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Glossary

Attractor,
basin of
attraction,
subtree

The terms “attractor” and “basin of
attraction” are borrowed from
continuous dynamical systems. In
this context the attractor signifies
the repetitive cycle of states into
which the system will settle. The
basin of attraction in convergent
(injective) dynamics includes the
transient states that flow to an
attractor as well as the attractor
itself, where each state has one
successor but possibly zero or more
predecessors (pre-images).
Convergent dynamics implies a
topology of trees rooted on the
attractor cycle, though the cycle can
have a period of just one, a point
attractor. Part of a tree is a subtree
defined by its root and number of
levels. These mathematical objects
may be referred to in general as
“attractor basins.”

Basin of
attraction
field

One or more basins of attraction
comprising all of state-space.

Cellular
automata,
CA

Although CA are often treated as
having infinite size, we are dealing
here with finite CA, which usually
consist of “cells” arranged in a
regular lattice (1D, 2D, 3D) with
periodic boundary conditions,
making a ring in 1D and a torus in
2D (“null” and other boundary
conditions may also apply). Each
cell updates its value (usually in
parallel, synchronously) as a
function of the values of its close
local neighbors. Updating across
the lattice occurs in discrete time-
steps. CA have one homogeneous
function, the “rule,” applied to a
homogeneous neighborhood
template. However, many of these
constraints can be relaxed.

Discrete
dynamical
networks

Relaxing RBN constraints by
allowing a value range that is
greater than binary, v � 2,
heterogeneous k, and a rule-mix.

Garden-
of-Eden
state

A state having no pre-images, also
called a leaf state.

Pre-
images

A state’s immediate predecessors.

Random
Boolean

Relaxing CA constraints, where
each cell can have a different,
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networks,
RBN

random (possibly biased) nonlocal
neighborhood or put another way
random wiring of k inputs (but
possibly with heterogeneous k) and
heterogeneous rules (a rule-mix)
but possibly just one rule, or a bias
of rule types.

Random
maps,
MAP

Directed graphs with out-degree
one, where each state in state-space
is assigned a successor, possibly at
random, or with some bias, or
according to a dynamical system.
CA, RBN, and DDN, which are
usually sparsely connected (k� n),
are all special cases of random
maps. Random maps make a basin
of attraction field, by definition.

Reverse
algorithms

Computer algorithms for
generating the pre-images of a
network state. The information is
applied to generate state transition
graphs (attractor basins) according
to a graphical convention. The
software DDLab, applied here,
utilizes three different reverse
algorithms. The first two generate
pre-images directly so are more
efficient than the exhaustive
method, allowing greater system
size.

• An algorithm for local 1D wir-
ing (Wuensche and Lesser
1992) – 1D CA but rules can be
heterogeneous.

• A general algorithm (Wuensche
1994a) for RBN, DDN, and 2D
or 3D CA, which also works for
the above.

• An exhaustive algorithm that
works for any of the above by
creating a list of “exhaustive
pairs” from forward dynamics.
Alternatively, a random list of
exhaustive pairs can be created
to implement attractor basin of a
“random map.”

Space-
time
pattern

A time sequence of states from an
initial state driven by the dynamics,
making a trajectory. For 1D systems
this is usually represented as a
succession of horizontal value
strings from the top down or
scrolling down the screen.

State
transition
graph

A graph representing attractor
basins consisting of directed arcs
linking nodes, representing single
time-steps linking states, with a
topology of trees rooted on attractor
cycles, where the direction of time
is inward from garden-of-Eden
states toward the attractor. Various
graphical conventions determine
the presentation. The terms “state
transition graph” and various types
of “attractor basins” may be used
interchangeably.

State-
space

The set of unique states in a finite
and discrete system. For a system of
size n, and value range v, the size of
state-space S = Vn.

Definition of the Subject

Basins of attraction of cellular automata and dis-
crete dynamical networks link state-space
according to deterministic transitions, giving a
topology of trees rooted on attractor cycles.
Applying reverse algorithms, basins of attraction
can be computed and drawn automatically. They
provide insights and applications beyond single
trajectories, including notions of order, complex-
ity, chaos, self-organization, mutation, the
genotype-phenotype, encryption, content-
addressable memory, learning, and gene regula-
tion. Attractor basins are interesting as mathemat-
ical objects in their own right.

