, e.g. mo3, mis, m15 and myg, does not affect the
formation and propagation of gliders; for simplicity we can take them equal to
0. So, this leaves only one condition of cell activation — one neighbor in state
1 and others in state 0 (mg = 1). The presence of even one neighbor in state
2 prevents activation. Therefore, we can say that reagent I is an inhibitor of
the activation reaction.

Only reagent F is diffusive/reactive when added to pure solution of the sub-
trate S because mg; = 1. However in higher concentration reagent E produces
inihibitor I (mge = 2).

To assess the reactions producing reagent [ we can again simplify the tran-
sition matrix M, based on [36], and assign value 0 to ‘wildcard’ entries ms4,
mig, M4, Mys and mag.

The reagent [ is involved in a reaction with E (entry mys = 2) with the
formation of I, so reagent E plays the role of a catalyst for I. The remaining
entries of the matrix M determine that a transition to state 2 happens when
1<0y<3,1<0;<4and1 < gy <4 but not for (65 = 2,01 = 1). So,
the final state transition matrix will be as follows, where ‘wildcard’ entries are
underlined:
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The automaton with cell transition states determined by MRP simulates a
reaction-diffusion system of three reagents with activator E, inhibitor I and



substrate S, the dynamics of which is governed by the quasi-chemical reactions
below, where 1 <, < 3,1 <7yg <4and 1 <~g <4butnot (y; =2,vg = 1);
anda 6E > 37 ﬁ[ 7é o

E+55—F
I+58—1

2 +45 — 1

41 +4F — 1
Pl — S

Gl — S

il +veE +vsS — I.

In the system inhibitor [ is produced by activator E, and both reagents F
and I degrade in certain concentrations.

There are a number of chemical systems where travelling wave fragments
(“quasi-particles”) have been generated. For example in sub excitable media
wave fragments can be induced in a system at steady state via the application
of light noise [35].

However, to investigate further the phenomena found in the beehive rule,
whilst adhering to the general reaction scheme proposed would require a chem-
ical system to be identified that was a stationary or mobile generator of quasi-
particles. Although no experimental studies are apparent or can be carried out
under the remit of this current study two possible chemical classes for further
investigation are considered.

The first which would seem to fit appropriately with the scheme described
are chemical systems exhibiting Turing type pattern formations. Chemical
systems such as the Chlorite-lodide-Malonic acid (CIMA) system [13] and the
more recently discovered BZ-AOT [34] have been shown experimentally to
exhibit the classical spot, stripe and labyrinthine patterns (Turing patterns).

Lee et al. also showed experimentally in the Ferrocyanide-iodate-sulphite reac-
tion the existence of self replicating spots and in numerical studies the transi-
tion from a spot to an annulus [21]. Although the Turing instability results in
spatially periodic patterns that are stationary in time the interaction between
Turing and Hopf or wave (oscillatory Turing) instabilities has been shown nu-
merically (and in part experimentally in BZ-AOT system) to result in inter-
esting spatio-temporal dynamics including modulated Turing structures and
modulated standing waves [38]. Recently, spatiotemporal travelling wave pat-
terns have been observed on the skin of mutant mice and this is thought to
be the result of a misconfigured Turing mechanism with competing instabili-
ties [32]. Liehr et al. [22] found that dissipative quasi-particles were generated
near the Turing bifurcation in three dimensional reaction diffusion systems.



In simulations involving travelling quasi-particles they were able to show that
two quasi-particles collide to form a transient compound state which then
breaks into two new quasi-particles.

The second class of reactions are based on anistropic bistable media which
have been shown to be a rich source of travelling wave fragments both in
experimental [28] and numerical studies [10,18].

During the catalytic oxidation of CO on Pt(110) [28] at certain experimental
parameters patterns consist of solitary waves with bell-shaped profiles which
propagate with a constant velocity along the crystallographic [001] axis (i.e.
the direction is controlled by the anisotropy of the system). Collision of waves
travelling in opposite directions leads mostly to annihilation, but in some cases
the two waves emerge again with unchanged shapes and velocities.

Whilst none of the above chemical systems fits exactly with the theoretical
part of this study it does provide a list although by no means exhaustive of
some reactions exhibiting travelling wave fragments. Additionally it serves to
highlight where experimental research could in the future yield such activator-
inhibitor type systems capable of directed computation via the collision of
mobile wave fragments.

4 Glider interaction operations

A system is logically universal if it implements a functionally complete system
of logical gates in its space-time dynamics, so to show that the hexagonal
reaction-diffusion automaton is logically universal we could just demonstrate
the implementation of conjunction A or disjunction V and negation # gates.

