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1. Introduction

The task of designing and producing Cellular Automata (CA) rules that exhibit a particular behavior is
generally considered a very difficult one. Several solutions to automatically solve this problem by means
of computer simulations were proposed (see for instance [37, 20, 14]). In all those works, however, the
objective was to find CA rules that, for instance, performed simple computational tasks or that could be
used to simulate logic gates. The objective of this work is tofind rules able to generate given spatial
patterns, or, in other words, rules that produce configurations that ahuman observer could consider,
in some generic sense,similar to the ones generated by a given target rule. This task is an important
one for a number of practical applications in many real-lifecomplex systems like crowds or natural
ecosystems, like for instance forests [2, 3]. In those applications, the ability of recognizing and modeling
particular spatial patterns can be of help in decision making or for preventing cataclysms, like landslides
or inundations. However, considering the task of measuringhow similar a given configuration is to
another one from the perspective of a computer system clearly has some difficulties. For instance, one
might be tempted to consider a cell by cell comparison as a sort of initial measure of similarity, but
this measure clearly fails if the sought for patterns appearin different locations of the grid, rotated or in
different sizes. This implies that we need a less ingenuous approach to measure the similarity between
two configurations, and this can be very difficult to obtain bymeans of a computer program. In addition
to the huge size of the search space (i.e. the set of all the possible rules), another factor that contributes
to make this problem hard is the fact that the behaviour of a CArule is not easy to predict just by looking
at the syntactical representation of the rule itself, and two rules with extremely similar representations
can result both in almost identical or incredibly differentglobal dynamics [45].

These factors, among the others, led us to chooseGenetic Algorithms(GAs) [17, 15] to explore
the rule space, given their implicit parallelism and their ability to search difficult and complex spaces.
Potential solutions (or individuals) evolved by the GAs areCA transition rules represented as strings of
characters as in [45]. The function used to express their quality (fitness function) has to measure the
“similarity” of the configurations they generate with the ones generated by a given target rule. Because
of the difficulties mentioned earlier and given that the concept of “similarity” is very informal and hard to
define, we attempted to use the models generated by several Machine Learning approaches as kernels to
calculate the fitness of each CA rule. Machine Learning techniques seemed to be particularly appropriate
for the problem we were facing because they would free us fromthe need to design an algorithm to
classify configurations, and they could possibly “learn” even a qualitative concept such as the definition
of the patterns we were interested in. We focused on the Machine Learning methods that were more
promising for their capacity of extracting “hidden” relations between the features of the elements to
be classified. In particular, we found thatSupport Vector Machines(SVMs) [39, 11, 6] andArtificial
Neural Networks(ANNs) trained with aBackpropagationlearning algorithm [31] (also calledMultilayer
Perceptron) are probably among the best techniques that can be used for this kind of problem.

To the best of our knowledge, this work represents the first attempt to produce a general framework
for automatically generating CA rules corresponding to particular spatial patterns by means of a set of
Machine Learning strategies. One requirement of this work is that the presented framework has to be
general, i.e. it does not have to depend on the kind of patternit looks for and on the particular target rule;
nevertheless we have chosen a particular rule as a prototypeto test the proposed framework, and took the
kind of configurations it produced as a sort of “goal”. In particular, we focused on 3-values, 6-neighbours
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k-totalistic CA rules defined on two-dimensional hexagonal lattices, and chose as prototype a particular
rule, introduced in [46] and called the “burning paper” rule.

This paper is structured as follows: Section 2 contains a brief survey of the current state of the art.
In Section 3 we present the “burning paper” rule, that we willuse as a benchmark to test the proposed
framework. Section 4 presents the general architecture andfunctioning of the proposed framework based
on GAs. In Section 5 we discuss and motivate the Machine Learning methods that we have used to realize
the most important component of the proposed framework, which should recognize particular spatial
patterns and calculate the fitness of CA rules accordingly. Section 6 discusses some of the experimental
results we have obtained on the “burning paper” rule. Finally, Section 7 concludes this work and offers
some hints for future research activities.

2. Previous and Related Work

Cellular automata (CAs) are discrete dynamical systems that have been studied theoretically for years
due to their architectural simplicity and the wide spectrumof behaviors they are capable of [10, 43].
CAs are capable of universal computation and their time evolution can be complex. But many CAs
show simpler dynamical behaviors such as fixed points and cyclic attractors. CAs that can be said to
perform a simple “computational” tasks have been studied inmany contributions in the last few years.
One such tasks is the so-calledmajority or densitytask in which a two-state CA is to decide whether the
initial state contains more zeros than ones orvice versa. In spite of the apparent simplicity of the task,
it is difficult for a local system as a CA as it requires a coordination among the cells. As such, it is a
perfect paradigm of the phenomenon ofemergencein complex systems. That is, the task solution is an
emergent global property of a system of locally interactingagents. Indeed, it has been proved that no CA
can perform the task perfectly i.e., for any possible initial binary configuration of states [23]. However,
several efficient CAs for the density task have been found either by hand or by using heuristic methods,
especially evolutionary computation [28, 27, 35, 1, 16, 8].For a recent review of the work done on the
problem in the last ten years see [21] and for a deep study on the complexity of the problem, see [40].
Analogous studies for another interesting collective CA problem: the synchronization task can be found
in [18, 12]. The work presented in this paper is clearly related to all the previously quoted ones, since
its objective is automatically generating new CA rules. Themain difference between those contributions
and the present one is that in this work we don’t want to generate rules that have a precise behavior,
but rules that have a similar behavior to a given one. For thisreason, it is not easy to define the quality
(or fitness) function for the candidate rules generated by anheuristic method. In particular, a measure
of distance between the target attractor and the configurations generated by the candidate rules is not
what we are looking for, since it would tend to generate ruleswith identical behaviors to the given one,
disregarding for instance rules which can generate the sameattractors, shifted, translated or rescaled. For
this reason, we prefer to use the term “pattern” instead of attractor or fixed point.