Introduction

The Global Dynamics of Cellular Automata
(Wuensche and Lesser 1992) published in 1992
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introduced a reverse algorithm for computing the
pre-images (predecessors) of states for finite 1D
binary cellular automata (CA) with periodic
boundaries. This made it possible to reveal the
precise graph of “basins of attraction” – state
transition graphs – states linked into trees rooted
on attractor cycles, which could be computed and

drawn automatically as in Fig. 1. The book
included an atlas for two entire categories of CA
rule-space, the three-neighbor “elementary” rules
and the five-neighbor totalistic rules (Fig. 2).

In 1993, a different reverse algorithm was
invented (Wuensche 1994b) for the pre-images
and basins of attraction of random Boolean

see detail

Basins of Attraction of Cellular Automata and Dis-
crete Dynamical Networks, Fig. 1 Top: The basin of
attraction field of a 1D binary CA, k = 7, n = 16
(Wuensche 1999). The 216 states in state-space are
connected into 89 basins of attraction; only the

11 nonequivalent basins are shown, with symmetries char-
acteristic of CA (Wuensche and Lesser 1992). Time flows
inward and then clockwise at the attractor. Below: A detail
of the second basin, where states are shown as 4 � 4 bit
patterns
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networks (RBN) (Fig. 15) just in time to make the
cover of Kauffman’s seminal book (Kauffman
1993) The Origins of Order (Fig. 3). The RBN
algorithm was later generalized for “discrete
dynamical networks” (DDN) described in Explor-
ing Discrete Dynamics (Wuensche 2016). The
algorithms, implemented in the software DDLab
(Wuensche 1993), compute pre-images directly,
and basins of attraction are drawn automatically
following flexible graphic conventions. There is
also an exhaustive “random map” algorithm lim-
ited to small systems and a statistical method for
dealing with large systems. A more general algo-
rithm can apply to a less general system (MAP!
DDN!RBN!CA) for a reality check. The idea
of subtrees, basins of attraction, and the entire

“basin of attraction field” imposed on state-space
is set out in Fig. 4.

The dynamical systems considered in this
chapter, whether CA, RBN, or DDN, comprise a
finite set of n elements with discrete values v,
connected by directed links – the wiring scheme.
Each element updates its value synchronously, in
discrete time-steps, according to a logical rule
applied to its k inputs or a lookup table giving
the output of vk possible input patterns. CA form a
special subset with a universal rule and a regular
lattice with periodic boundaries, created by wiring
from a homogeneous local neighborhood, an
architecture that can support emergent complex
structure, interacting gliders, glider guns, and uni-
versal computation (Conway 1982; Gomez-Soto

Basins of Attraction of Cellular Automata and Dis-
crete Dynamical Networks, Fig. 2 Space-time pattern
for the same CA as in Fig. 1 but for a much larger system

(n = 700). About 200 time-steps from a random initial
state. Space is across and time is down. Cells are colored
according to neighborhood lookup instead of the value

Basins of Attraction of Cellular Automata and Dis-
crete Dynamical Networks, Fig. 3 The front covers of
Wuensche and Lesser’s (1992) The Global Dynamics of
Cellular Automata (Wuensche and Lesser 1992),

Kauffman’s (1993) The Origins of Order (Kauffman
1993), andWuensche’s (2016) Exploring Discrete Dynam-
ics 2nd Ed (Wuensche 2016)
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and Wuensche 2015; Wuensche 1994a, 1999;
Wuensche and Adamatzky 2006). Langton
(Langton 1990) has aptly described CA as “a
discretized artificial universe with its own local
physics.”

Classical RBN (Kauffman 1969) have binary
values and homogeneous k, but “random” rules
and wiring, applied in modeling gene regulatory
networks. DDN provide a further generalization
allowing values greater than binary and heteroge-
neous k, giving insights into content-addressable
memory and learning (Wuensche 1997). There are
countless variations, intermediate architectures,
and hybrid systems, between CA and DDN.
These systems can also be seen as instances of

“random maps with out-degree one” (MAP)
(Wuensche 1997, 2016), a list of “exhaustive
pairs” where each state in state-space is assigned
a random successor, possibly with some bias. All
these systems reorganize state-space into basins of
attraction.

