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1. Introduction

The task of designing and producing Cellular Automata (QA@s that exhibit a particular behavior is
generally considered a very difficult one. Several solittnautomatically solve this problem by means
of computer simulations were proposed (see for instanceZ3,714]). In all those works, however, the
objective was to find CA rules that, for instance, performietp$e computational tasks or that could be
used to simulate logic gates. The objective of this work ifind rules able to generate given spatial
patterns or, in other words, rules that produce configurations thhtiman observer could consider,
in some generic senseimilar to the ones generated by a given target rule. This task is portant
one for a number of practical applications in many real-tifanplex systems like crowds or natural
ecosystems, like for instance forests [2, 3]. In those appbins, the ability of recognizing and modeling
particular spatial patterns can be of help in decision n@kirfor preventing cataclysms, like landslides
or inundations. However, considering the task of measuniog similar a given configuration is to
another one from the perspective of a computer system glaad some difficulties. For instance, one
might be tempted to consider a cell by cell comparison as taaédnitial measure of similarity, but
this measure clearly fails if the sought for patterns appedifferent locations of the grid, rotated or in
different sizes. This implies that we need a less ingenuppsoach to measure the similarity between
two configurations, and this can be very difficult to obtainnbgans of a computer program. In addition
to the huge size of the search space (i.e. the set of all theilgp@sules), another factor that contributes
to make this problem hard is the fact that the behaviour of a@&is not easy to predict just by looking
at the syntactical representation of the rule itself, and twes with extremely similar representations
can result both in almost identical or incredibly differgibbal dynamics [45].

These factors, among the others, led us to chdaseetic AlgorithmqGAs) [17, 15] to explore
the rule space, given their implicit parallelism and thdsility to search difficult and complex spaces.
Potential solutions (or individuals) evolved by the GAs @ transition rules represented as strings of
characters as in [45]. The function used to express theilitgyfitness function) has to measure the
“similarity” of the configurations they generate with theesrgenerated by a given target rule. Because
of the difficulties mentioned earlier and given that the eptof “similarity” is very informal and hard to
define, we attempted to use the models generated by sevechindd_earning approaches as kernels to
calculate the fitness of each CA rule. Machine Learning tiegtas seemed to be particularly appropriate
for the problem we were facing because they would free us fiterneed to design an algorithm to
classify configurations, and they could possibly “learngémea qualitative concept such as the definition
of the patterns we were interested in. We focused on the Madbéarning methods that were more
promising for their capacity of extracting “hidden” relais between the features of the elements to
be classified. In particular, we found thaupport Vector Machine§SVMs) [39, 11, 6] andArtificial
Neural Network¢ANNS) trained with e8Backpropagatioriearning algorithm [31] (also calledultilayer
Perceptron are probably among the best techniques that can be usdugdinid of problem.

To the best of our knowledge, this work represents the fitetrgit to produce a general framework
for automatically generating CA rules corresponding tdipalar spatial patterns by means of a set of
Machine Learning strategies. One requirement of this werthat the presented framework has to be
general, i.e. it does not have to depend on the kind of paittkyoks for and on the particular target rule;
nevertheless we have chosen a particular rule as a prottuypst the proposed framework, and took the
kind of configurations it produced as a sort of “goal”. In parar, we focused on 3-values, 6-neighbours
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k-totalistic CA rules defined on two-dimensional hexagoa#ides, and chose as prototype a particular
rule, introduced in [46] and called the “burning paper” tule

This paper is structured as follows: Section 2 contains &f Btirvey of the current state of the art.
In Section 3 we present the “burning paper” rule, that we uskk as a benchmark to test the proposed
framework. Section 4 presents the general architecturéwentdioning of the proposed framework based
on GAs. In Section 5 we discuss and motivate the Machine limamethods that we have used to realize
the most important component of the proposed frameworkchvehould recognize particular spatial
patterns and calculate the fitness of CA rules accordingdgti@n 6 discusses some of the experimental
results we have obtained on the “burning paper” rule. Fm&ection 7 concludes this work and offers
some hints for future research activities.

