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Abstract. Cellular Automata rules often produce spatial patterns which
make them recognizable by human observers. Nevertheless, it is generally
difficult, if not impossible, to identify the characteristic(s) that make a
rule produce a particular pattern. Discovering rules that produce spa-
tial patterns that a human being would find “similar” to another given
pattern is a very important task, given its numerous possible applica-
tions in many complex systems models. In this paper, we propose a
general framework to accomplish this task, based on a combination of
Machine Learning strategies including Genetic Algorithms and Artificial
Neural Networks. This framework is tested on a 3-values, 6-neighbors, k-
totalistic cellular automata rule called the “burning paper” rule. Results
are encouraging and should pave the way for the use of our framework
in real-life complex systems models.

1 Introduction

Cellular automata (CAs) are discrete dynamical systems that have been studied
theoretically for years due to their architectural simplicity and the wide spec-
trum of behaviors they are capable of [17]. The task of designing and producing
Cellular Automata (CA) rules that exhibit a particular behavior is generally con-
sidered a very difficult one. Several solutions to automatically solve this problem
by means of computer simulations were proposed (see for instance [9, 1, 2, 4, 14]).
In all those studies, however, the objective was to find CA rules that performed
precise tasks. None of these studies focused on finding rules able to generate
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given spatial patterns, which is the objective here. In particular, in this paper
we present a framework that allows searching for rules that generate (imitate),
in their dynamics, certain families of patterns.

The use of CA as an instrument to perform pattern recognition is not new
(see for instance [13, 8, 11, 10, 5]). However, these contributions are very far from
the scope of this paper, where we try to address the problem from the opposite
viewpoint: we do not use CA to recognize patters, but we look for an instrument
to recognise the patterns generated by CA. In other words, the rules found by
our framework should be able to produce configurations that a human observer
could consider, in some generic sense, similar to the ones generated by a given
target rule.

Among other factors, the huge size of the space of all the possible rules and
the fact that the behaviour of a CA rule is not easy to predict just by looking at
its syntactical representation (two rules with extremely similar representations
can result both in almost identical or incredibly different global dynamics [19]),
led us to choose Genetic Algorithms (GAs) [7, 6] to explore the rule space, given
their implicit parallelism and their ability to search difficult and complex spaces.
Potential solutions (or individuals) evolved by the GAs are CA transition rules
represented as strings of characters as in [19]. The function used to express their
quality (fitness function) has to measure the “similarity” of the configurations
they generate with the ones generated by a given target rule. Given that the
concept of “similarity” is very informal and hard to define, we attempted to
use the models generated by several Machine Learning approaches as kernels to
calculate the fitness of each CA rule. Machine Learning techniques seemed to
be particularly appropriate for the problem we were facing because they would
free us from the need to design an algorithm to classify configurations, and they
could possibly “learn” even a qualitative concept such as the definition of the
patterns we were interested in. In particular, we experimentally found Artificial
Neural Networks trained with a Backpropagation learning algorithm [12] (ANNs
from now on) are probably among the best techniques that can be used for this
kind of problem.

To the best of our knowledge, this work represents the first attempt to pro-
duce a general framework for automatically generating CA rules corresponding
to particular spatial patterns by means of a set of Machine Learning strategies.
One requirement of this work is that the presented framework has to be general,
i.e. it does not have to depend on the kind of pattern it looks for and on the par-
ticular target rule; nevertheless we have chosen a particular rule as a prototype
to test our framework, and took the kind of configurations it produced as a sort
of “goal”. In particular, we focused on 3-values, 6-neighbours k-totalistic CA
rules defined on two-dimensional hexagonal lattices, and chose as a prototype a
particular rule called the “burning paper” rule, discovered by Wuensche [20].
Figure 1 shows an example snapshot. Details about the rule can be found
at http://www.cogs.susx.ac.uk/users/andywu/multi value/dd life.html
under ”predator-prey dynamics”. In this rule, cells can be in three possible states
usually represented by white, red and black colors and the dynamics of this rule
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Fig. 1. Snapshot of a configuration generated by the rule we are considering as proto-
type. (k-code 1202022101201121112121110101).

can be informally described by the following two properties: white cells tend to
form more or less compact, growing, aggregations, while black cells are localized
mainly on the edges and grow wave-like into the white aggregations. Red cells
are considered as a background. This rule will not be further discussed here to
save space, but the reader is referred to [20] for an introduction.