Running a CA, RBN, or DDN backward in
time to trace all possible branching ancestors
opens up new perspectives on dynamics.
A forward “trajectory” from some initial state
can be placed in the context of the “basin of
attraction field” which sums up the flow in state-
space leading to attractors. The earliest reference
I have found to the concept is Ross Ashby’s
“kinematic map” (Ashby 1956).

For a binary network size n, an example of one
of its states Bmight be 1010 . . . 0110. State-space
is made up of all S = 2n states (S = vn for multi-
value) – the space of all possible bitstrings or
patterns.

Part of a trajectory in state-space, where C is a
successor of B and A is a pre-image of B,
according to the dynamics of the network.

The state Bmay have other pre-images besides
A; the total number is the in-degree. The pre-
image states may have their own pre-images or
none. States without pre-images are known as
garden-of-Eden or leaf states.

Any trajectory must sooner or later encounter a
state that occurred previously – it has entered an
attractor cycle. The trajectory leading to the attractor
is a transient. The period of the attractor is the
number of states in its cycle, which may be just
one – a point attractor.

Take a state on the attractor, find its pre-images
(excluding the pre-image on the attractor). Now find
the pre-images of each pre-image, and so on, until
all leaf states are reached. The graph of linked states
is a transient tree rooted on the attractor state. Part of
the transient tree is a subtree defined by its root.

Construct each transient tree (if any) from each
attractor state. The complete graph is the basin of
attraction. Some basins of attraction have no tran-
sient trees, just the bare “attractor.”

Now find every attractor cycle in state-space
and construct its basin of attraction. This is the
basin of attraction field containing all 2n states in
state-space but now linked according to the

Basins of Attraction of Cellular Automata and Dis-
crete Dynamical Networks, Fig. 4 The idea of subtrees,
basins of attraction, and the entire “basin of attraction field”
imposed on state-space by a discrete dynamical network
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dynamics of the network. Each discrete dynamical
network imposes a particular basin of attraction
field on state-space.

The term “basins of attraction” is borrowed
from continuous dynamical systems, where
attractors partition phase-space. Continuous and
discrete dynamics share analogous concepts –
fixed points, limit cycles, and sensitivity to initial
conditions. The separatrix between basins has
some affinity to unreachable (garden-of-Eden)
leaf states. The spread of a local patch of transients
measured by the Lyapunov exponent has its ana-
log in the degree of convergence or bushiness of
subtrees. However, there are also notable differ-
ences. For example, in discrete systems trajecto-
ries are able to merge outside the attractor, so a
sub-partition or sub-category is made by the root
of each subtree, as well as by attractors.

The various parameters and measures of basins
of attraction in discrete dynamics are summarized
in the remainder of this chapter. (This review is
based on the author’s prior publications
(Wuensche and Lesser 1992) to (Wuensche
1993) and especially (Wuensche 2010)) together
with some insights and applications, firstly for CA
and then for RBN/DDN.

Basins of Attraction in CA

Notions of order, complexity, and chaos, evident
in the space-time patterns of single trajectories,
either subjectively (Fig. 6) or by the variability of
input entropy (Figs. 7 and 10), relate to the topol-
ogy of basins of attraction (Fig. 5). For order,
subtrees and attractors are short and bushy. For
chaos, subtrees and attractors are long and
sparsely branching (Fig. 12). It follows that leaf
density for order is high because each forward
time-step abandons many states in the past, and
unreachable by further forward dynamics – for
chaos the opposite is true, with very few states
abandoned.

This general law of convergence in the dynam-
ical flow applies for DDN as well as CA, but for
CA it can be predicted from the rule itself by its
Z-parameter (Fig. 8), the probability that the next
unknown cell in a pre-image can be derived

unambiguously by the CA reverse algorithm
(Wuensche and Lesser 1992; Wuensche 1994a,
1999). As Z is tuned from 0 to 1, dynamics shift
from order to chaos (Fig. 8), with transient/attrac-
tor length (Fig. 5), leaf density (Fig. 9), and the
in-degree frequency histogram (Wuensche 1999,
2016) providing measures of convergence
(Fig. 10).

CA Rotational Symmetry
CAwith periodic boundary conditions, a circular
array in 1D (or a torus in 2D), impose restrictions
and symmetries on dynamical behavior and thus
on basins of attraction. The “rotational symmetry”
is the maximum number of repeating segments
s into which the ring can be divided. The size of
a repeating segment g is the minimum number of
cells through which the circular array can be
rotated and still appear identical. The array size
n = s � g. For uniform states (i.e., 000000. . .)
s= n and g= 1. If n is prime, for any nonuniform
state s = 1 and g = n.