2. Previousand Related Work

Cellular automata (CAs) are discrete dynamical systentshiénze been studied theoretically for years
due to their architectural simplicity and the wide spectroftbehaviors they are capable of [10, 43].
CAs are capable of universal computation and their timeutvs can be complex. But many CAs
show simpler dynamical behaviors such as fixed points anliccgttractors. CAs that can be said to
perform a simple “computational” tasks have been studietiamy contributions in the last few years.
One such tasks is the so-callejority or densitytask in which a two-state CA is to decide whether the
initial state contains more zeros than onewioe versa In spite of the apparent simplicity of the task,
it is difficult for a local system as a CA as it requires a cooation among the cells. As such, itis a
perfect paradigm of the phenomenoneshergencén complex systems. That is, the task solution is an
emergent global property of a system of locally interactiggnts. Indeed, it has been proved that no CA
can perform the task perfectly i.e., for any possible ihkiaary configuration of states [23]. However,
several efficient CAs for the density task have been fourtgeely hand or by using heuristic methods,
especially evolutionary computation [28, 27, 35, 1, 16,Rjr a recent review of the work done on the
problem in the last ten years see [21] and for a deep studyeondmmplexity of the problem, see [40].
Analogous studies for another interesting collective Calgpem: the synchronization task can be found
in [18, 12]. The work presented in this paper is clearly edato all the previously quoted ones, since
its objective is automatically generating new CA rules. Tian difference between those contributions
and the present one is that in this work we don’t want to geaenges that have a precise behavior,
but rules that have a similar behavior to a given one. Forrdason, it is not easy to define the quality
(or fitness) function for the candidate rules generated blgeamistic method. In particular, a measure
of distance between the target attractor and the configmsaenerated by the candidate rules is not
what we are looking for, since it would tend to generate ruléh identical behaviors to the given one,
disregarding for instance rules which can generate the sfinaetors, shifted, translated or rescaled. For
this reason, we prefer to use the term “pattern” insteadtcior or fixed point.

The use of CA as an instrument to perform pattern recognisioiot new. The first contributions that
have appeared in this field were aimed at using CA for the r@tiog of formal languages. In [37], it has
been shown for the first time how CA could be used to recogroseegt free languages, while in [20]
this result was generalised even to non context-free onexeSsively, CA have been used to recognize
many different kinds of patterns. A rather deep theoreticttbduction to the use of CA for pattern
recognition, followed by a set of examples can be found ir].[39 related but significantly different



4 S. Bandini et al./ A Neuro-Genetic Framework for Pattern@®gition in Complex Systems

contribution is [7] where the use of a particular kind of CAal{ed Probabilistic CA) is studied as an
instrument to perform pattern recognition. The idea of gd¥achine Learning methods in conjunction
with CA for recognizing complex patterns was proposed il B& further developed in [29] where a
cellular system using Associative Neural Networks is pneeit Pattern recognition in the field of image
processing has received a growing interest in the last femsyeA CA based framework for this kind
of patterns is proposed in [25]. Although interesting, hegrethese results are very far from the scope
of this paper, where we try to address the problem by the dgpeewpoint: we do not use CA to
recognize patters, but we look for an instrument to recagttie patterns generated by CA.

A wide amount of literature about the use of GAs for evolving iles exists. A review can be
found in [26]. The work of Sipper and coworkers representstaworthy contribution to the field (see
for instance [32, 33, 36, 34]).

Also, the use of GAs for pattern recognition in CA is not new:[14, 24] the use of GAs was
proposed to design Multiple Attractor CA (called MACA) torfi@m pattern classification. The idea is
that it is possible to use appropriate CA to perform classifinn by seeing what basin of attraction (i.e.
the output) is eventually reached when starting from speitifiial configurations (i.e. the input).

3. TheBurning Paper rule

In this work, we will focus on a specific subset of the CA rultdee family of k-totalistic rules [4]. For
this kind of transition functions the look-up table depepdd on the total numbers of cells having each
state value in the neighbourhood of a given cell, regardiess position. Because of this property, this
kind of rules can be encoded using tables that are much srtfadlie the ones used with generic rules. In
particular, the sizé of a k-totalistic rule table is

(v+k—1)!

P Rem ?
wherewv is the number of cell states, aridis the number of cells in the neighbourhood. Since they
consider only thenumberof cells having a specific value in the neighbourhood, withmnsidering
their position,k-totalistic rules are intrinsically symmetric (@otropic).

