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Abstrnact
An e:plicﬁ portrait of basins of attraction :n disordered cellular automata

networks are accessible for the first time. Such networks are discrete
generalisations of connectionist models. Basin of attraction (fields) may
serve as the basis of 4 mind model, and sculpring basin fields may offer a
new approach for brain-like computation.

1. Introduction

The basin of attraction fields of jocal, 1-D cellular automata ({CA) were
presented in The Global Dyvnamics of Celiuiar Automata [1). The investigation
has been extended o disordered CA nelworks, in The Ghost in the Machine
[2]. of which this paper is a selective summery. Variations on such systems
have been studied by Kauffman []1], Walker [4) and Li |5], smongst others.

Different wiring/rule schemes in such disordered CA networks result in
different basin field structure, suggesting a paradigm for emergent brain-
lixe information processing based on categorisation of input; the basin of
attraction ficléd (the ghost in the machine) catcgorises input hierarchically
at many levels, and may serve as a dvnamical mind model for understanding
cognitive processes such as memory and learning.

A learning algorithm is described which enables the network W learn any
number of new pre-images to any given globa! state (and to forget old ones)
by small adjustments to its wiring/rule scheme. This opens up the
possibility of sculpting a basin of sattraction field to achieve any desired
structure. isordered CA networks may thus offer & new approach e neural
network models for brain-like computation.

2. Disordered CA asarchitecture
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A disordercd CA network gmeneralises Jocal CA architecture [1,2]. but
disrupts any notion of space. It is represented above. The cells are shown
4s a 1-D array for convenience only: their locations are arbitrary.,

A global state of the array is the pattern resulting from the individual
values assigned to cach array cell, from a finite range of permitted values,
generally taken to be binary. Al each discrete time step, each cell at ¢
synchronously updates its value as & function of the values of & randomly



located set of n reference cells at ¢p . The system continues to evolve by
the iteration of this global updating procedure, the wiring/rule scheme,

In order to define precisely the network's particular wiring/rule scheme,
the target cell is wired to the reference cells from a pscuvdo-locsl
neighbourhood of size n, to which a conventional CA rule will apply. The
wiring scheme and rule allocated to each target cell may be different. but
are fixed over time. The total number of distinet global states (the
system's state space) = k&, where L is the array size and k the value range.
There are &" permutations of wvalues in a neighbourhood of size n A rule
table (look up table) with &7 entries will specify the output of all
neighbourhood permutations. The total number of distingt rule tables, the
size of rule space = k)., This paper gencrally limits the value range to
binary, where k=2 The total number of alternative wiring/rule schemes for
an array of size L with connectivily n, equals...

the total wiring schemes x the total rule schemes = (L) x (k)5

Thus in a binary CA with an array of 16 cells, with § wires per cell, the
size of behaviour space equals...

1169)16 x (232)16 = 2320 y 2512 - 7832

Even for small systems, the behaviour space is vast, and increascs at a
multiple exponential rate with increasing L, » and k.

Note that a sparsely connected neural network with weighted coanections
may be re-interpreted as a randomly wired CA network by discretizing its
weights, and replacing them with multiple discrete connections to a large
pseudo-local neighbourhood [2). The same threshold rule 18 then applied to
all cells. As we have seen, however, in a disordered CA nelwork any cther
arbitrary mixture of rules from the ,k? in ruele spaces is possible.

3. Basin=s of Attraction

Both local CA and disordered CA networks are discrete dyvnamical svstems.
They evolve nlong a deterministic trajectory consisting of a succession of
glohal states that represcents one particular path within a bas:a of
attraction, familiar from continuous dynamical systems. The path inevitably
leads ta a state cycle {the attractor cycle, or allracter), The set of all
possibie perths leading to the same attractor, including the attractor
itself, make up the basin of attraction. This I8 composed of merging
trajectories hinked according te their dynamical relationships, and will
tyvpicaily have a topology of branching trees rooted on attractor cvcles.