It was shown in (Wuensche and Lesser 1992)
that s cannot decrease, may only increase in a
transient, and must remain constant on the attrac-
tor. So uniform states must occur later in time than
any other state – close to or on the attractor,
followed by states consisting of repeating pairs
(i.e., 010101. . . where g = 2), repeating triplets,
and so on. It follows that each state is part of a set
of g equivalent states, which make equivalent
subtrees and basins of attraction (Wuensche and
Lesser 1992; Wuensche 2016, 1993). This allows
the automatic regeneration of subtrees once a pro-
totype subtree has been computed and the “com-
pression” of basins – showing just the
nonequivalent prototypes, (Fig. 1).

CA Equivalence Classes
Binary CA rules fall into equivalence classes
(Walker and Ashby 1966; Wuensche and Lesser
1992) consisting of a maximum of four rules,
whereby every rule R can be transformed into its
“negative” Rn, its “reflection” Rr, and its “nega-
tive/reflection” Rnr. Rules in an equivalence class
have equivalent dynamics, thus basins of attrac-
tion. For example, the 256 k3 “elementary rules”
fall into 88 equivalence classes whose description
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suffices to characterize rule-space, and there is a
further collapse to 48 “rule clusters” by a compli-
mentary transformation (Fig. 11). Equivalence
classes can be combined with their compliments
to make “rule clusters” which share many mea-
sures and properties (Wuensche and Lesser 1992),
including the Z-parameter, leaf density, and Der-
rida plot. Likewise, the 64 k5 totalistic rules fall
into 36 equivalence classes.

CA Glider Interaction and Basins of Attraction
Of exceptional interest in the study of CA is the
phenomenon of complex dynamics. Self-
organization and emergence of stable and mobile
interacting particles, gliders, and glider guns

enables universal computation at the “edge of
chaos” (Langton 1990). Notable examples studied
for their particle collision logic are the 2D
“game-of-life” (Conway 1982), the elementary
rule 110 (Cook 2004), and the hexagonal three-
value spiral-rule (Wuensche and Adamatzky
2006). More recently discovered is the 2D binary
X-rule and its offshoots (Gomez-Soto and
Wuensche 2015, 2016).

Here we will simply comment on complex
dynamics seen from a basin of attraction perspec-
tive (Domain and Gutowitz 1997; Wuensche
1994a), where basin topology and the various
measures such as leaf density, in-degree distribu-
tion, and the Z-parameter are intermediate
between order and chaos. Disordered states,

Basins of Attraction of Cellular Automata and Dis-
crete Dynamical Networks, Fig. 5 Three basins of
attraction with contrasting topology, n = 15, k = 3, for
CA rules 250, 110, and 30. One complete set of equivalent
trees is shown in each case, and just the nodes of

unreachable leaf states. The topology varies from very
bushy to sparsely branching, with measures such as leaf
density, transient length, and in-degree distribution pre-
dicted by the rule’s Z-parameter
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before the emergence of particles and their back-
grounds, make up leaf states or short dead-end
side branches along the length of long transients
where particle interactions are progressing. States
dominated by particles and their backgrounds are
special, a small sub-category of state-space. They
constitute the glider interaction phase, making up
the main lines of flow within long transients.

Gliders in their interaction phase can be regarded
as competing sub-attractors. Finally, states made
up solely periodic glider interactions, non-
interacting gliders, or domains free of gliders
must cycle and therefore constitute the relatively
short attractors.

Information Hiding within Chaos
State-space by definition includes every possible
piece of information encoded within the size of
the CA lattice — including Shakespeare’s son-
nets, copies of the Mona Lisa, and one’s own
thumb print, but mostly disorder. A CA rule orga-
nizes state-space into basins of attraction where
each state has its specific location and where states
on the same transient are linked by forward time-
steps, so the statement “state B = A + x time-
steps” is legitimate. But the reverse “state
A = B � x” is usually not legitimate because
backward trajectories will branch by the
in-degree at each backward step, and the correct
branch must be selected. More importantly, most
states are leaf states without pre-images, or close
to the leaves, so for these states “�x” time-steps
would not exist.