The transition rule we use as a prototype in this work wasihiced by Wuensche [46], and pub-
lished on his web site about the DDLab softwfardt was called “burning paper” rule because of the
peculiar patterns it generates in its dynamics (figure 1 shamvexample snapshot produced by it, and
the rule can be easily examined by supplyingkitsode to the DDLab program).

The “burning paper” rule (expressed in table 1) fs-#otalistic rule, defined on a regular, hexagonal,
two-dimensional lattice. The cardinality of the cell stag is 3 (we call 0, 1 and 2 the three possible cell
states), while the neighbourhood of a cell is composed o6tbells whose centres lie in the directions
determined by the unit vectots, v, . . . vg given by:

s

v = (cos <(2i—1)%),sin <(2i—1)6)>, 1<i<6. 2

The formula comes from elementary combinatorics, and ihésriumber of combinations with repetitions, wherés the
number of objects from which you can choose &rid the number to be chosen.

2The rule can be found at the addréssp: //www.cogs.susx.ac.uk/users/andywu/multi_value/dd_life.html, un-
der “predator-prey dynamics”.
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Figure 1. A configuration generated by the rule we are conisigas prototype K-code
1202022101201121112121110101)

Table 3 shows the state of each cell at the next time step asctidn of the number of Os, 1s and 2s in
its neighborhood; 28 possible neighborhood configuratest. Each one of those configurations can
be assigned an index (from 0 to 27 in the leftmost column olél&p and the values in the rightmost
column of Table 3 can be interpreted as a 28 length stringcaatlby those configurations. This string is
often referred to ak-codeof a rule and it completely defines a rule. The burning papler;, identified
by the k-code1202022101201121112121110101, generates a specific kind of dynamics, with two
“populations” whose interactions recall the ones that caridond in many prey-predator systems. In
particular, one of the populations (with staewhite® in all the figures) is typically growing, while the
second one (cells whose state@jscoloured in black) is able to survive only near white onesl tends
eventually to consume the former. In this case, and in theofdhis article, cells whose state iggrey)
are considered as “background”.

The features we just described are the ones we are lookinip fibis work: we are interested in
finding otherk-totalistic, 3-values, 6-neighbours rules defined on heraglattices that exhibit a similar
behaviour. We consider a ruieterestingif it produces configurations that a human observer can con-
sidersimilar to the ones generated by the “burning paper” rule. In pdaicwe focus on rules whose
dynamics is composed mostly of configurations that exHibitexample, this couple of properties:

1. white cells tend to “stick together”, i.e. they usuallyrfomore or less compact groups;
2. black cells are localized mostly on the edge of the whitgegations.
Itis important to consider the previous two pointeaample®f the features we are looking for: they are

not meant to completely qualify the properties of the confitjons we are interested in, and are neither
a formalisation nor a definition of such a vague concept agasity.

3From now on we will be referring to the cell states by colours.
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Index | Neighbourhood State

NN
(2]

Os 1s 2s
0 0 0 6 1
1 0 1 5 0
2 0 2 4 1
3 0 3 3 0
4 0 4 2 1
5 0 5 1 1
6 0 6 0 1
7 1 0 5 2
8 1 1 4 1
9 1 2 3 2
10 1 3 2 1
11 1 4 1 1
12 1 5 0 1
13 2 0 4 2
14 2 1 3 1
15 2 2 2 1
16 2 3 1 0
17 2 4 0 2
18 3 0 3 1
19 3 1 2 0
20 3 2 1 1
21 3 3 0 2
22 4 0 2 2
23 4 1 1 0
24 4 2 0 2
5 0 1 0
5 1 0 2
6 0 0 1

N
~

Table 1. The “burning paper” rule, expressed as a taklecdde 1202022101201121112121110101)

4. Structure and Functioning of the Proposed Framework

The general architecture of the framework we present ingajger is shown in figure 2. Its high-level
structure is the same as the one of a standard GA as, for gestdascribed in [17, 15], including the
initialization of a population of (typically random gengzd) potential solutions (or individuals) followed
by a loop aimed at fostering individuals of better qualityeaich iteration (also called generations).
This loop iterates four basic steps consisting in the etiinzof the fithess of all the individuals in



S. Bandini et al./ A Neuro-Genetic Framework for Patternd&gition in Complex Systems 7

Genetic Algorithm
[ ; - For each rule in
the population

CA

Conﬁ‘gu'ratio ns

Evaluator

Rule fitness
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Mutation

Output: rule

Figure 2. A graphic representation of the general architeatf the framework presented in this paper.