The simplest gate
<ZL‘7’y> - <I A 2y, 2z A y)

is implemented when two gliders collide and annihilate as the result of the
collision (Fig. 2a-¢). The undisturbed trajectory of the glider representing the
value of z is interpreted as x A -y, and glider y — —x Ay (Fig. 2f).

To generate constant TRUTH signals we can use generators of gliders, glider
guns. So far no stationary glider guns are found in the studied reaction-
diffusion automaton, however several types of mobile guns were discovered
and classified in [36], shooting from 1 to 4 glider streams in various directions.
An example of a mobile gun generating three streams of gliders is shown in
Fig. 3. The automaton exhibits a glider gun only when mg3 = 1, which implies
a high degree of non-linearity of chemical reactions underlying the automaton
rules — activator F reacts with substrate S when the number of E molecules



Fig. 2. A glider heading east (represents x) collides with a glider heading north-west
(represents y), both gliders annihilate as the result of the collision. Collision depen-
dent trajectories are shown by dotted lines.

equals one or three, and two molecules of the activator produces inhibitor I.

However, logical universality gives us just the basic requirements to imple-
ment real computation architectures in a reaction-diffusion automaton; a few
more operations — at least reflection and multiplication — are needed to feel
comfortable about the computational potential of the automaton.

For certain initial positions of gliders, one glider is reflected (i.e. inverts its
velocity vector) when it collides with another glider. Thus in Fig. 4a-j we
can see that when a glider heading east collides with a glider heading north-
east, the former continues traveling along its initial trajectory while the latter
reverses its direction — is reflected — to the west. The glider acting as a
mobile reflector continues traveling the the north-east as before. Interpreting
the presence of the reflector-glider as the TRUTH value of y and the other
glider as = we construct the following gate (Fig. 4k):

(z,y) = (x ANy, y,x A y).

The phenomenon can be used to implement the routing of mobile signals by
colliding mobile reflectors into them. A delay can be realized by employing
several mobile reflectors which shuffle the signal between them for a certain
period of time.

There are several types of signal multiplication that can be implemented in the
automaton. In our descriptions of binary collisions leading to multiplication we
will assign one glider to be the signal x and another glider to be the multiplier
signal m. A collision of signal x (glider heading north-west) with a multiplier



Fig. 3. A mobile glider gun travels west and emits three streams of gliders, in the
north-east, east and south-east directions. Note that a requirement for glider guns
is that mgz = 1.

(glider traveling east) shown in Fig. 5 leads to the destruction of the multiplier,
and the formation of four copies of  running north-west, south-west, east and
west.

For certain conditions (Fig. 6a) of the collisions, the multiplier signal m con-
tinues traveling almost undisturbed (Fig. 6g) while the signal x is multiplied
to four signals z’ (Fig. 6e-i); see the scheme of collision in Fig. 6k.

The two previous examples show that we can precisely tune signal trajectories
by using disposable and reusable multipliers.



Fig. 4. Reflection. A glider traveling north-east (y) acts as mobile reflector for a
glider traveling east (x). Collision dependent trajectories are shown by dotted lines.

Fig. 5. Multiplication with destruction of multiplier.
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Fig. 6. Multiplication without destruction of the multiplier. Glider m (multiplier)
traveling north-east multiplies glider x traveling east. Four copies z’ of signal x
travel west, east, north-west and south-east. Multiplier m continues traveling along
its original trajectory. Collision dependent trajectories (k) are shown by dotted lines.

5 Discussion

We employed the beehive hexagonal cellular automaton [36] to design a dis-
crete model of a chemical reaction-diffusion system. The system is comprised
of three species — substrate, activator and inhibitor. Reactions between the
activator and substrate are concentration sensitive and highly non-linear; at
a certain concentration of the activator the inhibitor is produced. The system
exhibits compact traveling patterns — gliders — in its space-time dynamics.
We constructed the basic logical gates based on details of particular glider
collisions. We also demonstrated how signals — quanta of information rep-
resented by gliders — can be routed by colliding them with other control-
gliders. We provided an example of a compact pattern generator — a glider
gun — which is essential for implementing negation. Therefore we demon-
strated that the reaction-diffusion hexagonal cellular automaton is logically
universal, allows the embedding of logical circuits and can potentially imple-
ment meaningful computation operations. The chemical interpretation of the
cell-state transition rules could make this model a computational prototype
for further designs of laboratory prototypes of reaction-diffusion dynamical or
collision-based processors. Unfortunately, we found no stationary generators
of quasi-particles, which could be a subject for further investigations.
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