In-degree, convergence in the dynamical flow,
can be predicted from the CA rule itself by its

rule 250

rule 110

rule 30

←————- 1D space ———-→

time
steps
↓

Basins of Attraction of Cellular Automata and Dis-
crete Dynamical Networks, Fig. 6 1D space-time pat-
terns of the k = 3 rules in Fig. 5, characteristic of order,
complexity, and chaos. System size n = 100 with periodic
boundaries. The same random initial state was used in each
case. A space-time pattern is just one path through a basin
of attraction

Basins of Attraction of Cellular Automata and Dis-
crete Dynamical Networks, Fig. 7 Left: The space-time
patterns of a 1D complex CA, n = 150 about 200 time-
steps. Right: A snapshot of the input frequency histogram
measured over a moving window of 10 time-steps. Center:
The changing entropy of the histogram, its variability

providing a nonsubjective measure to discriminate
between ordered, complex, and chaotic rules automati-
cally. High variability implies complex dynamics. This
measure is used to automatically categorize rule-space
(Wuensche 1999, 2016) (Fig. 10)
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Z-parameter, the probability that the next
unknown cell in a pre-image can be derived unam-
biguously by the CA reverse algorithm
(Wuensche and Lesser 1992; Wuensche 1994a,
1999). This is computed in two directions, Zleft
and Zright, with the higher value taken as Z. As Z is
tuned from 0 to 1, dynamics shift from order to
chaos (Fig. 8), with leaf density, a good measure
of convergence, decreasing (Figs. 5 and 9). As the
system size increases, convergence increases for
ordered rules, at a slower rate for complex rules,
and remains steady for chaotic rules which make

up most of rule-space (Fig. 10). However, there is
a class of maximally chaotic “chain” rules where
Zleft XOR Zright equals 1, where convergence and
leaf density decrease with system size n (Fig. 9).
As n increases, in-degrees �2, and leaf density,
become increasingly rare (Fig. 12) and vanish-
ingly small in the limit. For large n, for practical
purposes, transients are made up of long chains of
states without branches, so it becomes possible to
link two states separated in time, both forward and
backward. Figure 13 describes how information
can be encrypted and decrypted, in this example
for an eight-value (eight-color) CA. About the
square root of binary rule-space is made up of
chain rules, which can be constructed at random
to provide a huge number of encryption keys.

Memory and Learning

The RBN basin of attraction field (Fig. 15) reveals
that content-addressable memory is present in
discrete dynamical networks and shows its exact
composition, where the root of each subtree
(as well as each attractor) categorizes all the states
that flow into it, so if the root state is a trigger in
some other system, all the states in the subtree
could in principle be recognized as belonging to a
particular conceptual entity. This notion of mem-
ory far from equilibrium (Wuensche 1994b, 1996)

0 ←——- Z-parameter ——-→ 1
max ←—- convergence —-→ min

Basins of Attraction of Cellular Automata and Dis-
crete Dynamical Networks, Fig. 8 A view of CA rule-
space, after Langton (Langton 1990). Tuning the Z-param-
eter from 0 to 1 shifts the dynamics from maximum to
minimum convergence, from order to chaos, traversing a
phase transition where complexity lurks. The chain-rules
on the right are maximally chaotic and have the very least
convergence, decreasing with system size, making them
suitable for dynamical encryption.

Basins of Attraction of Cellular Automata and Dis-
crete Dynamical Networks, Fig. 9 Leaf (garden-of-
Eden) density plotted against system size n, for four typical
CA rules, reflecting convergence which is predicted by the

Z-parameter. Only the maximally chaotic chain-rules show
a decrease. The measures are for the basin of attraction
field, so for the entire state-space. k = 5, n = 10–20
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extends Hopfield’s (Hopield 1982) and other clas-
sical concepts of memory in artificial neural net-
works, which rely just on attractors.