the population and the application of genetic operators siscselection, crossover and mutation. This
generates a new population, possibly composed by indilgduih better fitness. Potential solutions
contained into the population are CA rules coded as strigharacters in a way that closely resembles
the one used by Wolfram [42] to identify the rules of Elemen@A with binary strings. In particular,
each rule can be identified by a string, calledode In our case, therefore, rules are represented as 28
characters long strings, whose alphabet is determinedebgdhbsible state values (i.@.1 or 2). Those
individuals are then manipulated using the standard om&-pariants of the crossover and mutation
operators [17, 15].

The main difference between the proposed framework andchdatd GA is in the fitness evaluation.
To define the fithess of each GA individual, we need an instnirable to distinguish the patterns that
show somesimilarity with the ones generated by the “burning paper” rule from tiesdghat do not. This,
in addition to the difficulty of creating an efficient (eveoifin the computational standpoint) human-made
similarity function for this task, led us to choose Machineakning. In the following Section, we will
describe our analysis of two different Machine Learningrapphes for this task. For now, however,
we simply assume that we have generatedaael(by means of a Machine Learning method) that is
able to accomplish this task. In other words, this model isra af “black box” able, when given a
lattice configuration, to output a number. The more the imqauifiguration exhibits the features we are
looking for, the higher the output value will be. Since we #@ggng to evaluate the behaviour of CA
rules regardless the initial lattice state, the fithessesoba rule individual should be the result of several
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runs from different, randofnstarting configurations, in order to reduce the risk of naissification due

to spurious dynamics caused by some particular choiceseoinitial state. This forced us to take a
compromise between precision and efficiency: we chose tah@rCA rule from a given number of
different starting configurations, take sample snapshota the dynamics they generated (one per run)
and consider the average of the output values of the classifidel as the resulting fitness value. This
led us to design the fitness function as reported in the fatigualgorithm:

fitness := 0;
for s := 0 to R do
lattice := new Lattice(WV, rule);
lattice.step(S);
for ¢ := 0 to C do
begin
lattice.step(S);
fitness := fitness + model(lattice);
end
endfor
fitness := fitness/(Rx(C);

where W is the width (and height) of the CA lattice? is the number of times we run the CA on
different initial states( is the number of snapshots we take for each CA fuig the number of steps

to skip in fitness evaluation (Transient LengtR)is the number of steps between subsequent snapshots
andmodel (1lattice) is the output of our model ohattice, i.e. a humber equal to 1 if the current
lattice configuration has been classified as “similar” to the targettwy our model and zero otherwise.

In our experiments, we have used the following values fos¢hgarametersiV = 60, R = 5, C' = 5,

T =30, 5 = 30.

Each rule was executed and evaluatediidn< W lattices, and then was iterated starting fréin
random initial configurations for a random number of stepgsvben0 and S — 1, after the mandatory
execution ofI” steps. The execution of at minimumsteps was enforced to avoid considering the CA
dynamics during the initial transient, because during geatod the automaton was very likely to be
heavily influenced by the specific initial states. For eaah otithe CA, after the initial transient, we
capturedC initial configurations, each separated $ysteps from the following one, in order to ensure
that rules are classified according to their characteyitig-duration behaviour.

One important objection to the proposed approach coulddielly reducing the number of samples
(i.e. considering onlyC' snapshots per run, and only runs from different initial states), the fitness
function could be not very precise in measuring how “goodui@ individual is. Moreover, since the
initial configurations are chosen randomly, the fitness tioncof an individual is neithedeterministic
nor monotone even if the rule it represents is deterministic and doeschahge between generations.
This, however, is not as true as one might expect: becaude ofature of the GAs, high-fitness individ-
uals can survive, unchanged, longer than the other ones.rnid@ns that the fitness of such individuals
is evaluated at least once per generation and thereforébdd! individual got a high fitness because
of the particular choice of the initial states used to evi@ut it is quite unlikely that this eventuality

“The starting configurations are generated by setting the stah cell to a random value {0, 1, 2} with uniform probability.
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would happen again at the next generation. If it does, thaldomean that maybe the individual we are
considering is not as bad as we thought.