This paper is structured as follows: Section 2 presents the general architec-
ture and functioning of our framework based on GAs. In Section 3 we discuss
and motivate the Machine Learning methods that we have used to realize the
most important component of our framework, which should recognize particu-
lar spatial patterns and calculate the fitness of CA rules accordingly. Section 4
discusses some of the experimental results we have obtained on the “burning pa-
per” rule. Finally, Section 5 concludes this work and offers some hints for future
research activities.

2 Structure and Functioning of our Framework

The general architecture of the framework we present in this paper is shown in
figure 2. Its high-level structure is the same as the one of a standard GA as,
for instance, described in [7, 6], including the initialization of a population of
(typically randomly generated) potential solutions (or individuals) followed by a
loop aimed at fostering individuals of better quality at each iteration (also called
generations). This loop iterates four basic steps consisting in the evaluation of
the fitness of all the individuals in the population and the application of genetic
operators such as selection, crossover and mutation. Potential solutions contained
into the population are CA rules coded as strings of characters in a way that
closely resembles the one used in [16]. In particular, each rule can be identified
by a string, called k-code. In our case, therefore, rules are represented as 28
character strings, whose alphabet is determined by the possible state values (i.e.
0, 1 or 2, representing white, red and black cells of the “burning paper” rule).

The main difference between our framework and a standard GA is in the
fitness evaluation. In order to define the fitness of each GA individual, we need
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Fig. 2. A graphic representation of the general architecture of the framework presented
in this paper.

an instrument able to distinguish the patterns that show some similarity with the
prototype patterns from those that do not. In particular, we need a function able
to provide us with a numeric value, that we could interpret as the probability that
a configuration belongs to a given class. In the following Section, we will describe
our analysis of ANNs for this task. For now, however, we simply assume that
we have generated a model that is able to accomplish this task. In other words,
this model is a sort of “black box” able, when given a lattice configuration, to
output a number: the more the input configuration exhibits the features we are
looking for, the higher the output value will be. Since we are trying to evaluate
the behaviour of CA rules regardless the initial lattice state, the fitness score
of a rule individual should be the result of several runs from different, random
starting configurations, in order to reduce the risk of misclassification due to
spurious dynamics caused by some particular choices of the initial state. This
led us to design the fitness function as reported in the following algorithm:

fitness := 0;

for s := 0 to R do

lattice := new Lattice(W, rule); lattice.step(S);

for c := 0 to C do

lattice.step(S); fitness := fitness + model(lattice);

endfor

endfor

fitness := fitness/(R*C);

return(fitness);

where W is the width (and height) of the CA lattice, R is the number of times
we run the CA on different initial states, C is the number of snapshots we
take for each CA run, T is the number of steps to skip in fitness evaluation
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(Transient Length), S is the number of steps between subsequent snapshots and
model(lattice) is the output of our model on lattice, i.e. a number equal
to 1 if the current lattice configuration has been classified as “similar” to
the target according to our model, and zero otherwise. In our experiments, we
have used the following values for these parameters: W = 60, R = 5, C = 5,
T = 30, S = 30. Each rule was executed and evaluated on W ×W lattices, and
then was iterated starting from R random initial configurations for a random
number of steps between 0 and S− 1, after the mandatory execution of T steps.
The execution of at minimum T steps was enforced to avoid considering the CA
dynamics during the initial transient, because during that period the automaton
was very likely to be heavily influenced by the specific initial states. For each
run of the CA, after the initial transient, we captured C initial configurations,
each separated by S steps from the following one, in order to ensure that rules
are classified according to their characteristic, long-duration behaviour.