Basins of attraction are portraved as computer diagrams |[state
transition graphs, neéetworks of attraction [1]), in the same graphic format
as presented in |1). Global states are represented by nodes, or by the
state's binary or decimal expression at the node position. Nodes are linked
by directed arcs. Fach node will have zero or more incomung arcs from nodes
nl Lthe previous time-step (pre-jmages), bul because Lthe svstem .8
deterministic, exactiy one outgoing arc (one “out degree”). Nodes with no
pre-images have no incoming arcs, and represent =o called garden of Eden
states. The number of incoming arcs is referred to as the degree of pre-
imaging ("in degree”). Fig.l illustrates a typical basin of attraction, {it
i part of the basin field shown in [ig.2).

Scparate basins of attraction typically exist within state space. A CA
transition function will, in a sense, crystallise state space into a sel of
basins of attraction, known as the basin of artraction fheid. The basin of
attraction field 15 a4 mathematical object which constitutes the dynamical
flow imposed on stale space by the transition function. If represented as a
graph the field is an explicit global portrait of the svstems entire
repertoire of behaviour.
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Fig.l. A basin of atiraction (state transition graph) with 736 nodes.
Eveletion proceeds inward from garden of Eden states, then clockwise. the
basin is indicated within the basin of attraction field in fig.2.
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Fig.2 the basin in 1ig.l

The basin of attraction f{ield. The basin in fig.i. is indicated. Randomly
wired, singie rule, 3-neighbour rule 108, L=15. The ficld consists of 7

basins of attraction. The total number of states in c¢ach basin is as
follows: 2100, 8136, 3788, 5520, 3220, 2268, 7)6. The wiring scheme to the
pseude-jocal neighbourhood is shown on the right,

4. Computing Pro—image:ss

Construction of a single basin of attraction poses the problem of finding
the complete set of pre-images of every global state that is linked together
in the basin. The trivial solution, exhaustive testing of the enlire state
space, becomes impractical in terms of computer time as the array size
increases bevond modest values.

A reverse algorithm that directly computes pre-images for ilocal! CA was
presented in (1), and a general direct reverse algorithm for disordered CA
networks in [2). Providing that a<l, the average computational performance
s the many orders of magnitude faster than exhaustive testing, making basin
pertrails for these systems accessible for the first time.
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The basin cf attraction field of & disordered CA network, L=13, consisting
of 13 separate basins. The total number of states in each basin is as
follows: 3072, 80, 412, 1872, 628, B12, 34, 62, 114, 62, 512, B4, 428.
Wiring to the pseudo-local neighbourhood (see section 2), and the rule
scheme is shown in the table below.

cell wiring rule
1. 3, 12, & 87 - 01010111
r 7, 11, 4 4 - 00000100
Je 3, 4 1 194 - 11000100
4. 11, I3, S 52 - 00110100
5- Bt Tl 5 235 .- Ellﬂlpll
6. 1, B, 1 10t - 01100101
7. 12, 4, 13 6 - 0000110
9. 9, 2, 6 6 - 00CU0L10
11- 21 TI l Tq - ﬁlﬂﬂlﬂlﬂ
12. 7, 8, 4 218 - 110101
13 1y 4, 7 189 - 10111101

The third basin in the basin of attraction feld above [fig Ian | drawn at
& larger scale, The transient branch detlatled below is indicaled,

Fig. 3c

The transient branch indicated in the basin of attraction above (lig 1b),
shawing the decimal equivalents of the binary CA states at esch node,



5. Brain—Il.ike Computation

Because of the many possible permutations of wiring/rule schemes, one may
conjecture that a wiring/rule scheme for a population of cells exists that
wouid result in a basin of attraction field that will categorise any sel of
inputs onto an appropriate outputy a learning algorithm to achieve this is
outiined in [2]. Separate basins in the field, and ecach node onto which
dynamical flow converges, are potential information storage and recogniticn
systems.