One of the main advantages of this way to compute the fitndae wh an individual is the fact the
the Machine Learning model used to classify instances caedily considered as a sort of “black box".
Therefore, it can be easily replaced with different modele human-written procedures). This feature
can be useful to use the same framework we developed to tepetformances of other classifiers, or
even to look for rules with different behaviours.

5. TheEvaluator Component

The evaluator component is the central and most importgracaof the framework presented in this
paper. We used the Weka platform [41] implementation forNteechine Learning methods, since it
includes many different classifiers and allows extensistirtg on the models that can be obtained though
it. An important point in using Weka (but typical of the MaohilLearning paradigm) is the choice of
the attributes (features) to use in classification. In tkeigtien, we describe how we transformed static
CA lattice configurations to the instances we used to tragrecthssifiers, pointing out the pros and cons
of the choices we made. We performed a good amount of expetinteit we list here only the ones
that have returned the most promising results: models bas&lipport Vector Machines (presented in
section 5.1) and on Multilayer Perceptron (presented ih 5.2

5.1. Support Vector Machines

We adopted the LIBSVM implementation of SVM by Chang and 19f ported to Weka by El-Manzala-
wy and Honavar [13]. The SVM-based models allow larger trgjrsets with respect to other classifiers.
In addition, the instances themselves can include a hugbauof attributes. For this reason, we adopted
a model that was able to faithfully encode the informationtamed in the lattice configurations: we
defined a 3-value attribute for each cell in the lattice. Taisults in instances with many attributes
(namelyw x h, wherew andh are, respectively, the width and the height of the lattida)our tests,
we consideredi0 x 60 lattices, resulting ir3600 attributes that encode, quite explicitly, the spatial
configuration of the lattices.

The parameters we adopted in the generation of the SVM adetaealts of the LIBSVM wrapper for
Weka. They are listed in Table 2 to allow the reproducibitifghe experiments (see [19] for a description
of the meaning of those parameters and how they influenceettiermances of the classifier).

In our experiments, we created different models usingitigisets of growing sizes (100, 200, 500,
1000 and 2000 elements), with instances selected in oradsstare that every set is included in the larger
ones. The training sets were created using the followindnatet

¢ one half of the instances (taggedyas) were generated from a set of snapshots (calledf the
dynamics generated by the “burning paper” rule;

¢ the other half (classo) was generated from a set of configurations (caNggroduced by ran-
domly chosen (but different from the one used to populatssgies) rules.

In both cases, each configuration was taken by iterating gptication of a rule for a random number
of steps (between 30 and 500, with uniform probability) oniffeent initial configuration, chosen
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Parameter Value Description

type | C-SVC
coefficient 0
cost 1

kernel degree 3

e | 0.0010 | tolerance of termination criterion

kernel type Radial Basis Function (see [41])
normalise false

probability estimates| true
use shrinking heuristic|  true

Table 2. Parameter setting of SVMs used in our experiments.

randomly, but with uniform distribution of state values. \dle not consider configurations produced
within less than 30 steps from the initial state because watedato allow the system to settle to its
“typical” behaviour [44, 5] before starting to take snapshorhe performance of the resulting models
were evaluated using both a 10-fold cross-validation ontthieing set and a separate test set of 600
instances not used during training. A summary of the resufisesented in Table 5.1.

Moo Mao0 ‘ M0 ‘ Mio00 Myo00

cross-validation

accuracy || 96.00% | 95.50% | 97.00% | 97.10% | 97.65%
precision yes) 0.926 0.933 0.943 0.947 0.956
recall (yes) 1 0.98 1 0.998 0.999
precision f0) 1 0.979 1 0.998 0.999
recall (ho) 0.92 0.93 0.94 0.944 0.954
custom test set
accuracy || 93.32% | 93.82% | 94.82% | 94.99% | 94.99%
precision yes) 0.893 0.9 0.915 0.918 0.918
recall yes) 1 1 1 1 1
precision f0) 1 1 1 1 1
recall (10) 0.849 0.86 0.883 0.887 0.887

Table 3. Results of the tests on the SVM-based models. Rye@sd recall are listed separately for each class
(yesandno).