3 The Evaluator Component

The evaluator component is the central and most important aspect of the frame-
work presented in this paper. We used the Weka platform [15] implementation
for our Machine Learning methods, since it includes many different classifiers.
We performed many experiments but we describe only the ones that have re-
turned the most promising results: models based on ANNs. In order to quantify
to what extent the ANN results improved on other methods, we also present a
comparison of ANNs with Support Vector Machines (SVMs) [3].

When ANNs are trained, the cardinality of the input configurations can be-
come an issue, in particular when a large number of hidden units are required to
process information, as it is generally the case for multilayer networks trained
with the Backpropagation learning rule. For this reason, instead of having an at-
tribute for each lattice cell, we tried to encode the spatial information about the
configurations using the concept of neighbourhood. Wuensche in [18] used the
neighbourhood frequencies (rule-table look-up frequencies, or k-block frequencies)
to calculate the input-entropy and then classify the behaviour of CA. Therefore,
we tried to use the neighbourhood counts as a set of features for classification,
hoping that it would result in better classification and in particular that it would
allow the ANN to distinguish configurations that have the same state densities
as the targets, but with different patterns. The new instances, therefore, are
composed by 3 + 28 = 31 attributes, the first 3 (attributes 0, 1 and 2) being the
number of cells with states 0, 1 and 2, respectively, while the following 28 are
calculated as follows: the value of attribute 3 + i is the number of cells in the
current configuration whose neighbourhood is the one identified by index i in
the table codying the “burning paper” rule.

As parameters used to generate the ANN models, we used the default val-
ues provided by the Weka software environment (see [15] for a discussion and
motivation). The model was generated from a mixed training set composed of
8000 instances: 50% of them was composed by hand-made configurations that



6 S. Bandini, L. Vanneschi and A. Wuensche

“resemble” the ones typically generated by the “burning paper” rule (tagged
with Y), 25% from totally different, randomly generated configurations (tagged
with N) and the remaining 25% from a set of configurations tagged with S of
configurations that do not resemble configurations found by the “burning paper”
rule, but have the same global state densities of the configurations in class Y.
The instances generated from configurations in S were added to the training set
in order to make it harder, for the classifier, to heavily rely on state densities to
discriminate between classes.

The experimental results, obtained using 10-fold cross-validation, were im-
pressive: the ANN-based model was able to correctly classify 99.26% of the
instances against, for instance, 50.73% obtained by Support Vector Machines
(SVMs). Many other classifiers contained in Weka have been tested, but all of
them performed approximately as the SVMs and much worse than ANNs (these
results are not shown here to save space). Table 3 reports a comparison of the
performances of ANNs and SVMs (where also for SVMs we used the default
parameter setting proposed by Weka). These results are encouraging and pave
the way for the use of the models generated by ANNs to calculate the fitness of
GAs individuals.

SVMs ANNs

accuracy 50.73% 99.26%
precision (Y) 0.504 0.99

recall (Y) 1 0.996
precision (N) 1 0.995

recall (N) 0.015 0.99
Table 1. Comparison between the results of the models based on Support Vector
Machines (SVMs) and Artificial Neural Networks (ANNs), calculated using 10-fold
cross validation

4 General Behavior of the Framework

Due to the nature of the task we are trying to accomplish, it is not possible
to provide in this section quantitative results, i.e. to measure “how much” our
experiments were successful. We can, however, list some of the rules we obtained
through evolution and some of the configuration they produce. The structure
of the GA we used to evolve CA rules is fairly standard [7, 6]: we used Tourna-
ment Selection of size 20, a crossover rate of 0.95, a mutation rate of 0.001, a
maximum number of generation equal to 100 and a fixed population size of 600
individuals. Furthermore, the initial populations we considered were composed
of 600 randomly generated rules.