As the dynamics descend toward the attractor,
a hierarchy of sub-categories unfolds. Learning in

this context is a process of adapting the rules and
connections in the network, to modify sub-
categories for the required behavior – modifying
the fine structure of subtrees and basins of attrac-
tion. Classical CA are not ideal systems to

Order Complexity

Entropy variability

complex
rules

ordered
rules

chaotic
rules

fr
eq

ue
nc

y

mean

ent
rop

y

Chaos
Mean entropy Low Medium High
Entropy variability Low High Low

Basins of Attraction of Cellular Automata and Dis-
crete Dynamical Networks, Fig. 10 Scatterplot of a
sample of 15,800 2D hexagonal CA rules (v = 3, k = 6),
plotting mean entropy against entropy variability
(Wuensche 1999, 2016), which classifies rules between

ordered, complex, and chaotic. The vertical axis shows
the frequency of rules at positions on the plot – most are
chaotic. The plot automatically classifies rule-space as
mentioned in the figure

Basins of Attraction of Cellular Automata and Dis-
crete Dynamical Networks, Fig. 11 Graphical repre-
sentation of rule clusters of the v2k3 “elementary” rules
and examples, taken from (Wuensche and Lesser 1992),
where it is shown that the 256 rules in rule-space break
down into 88 equivalence classes and 48 clusters. The rule

cluster is depicted as two complimentary sets of four
equivalent rules at the corners of a box – with negative,
reflection, and complimentary transformation links on the
x, y, z edges, but these edges may also collapse due to
identities between a rule and its transformation
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Basins of Attraction of Cellular Automata and Dis-
crete Dynamical Networks, Fig. 12 A subtree of a
chain-rule 1D CA n = 400. The root state (the eye) is
shown in 2D (20 � 20). Backward iteration was stopped

after 500 reverse time-steps. The subtree has 4270 states.
The density of both leaf states and states that branch is very
low (about 0.03) – where maximum branching equals 2

running forward, time-step -2 to +7

Basins of Attraction of Cellular Automata and Dis-
crete Dynamical Networks, Fig. 13 Left: A 1D pattern
is displayed in 2D (n= 7744, 88� 88). The “portrait”was
drawn with the drawing function in DDLab. With a v = 8,
k = 4 chain-rule constructed at random, and the portrait as
the root state, a subtree was generated with the CA reverse
algorithm, set to stop after four backward time-steps. The

state reached is the encryption. To decrypt, run forward by
the same number of time-steps. Right: Starting from the
encrypted state, the CA was run forward to recover the
original image. This figure shows time-steps from�2 to +7
to illustrate how the image was scrambled both before and
after time-step 0

Basins of Attraction of Cellular Automata and Discrete Dynamical Networks 11



implement these subtle changes, restricted as they
are to a universal rule and local neighborhood, a
requirement for emergent structure, but which
severely limits the flexibility to categorize. More-
over, CA dynamics have symmetries and hierar-
chies resulting from their periodic boundaries
(Wuensche and Lesser 1992). Nevertheless, CA
can be shown to have a degree of stability in
behavior when mutating bits in the rule table –
with some bits more sensitive than others. The
rule can be regarded as the genotype and basins
of attraction as the phenotype (Wuensche and
Lesser 1992). Figure 14 shows CA mutant basins
of attraction.

With RBN and DDN there is greater freedom
to modify rules and connections than with CA
(Fig. 15). Algorithms for learning and forgetting
(Wuensche 1994b, 1996, 1997) have been
devised, implemented in DDLab. The methods
assign pre-images to a target state by correcting
mismatches between the target and the actual
state, by flipping specific bits in rules or by mov-
ing connections. Among the side effects, general-
ization is evident, and transient trees are
sometimes transplanted along with the reassigned
pre-image.

Modeling Neural Networks

Allowing some conjecture and speculation, what
are the implications of the basin of attraction idea
on memory and learning in animal brains
(Wuensche 1994b, 1996)? The first conjecture,
perhaps no longer controversial, is that the brain
is a dynamical system (not a computer or Turing
machine) composed of interacting subnetworks.
Secondly, neural coding is based on distributed
patterns of activation in neural subnetworks (not
the frequency of firing of single neurons) where
firing is synchronized by many possible mecha-
nisms: phase locking, interneurons, gap junctions,
membrane nanotubes, and ephaptic interactions.

Learnt behavior and memory work by patterns
of activation in subnetworks flowing automati-
cally within the subtrees of basins of attraction.
Recognition is easy because an initial state is
provided. Recall is difficult because an associa-
tion must be conjured up to initiate the flowwithin
the correct subtree.