Despite the very promising results obtained by the classiffiemselves, the SVM-based approach
performed quite poorly when used in the GA algorithm. Evethd first SVM model allowed some
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times the discovery of rules that could be considered, toesextent, acceptable more often it did not,
resulting in different, even though interesting. This i€ do the fact that the SVMs appeared to classify
instances by using, as a main criterion, tleguencie®of the cell states in the single configurations. The
configurations that belong to clagss have all a similar and characteristic frequency distridnuthat can

be considered, somehow, as a sort of “fingerprint” or “sigreit of the rule that was used to generate
them. Even if this fact helps in discarding, with a good degvéconfidence, configurations that were
not generated by the rule we examined earlier, it means laégdtie early SVM model can easily make
mistakes that result in false positives. To prove that thigifion is correct, we generated a new data
set using lattice configurations designed to have the saate dénsities of the ones used to generate
classyes. To guarantee this property, the instances were obtaineddalfying in a random way lattice
configurations generated using the “burning paper” rulepdriicular, the resulting configurations, that
obviously had the same state frequencies of the configusatised to generate clagss, were shuffled
until they were significantly different from the original@n The result was a new data set (we will call it
S) of configurations that did not show the properties we loagkliat have the same global state densities
of the configurations in clagges. Since the resulting lattice snapshots look “random” whemgared to
the ones inY, they are all tagged a®. Testing revealed that each of the models whose perforraance
are reported in Table 5.1 incorrectly classifies practjcallery instance o8.

Furthermore, this SVM-based approach has another weakmexsmuse of the format of the instances,
the models can be used (in training, testing and actualifitag®on) only with instances obtained from
configurations with the same geometry. For instance, it dibalimpossible to use a model obtained with
a training set generated fro6d x 60 lattice configurations witd0 x 40 ones, because of the different
number of attributes that will be present in the resultingjances.

5.2. Multilayer Perceptron

When Artificial Neural Networks are trained, the cardinabf the input instances can become an issue,
in particular when a large number of hidden units are reduiwgrocess information, as it is generally the
case for Multilayer Perceptron trained with the Backpratim learning rule. For this reason, we did not
use the Multilayer Perceptron with the instances we desdrib the previous section: instead of having
an attribute for each lattice cell, we tried to encode gpatial information about the configurations
using the concept of neighbourhood. This choice was indgisethe fact that the previous models,
after training, used density information as a major craerfor classification. This led to an hypothesis:
if the number of the cells with a particular state at any gitieme step can help identifying a lattice
configuration, counting the number of cells having a speoifighbourhood should provide even more
information about the spatial properties of a configurati$vuensche in [44] used the neighbourhood
frequenciesrile-table look-upfrequencies, ok-block frequencies) to calculate the input-entropy and
then classify the behaviour of Cellular Automata. Therefave tried to use the neighbourhood counts
as a set of features for classification, hoping that it woesdilt in better classification and it would allow
the perceptron to distinguish also configurations that tiagesame state densities, but are the product of
different rules. The new instances, therefore, are now o by3 + 28 = 31 attributes, the first 3
(attributes 0, 1 and 2) being the number of cells with stajedsahd 2, respectively, while the following
28 are calculated as follows: the value of attribdites is the number of cells in the current configuration
whose neighbourhood is the one identified by indaxthe table codying the “burning paper” rule.
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Table 4 contains the parameters used to generate the MattiRerceptron models. As previously,
we used the default values provided by Weka [41].

Parameter | Value | Description

auto build | true add and build hidden layers
decay | false | causes a decrease in the learning rate
hidden layers a (attribs + classes) / 2
learning rate| 0.3
momentum 0.2
normal to binary filter | true
normalise attributes| true
normalise numeric class true

random seed 0

reset | true
training time 500 number of epochs to train through
validation set size 0 do not perform validation

Table 4. Parameters used to generate the Multilayer Peocepiodel.

The model was generated from a mixed training set compos8aQff instances: 50% of them was
obtained from configurations i, 25% fromN and the remaining 25% froi® The instances generated
from configurations inS were added to the training set in order to make it harder, Herdassifier,
to rely heavily on the first 3 attributes to discriminate betw classes. The results of the first test,
performed using 10-fold cross-validation, were extremelpressive: the perceptron-based model was
able to correctly classify 99.26% of the instances. In otderompare this model with the ones that can
be built using SVMs, we used the same training set to genanagsv SVM model (the SVM parameters
were still the ones in Table 2). The newly obtained modelgreréd very poorly (its accuracy was only
of 50.73%), showing that changing only the attributes tortmuided in the instances is not enough to
obtain better results, but it is necessary to also adoptighh classifier. Table 5.2 reports a comparison
of the performances of the Multilayer Perceptron and of t#&S.