We have performed 500 indipendent GA executions. Table 2 reports 18 rules
(represented by their k-code) that the GA has been able to find (we do not report
all the 500 rules found in the 500 GA executions to save space). By examining the
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k-code

1222212120101111112211122211

2222220202010021101101111122

1222201211002121112121110100

1222222111211120101111110011

1212222200211121001111110101

1212222200211121001111110101

1222222100211100110011112211

1212112101211021100011111111

1222212221011110110111112010

1212222111200011111121111112

1212202201211001100101110110

1222112110201001100011111120

* 1212122210202111010111111111

1212212212211120000021111120

* 1212222112202121001001111022

1212222220000211001011111111

1222212221200020110011111120

1222222102211000111011112011

Table 2. Some rules obtained using the search approach we describe here. The codes
marked with a “*” are the ones displayed in the remainder of this section.

strings that represent some of the rules obtained from experimentation it emerges
that some of the rule components (i.e. neighbourhoods) are more important
than others in determining the nature of the behaviour of a rule. This is not a
complete surprise: Wuensche and Adamatzky [21] have highlighted this aspect
when considering the effect of mutations on a given rule. In other words, it is
easy to imagine that, from a set of rules such as the one in Table 2, it is possible
to extract a sort of schema [7, 6], that can distinguish all the rules that generate
the kind of behaviour we are looking for. This fact confirms the suitability of
the choice of using GAs as an optimization method (see for instance [7, 6] for a
detailed discussion of schema theory and its importance in GAs).

In order to be able to compare the configurations generated by our framework
with the ones generated by the “burning paper” rule, we have integrated our
framework with DDLab [20]. Figures 3 and 4 report the snapshots (obtained with
DDLab) of some of the configurations generated by two of the rules reported in
table 2 (the ones marked with a “*” in the table). We do not report snapshots
from all the 500 rules found by the 500 GA executions that we have performed to
save space. Nevertheless, we can state that all the 500 rules found by the GA have
generated configurations that a human being would probably consider “similar”
to the ones shown in these figures. Looking at these snapshots and comparing
them with the one reported in figure 1, we can notice that they are “similar” to
the ones generated by the “burning paper” rule. In particular, all the rules have
generated configurations that respect the following two properties: white cells
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Fig. 3. Snapshots of the configurations produced by rule
1212122210202111010111111111 at iterations 15, 30, 45, 60, 75, 90.

Fig. 4. Snapshots of the configurations produced by rule
1212222112202121001001111022 at iterations 15, 30, 45, 60, 75, 90.

tend to “stick together” (i.e. they usually form more or less compact groups)
and black cells are localized mostly on the edge of the white aggregations.

5 Conclusions and Future Work

A generic and modular framework to search for rules that generate some specific
patterns has been presented in this work. The approach is said to be generic
because the nature of the target family of rules can be indirectly specified using
a particular component, called evaluator, whose task is to assign to each config-
uration a real number that measures how “good” a rule is with respect to the
class we are looking for. In this paper, as a proof of concept, the rule class to
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look for was defined indirectly, starting from another rule: we were interested in
finding rules that are able to generate patterns such as the ones generated by a
specific rule called the “burning paper” rule.

We considered the possibility to use as evaluators many different kinds of clas-
sifiers, but experimental results showed that Artificial Neural Networks (ANNs)
trained with the Backpropagation learning rule are the most promising ones.

To develop an efficient evaluator module, we had to choose an appropriate
training set and a satisfactory format for the instances to be classified (i.e. the
choice of the attributes to provide the classifier with in order to allow it to
perform classification). In order to choose the most appropriate values for these
two aspects, we tested various combinations of instance formats and training
sets. The ANNs based method, with particular features and input data, returned
outstandingly good results, with a classification accuracy of above 99%. The
resulting model was then used as the evaluator component, and included in the
calculation of the fitness function of a Genetic Algorithm (GA). The generic
nature framework, however, allows the user to change the module being used as
evaluator with minimal effort. This could allow, for example, to try several other
classifiers and choosing the best one for the problem being faced, or even to try
using hand written algorithms to assign a score to the configurations. The results
of the search performed by the overall system were particularly encouraging.
Not only were we able to find rules that generate configurations that exhibit the
desired features, but, in the wide majority of cases, the dynamical behaviour
of the rules that resulted from the GA-based search resembled the ones of the
“burning paper” rule (e.g. a rapidly expanding population of white cells or a
population of black ones that rapidly consumes the whites). This should pave
the way to further research using the same methodology and possibly generalising
it and applying it to real-life pattern recognition applications.
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