At a very basic level, how does a DDNmodel a
semiautonomous patch of neurons in the brain
whose activity is synchronized? A network’s con-
nections model the subset of neurons connected to
a given neuron. The logical rule at a network

Basins of Attraction of Cellular Automata and Dis-
crete Dynamical Networks, Fig. 14 Mutant basins of
attraction of the v = 2, k = 3, rule 60 (n = 8, seed all 0 s).
Top left: The original rule, where all states fall into just one
very regular basin. The rule was first transformed to its

equivalent k = 5 rule (f00ff00f in hex), with 32 bits in its
rule table. All 32 one-bit mutant basins are shown. If the
rule is the genotype, the basin of attraction can be seen as
the phenotype
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garden-of-Eden states
or the leaves of subtrees

transient tree
and subtrees

one of 7
attractor states

attractor
cycle

tim
e
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m

e

Basins of Attraction of Cellular Automata and Dis-
crete Dynamical Networks, Fig. 15 Top: The basin of
attraction field of a random Boolean network, k = 3,
n = 13. The 213 = 8192 states in state-space are organized
into 15 basins, with attractor periods ranging between
1 and 7 and basin volume between 68 and 2724. Bottom:

A basin of attraction (arrowed above) which links
604 states, of which 523 are leaf states. The attractor
period= 7, and one of the attractor states is shown in detail
as a bit pattern. The direction of time is inward and then
clockwise at the attractor
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element, which could be replaced by the equiva-
lent treelike combinatorial circuit, models the
logic performed by the synaptic microcircuitry
of a neuron’s dendritic tree, determining whether
or not it will fire at the next time-step. This is far
more complex than the threshold function in arti-
ficial neural networks. Learning involves changes
in the dendritic tree or, more radically, axons
reaching out to connect (or disconnect) neurons
outside the present subset.

Modeling Genetic Regulatory Networks

The various cell types of multicellular organisms,
muscle, brain, skin, liver, and so on (about 210 in
humans), have the same DNA so the same set of
genes. The different types result from different
patterns of gene expression. But how do the pat-
terns maintain their identity? How does the cell
remember what it is supposed to be?

It is well known in biology that there is a
genetic regulatory network, where genes regulate
each other’s activity with regulatory proteins
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Basins of Attraction of Cellular Automata and Dis-
crete Dynamical Networks, Fig. 16 The jump graph
(of the same RBN as in Fig. 15) shows the probability of
jumping between basins due to single bit-flips to attractor
states. Nodes representing basins are scaled according the
number of states in the basin (basin volume). Links are

scaled according to both basin volume and the jump prob-
ability. Arrows indicate the direction of jumps. Short stubs
are self-jumps; more jumps return to their parent basin than
expected by chance, indicating a degree of stability. The
relevant basin of attraction is drawn inside each node
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(Somogyi and Sniegoski 1996). A cell type
depends on its particular subset of active genes,
where the gene expression pattern needs to be
stable but also adaptable. More controversial to
cell biologists less exposed to complex systems is
Kauffman’s classic idea (Kauffman 1969, 1993;
Wuensche 1998) that the genetic regulatory net-
work is a dynamical system where cell types are
attractors which can be modeled with the RBN or
DDN basin of attraction field. However, this
approach has tremendous explanatory power,
and it is difficult to see a plausible alternative.

Kauffman’s model demonstrates that evolution
has arrived at a delicate balance between order
and chaos, between stability and adaptability, but
leaning toward convergent flow and order (Harris
et al. 2002; Kauffman 1993). The stability of
attractors to perturbation can be analyzed by the
jump graph (Fig. 16) which shows the probability
of jumping between basins of attraction due to
single bit-flips (or value-flips) to attractor states
(Wuensche 2004, 2016). These methods are
implemented in DDLab and generalized for
DDN where the value range, v, can be greater
than 2 (binary), so a gene can be fractionally on
as well as simply on/off.

A present challenge in the model, the inverse
problem, is to infer the network architecture from
information on space-time patterns and apply this
to infer the real genetic regulatory network from
the dynamics of observed gene expression (Harris
et al. 2002).

Future Directions

This chapter has reviewed a variety of discrete
dynamical networks where knowledge of the
structure of their basins of attraction provides
insights and applications: in complex cellular
automata particle dynamics and self-organization,
in maximally chaotic cellular automata where
information can be hidden and recovered from a
stream of chaos, and in random Boolean and
multi-value networks that are applied to model
neural and genetic networks in biology. Many
avenues of inquiry remain – whatever the discrete

dynamical system, it is worthwhile to think about
it from the basin of attraction perspective.
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