These results are encouraging and pave the way for the use widdels generated by the Multilayer
Perceptron to calculate the fitness of GAs individuals.

Furthermore, it is important to notice that the models of@diusing the Multilayer Perceptron are
not tightly bound to the lattice size: if the instances htttés are state and neighbourhdmtjuencies
they do not depend on the number of cells.

6. General Behavior of the Framework

Due to the nature of the task we are trying to accomplish, iitoispossible to provide in this section
guantitative results, i.e. to measure “how much” our experits were successful. We can, however, list
some of the rules we obtained through evolution and someeatdhfiguration they produce.
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SVM multilayer perceptron
accuracy || 50.73% 99.26%
precision yes) 0.504 0.99
recall /es) 1 0.996
precision f0) 1 0.995
recall (o) 0.015 0.99

Table 5. Comparison between the results of the models basSdgport Vector Machines and Neural Networks,
calculated using 10-fold cross validation

The structure of the Genetic Algorithm we used to evolve Clegus fairly standard: we used
Tournament Selection as selection scheme, i.e. each timmeaaed to select an individual for mating,
we chose the best one from a group of Z0WrnamentSizi Table 6) randomly chosen ones. The initial
populations we considered were composed of 600 randomlgrgtd rules. The other parameters used
are summarized in table 6. The two probability values chdserrossover and mutation were among
the most widely used in previous works with Evolutionary édighms [17, 15, 22].

Parameter Default | Description
De 0.95 Probability of crossover
D 0.001 Probability of mutation
Iterations 100 Maximum amount of iterations to perform
TournamentSize 20 The size of the tournament to use in selection
PopulationSize 600 The number of individuals in the population

Table 6. Parameters of the Genetic Algorithm

We have performed 500 indipendent GA executions. Table @rte8 rules (represented by their k-
code) that the GA has been able to find (we do not report all@Ba@es found in the 500 GA executions
to save space).

By examining the strings that represent some of the rulesirodad from experimentation it emerges
that some of the rule components (i.e. characters) are mygpertant than others in determining the
nature of the behaviour of a rule. This is not a complete &apMWuensche and Adamatzky [47] have
highlighted this aspect when considering the effect of tta on a given rule. In other words, it is
easy to imagine that, from a set of rules such as the one ireTahit is possible to extract a sort of
schemd17, 15], that can distinguish all the rules that generagekihd of behaviour we are looking
for. This fact confirms the suitability of the choice of usi@\s as an optimization method (see for
instance [17, 15] for a detailed discussion of schema thaodyits importance in GAS).

Figures 3, 4, 5, 6, 7 and 8 report the snapshots of some of tifegaations generated by 6 of the
rules reported in table 7 (the ones marked with«&ih the table). We do not report snapshot from all
the 500 rules found by the 500 GA executions that we have pego to save space. Nevertheless, we
can state that all the 500 rules found by the GA have genecatafijurations that a human being would
probably consider “similar” and all of them are very “similéo the ones shown in these figures.



14 S. Bandini et al./ A Neuro-Genetic Framework for Pattern@®gition in Complex Systems

k-code

1222212120101111112211122211
2222220202010021101101111122
1222201211002121112121110100
1222222111211120101111110011
1212222200211121001111110101
1212222200211121001111110101
1222222100211100110011112211
1212112101211021100011111111
1222212221011110110111112010
1212222111200011111121111112
1212202201211001100101110110
1222112110201001100011111120
1212122210202111010111111111
1212212212211120000021111120
1212222112202121001001111022
1212222220000211001011111111
1222212221200020110011111120
1222222102211000111011112011

* ¥ X ¥ * *

Table 7. Some rules obtained using the search approach wetl#ekere. The codes marked with € ‘are the
ones displayed in the remainder of this section.

Figure 3. Snapshots of the configurations produced by rul@122210202111010111111111 at iterations 15,
30, 45, 60, 75, 90.