Fig.Ja shows an example of a basin of attraction field that has
categorised state space into 13 basins, the most fundamental order of
categorisation. Fig 3b shows the third basin at a larger scale; fig.}3c shows
a transient branch in the basin, showing the decimal equivalents cof the
hinary CA states at each node.

Further catcgorisation takes place within each basin. Any input will
immed:ately initiate a dynamical flow along a unique chain of states (the
transient trajectory). Each successive Lransient state catcporises potential
input from states that belong to its transient branch. At each successive
state the transient branch may expand, increasing the proportion of slates
categorised, thus forming & hierarchy of categorisation culminating at the
attractor.

6. A Mind Model

The basin of attraction field, consisting of one or more basins,
categorises input at many levels, dependent enlirely of the wiring/rule
scheme of the CA network, New information may be stored {(re-categorised) by
adjusting the rule/wiring scheme, analogous to learning. Once learned, the
system reacts to input automatically, directly homing in on an appropriate
scquence of outputs, without the need tc sequentially search memory
addresses as 1in conventional computer architecture, This is the process that
operates in auto-associative neural network models, and possibly in the
brain.

A disordered CA networks may thus serve as an idealised model of the
activity of a semi-autonomous population of inter-connected neurons n the
brain. The model is elaborated in [2] by inter-connecling many semi-
autonomous networks sc that they are able to reset cach other’s initial
state. Networks activate cach other asynchronously, and at a slower
frequency than a particular setwork's internal synchronous clock. Such »
nested hierarchy of nelworks of networks will have implicit in its
particelar pattern of connections at any instant, a vastly more complex but
intangible web of interacting basin of attraction fields capable of
categorising and re-categonging nformation - a mind model.

7. LieaarTmniin

Whether or not such a model is biologically plausible, it may be usefu!
in its own right as a transpearent connectionist computational svstem, where
learning is equivalent to sculpting the system’s basin of attraction field.

A CA network can learn {and also forget), by small adjustments to its
wiring or rule scheme, particular transitions between global states. This
allows Lhe possibility of finding the appropriate wiring/rule scheme to
produce any desired set of pre-images to a given global state. It may be
conjectured that given any desired structure of a transient branch,
transient tree, basin of attraction, or basin of attraction field, a
wiring/rule scheme can be evolved by degrees that will result in
progressively closer approximations to that structure,
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The network cmn learn either by re-wiring or by mutations to the rule
scheme. Re-wiring is a more fundamental adjustment, as will be shown below,
andlogous to changes in a neuron's synaptic connections so that the set of
neurons sampled 15 slightly altered. Mutating the rule scheme is potentially
a finer adjustment. analogous to changes in the topology of the dendritic
tree, the microcircuitry of synaptic placements and intrinsic membrane
properties; a neuron's output s thought to result from a non-linear
computation dependent on these factors |6]. There appesrs to be no shortage
of bivlogical mechanisms to permit each neuren to express a rich and
flexible reperteire of computation, which is modelled by the rule table.

The learming algorithm is described in detail in |2). The capacity of the
network o lesrn new pre-images by re-wiring (without forgetting those
previously learnt) dependents on a number of facters: the original
wiring/rule scheme, the similarity of the new pre-images, the size of the
network and the extent of connectivity., However, the network may have
additionn]l capacity to learn distan! pre-images, further upstream in the
transient treec as in fig 4. Note that if the network learns the given state
itself as its own pre-image, this will result in a point attractor as in
fig.4&; the state itsell learnt as & distant pre-image will réesult in a
cyclic attractor with a period equal ta the distance as in fig 4b.

Surprisingly, in learning by mutating the rule scheme, it turns cut that
there is no limit to the number of pre-images to a given state that may bde
learnt by the network. The network can learn more pre-mmages without any
risk of forgetting previcusly learnt pre-images; in the limit all states in
state space (including the given state itself] may be learnt as preimages.

Combining learning by rewiring and learning by mutating the rule scheme
may result in a powerfu! method eof cateporising input, recognition, and
cumulative learming in disordered CA networks.
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