S. Bandini et al./ A Neuro-Genetic Framework for Patternd&gition in Complex Systems 15

™ w
SRR IABLINY

Figure 4. Snapshots of the configurations produced by rul@292212211120000021111120 at iterations 15,
30, 45, 60, 75, 90

Figure 5. Snapshots of the configurations produced by rul222112202121001001111022 at iterations 15,
30, 45, 60, 75, 90.

Looking at this snapshat, it is straightforward that thefigurations generated by the rules found by
the proposed framework could be considered “similar” todhes generated by the “burning paper” rule
by a human being. In particular, all the rules have gener@aetigurations that respect the two properties
required: white cells tend to “stick together” (i.e. theyaly form more or less compact groups) and
black cells are localized mostly on the edge of the white eggfions. In all the GA executions that we
have performed, the maximum number of iterations does mohge influence the performances of the
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Figure 6. Snapshots of the configurations produced by rul@222220000211001011111111 at iterations 15,
30, 45, 60, 75, 90.
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Figure 7. Snapshots of the configurations produced by rud2222221200020110011111120 at iterations 15,
30, 45, 60, 75, 90.

search algorithm as much as the number of individuals in the&pulation: in almost all the cases, the
GA found the definitive solution within the first 25 or 30 itéoas.

Furthermore, it is interesting to note that, surprisinghgst of the experiments (roughly more than
85% of the GA runs) resulted in rules that produced either a hggipanding population of white cells
or a population of black ones that rapidly consumes the whitEhis is particularly interesting since in

5The rest of the experiments usually led to rules that tendiiclyestablish oscillating patterns.
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Figure 8. Snapshots of the configurations produced by ru#2222102211000111011112011 at iterations 15,
30, 45, 60, 75, 90.

this work we focused ostatic patterns, and we did not expect to necessarily find this kfraiynamic
behaviour by examining only isolated snapshots. This coeNdal that there is some deep correlation
between the patterns generated by a CA and the kind of dysahgooduces.

7. Conclusions and Future Work

A generic and modular framework based on Genetic Algoritf@¥s) to search for rules that generate
some specific patterns has been presented in this work. Tireagh is said to be generic because
the nature of the target family of rules can be indirectlyc#iped using a particular component, called
evaluator whose task is to assign to each configuration a real numbenteasures how “good” a rule
is with respect to the class we are looking for. In this papsm proof of concept, the rule class to look
for was defined indirectly, starting from another rule: werevmterested in finding rules that are able
to generate patterns such as the ones generated by a spdeiftalied the “burning paper” rule. We
assumed the rule to be unknown, and defined an evaluatordgmse (i.e. assign an high score to) the
patterns that resembled the ones generated by this spewfic o

We considered the possibility to use as evaluators mangrdift kinds of classifiers, but experi-
mental results showed that two of them are the most promising based on Support Vector Machines
(SVM), and another one based on a Artificial Neural NetworkhIN) and, in particular, Multilayer
Perceptrons. To develop an efficace evaluator module, wéohattbose: wether to use SVMs or ANNSs,
an appropriate training set and a satisfactory format feritistances to be classified (i.e. the choice
of the attributes to provide the classifier with in order tiowlit to perform classification). In order to
choose the most appropriate values for these three, closalgd, aspects, we tested various combina-
tions of classifiers, instance formats and training setge AINNs based method, with particular features
and input data, returned outstandingly good results, withassification accuracy of abo@9%. The
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resulting model was then used as the evaluator componehineded in the calculation of the fithess
function of the GA. The generic nature framework, howeviboyes the user to change the module being
used as evaluator with minimal effort. This could allow, &xample, to try several other classifiers and
choosing the best one for the problem being faced, or evey tsing hand written algorithms to assign
a score to the configurations. The results of the searchmpeefbby the overall system were particularly
encouraging. Not only we were able to find rules that generatdigurations that exhibit the desired
features, but, in the wide majority of cases, the dynamiealalviour of the rules that resulted from the
GA-based search resembled the ones of the “burning pagder{awy. a rapidly expanding population of
white cells or a population of black ones that rapidly conesitine whites).

The results described in this paper are, in our opinion, Bimig: not only we were able to develop
a Machine Learning model that is able to recognise the faofilyatterns we were considering, but we
also managed to find similar rules using the GA search. Thoslldhpave the way to further research
using the same methodology and possibly generalising iepptiying it to real-life pattern recognition
applications.
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