The use of CA as an instrument to perform pattern recognitionis not new. The first contributions that
have appeared in this field were aimed at using CA for the recognition of formal languages. In [37], it has
been shown for the first time how CA could be used to recognise context free languages, while in [20]
this result was generalised even to non context-free ones. Successively, CA have been used to recognize
many different kinds of patterns. A rather deep theoreticalintroduction to the use of CA for pattern
recognition, followed by a set of examples can be found in [30]. A related but significantly different
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contribution is [7] where the use of a particular kind of CA (called Probabilistic CA) is studied as an
instrument to perform pattern recognition. The idea of using Machine Learning methods in conjunction
with CA for recognizing complex patterns was proposed in [38] and further developed in [29] where a
cellular system using Associative Neural Networks is presented. Pattern recognition in the field of image
processing has received a growing interest in the last few years. A CA based framework for this kind
of patterns is proposed in [25]. Although interesting, however, these results are very far from the scope
of this paper, where we try to address the problem by the opposite viewpoint: we do not use CA to
recognize patters, but we look for an instrument to recognise the patterns generated by CA.

A wide amount of literature about the use of GAs for evolving CA rules exists. A review can be
found in [26]. The work of Sipper and coworkers represents a noteworthy contribution to the field (see
for instance [32, 33, 36, 34]).

Also, the use of GAs for pattern recognition in CA is not new: in [14, 24] the use of GAs was
proposed to design Multiple Attractor CA (called MACA) to perform pattern classification. The idea is
that it is possible to use appropriate CA to perform classification by seeing what basin of attraction (i.e.
the output) is eventually reached when starting from specific initial configurations (i.e. the input).

3. The Burning Paper rule

In this work, we will focus on a specific subset of the CA rules:the family ofk-totalistic rules [4]. For
this kind of transition functions the look-up table dependsjust on the total numbers of cells having each
state value in the neighbourhood of a given cell, regardlesstheir position. Because of this property, this
kind of rules can be encoded using tables that are much smaller than the ones used with generic rules. In
particular, the sizeL of ak-totalistic rule table is1

L =
(v + k − 1)!

k!(v − 1)!
(1)

wherev is the number of cell states, andk is the number of cells in the neighbourhood. Since they
consider only thenumberof cells having a specific value in the neighbourhood, without considering
their position,k-totalistic rules are intrinsically symmetric (orisotropic).

The transition rule we use as a prototype in this work was introduced by Wuensche [46], and pub-
lished on his web site about the DDLab software2. It was called “burning paper” rule because of the
peculiar patterns it generates in its dynamics (figure 1 shows an example snapshot produced by it, and
the rule can be easily examined by supplying itsk-code to the DDLab program).

The “burning paper” rule (expressed in table 1) is ak-totalistic rule, defined on a regular, hexagonal,
two-dimensional lattice. The cardinality of the cell stateset is 3 (we call 0, 1 and 2 the three possible cell
states), while the neighbourhood of a cell is composed of the6 cells whose centres lie in the directions
determined by the unit vectorsv1, v2, . . . v6 given by:

vi =
(

cos
(

(2i − 1)
π

6

)

, sin
(

(2i − 1)
π

6

))

, 1 ≤ i ≤ 6. (2)

1The formula comes from elementary combinatorics, and it is the number of combinations with repetitions, wherev is the
number of objects from which you can choose andk is the number to be chosen.
2The rule can be found at the addresshttp://www.cogs.susx.ac.uk/users/andywu/multi value/dd life.html, un-
der “predator-prey dynamics”.
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Figure 1. A configuration generated by the rule we are considering as prototype. (k-code
1202022101201121112121110101)

Table 3 shows the state of each cell at the next time step as a function of the number of 0s, 1s and 2s in
its neighborhood; 28 possible neighborhood configurationsexist. Each one of those configurations can
be assigned an index (from 0 to 27 in the leftmost column of Table 3) and the values in the rightmost
column of Table 3 can be interpreted as a 28 length string indexed by those configurations. This string is
often referred to ask-codeof a rule and it completely defines a rule. The burning paper rule, identified
by the k-code1202022101201121112121110101, generates a specific kind of dynamics, with two
“populations” whose interactions recall the ones that can be found in many prey-predator systems. In
particular, one of the populations (with state2, white3 in all the figures) is typically growing, while the
second one (cells whose state is0, coloured in black) is able to survive only near white ones, and tends
eventually to consume the former. In this case, and in the rest of this article, cells whose state is1 (grey)
are considered as “background”.

The features we just described are the ones we are looking forin this work: we are interested in
finding otherk-totalistic, 3-values, 6-neighbours rules defined on hexagonal lattices that exhibit a similar
behaviour. We consider a ruleinterestingif it produces configurations that a human observer can con-
sidersimilar to the ones generated by the “burning paper” rule. In particular, we focus on rules whose
dynamics is composed mostly of configurations that exhibit,for example, this couple of properties:

1. white cells tend to “stick together”, i.e. they usually form more or less compact groups;

2. black cells are localized mostly on the edge of the white aggregations.

It is important to consider the previous two points asexamplesof the features we are looking for: they are
not meant to completely qualify the properties of the configurations we are interested in, and are neither
a formalisation nor a definition of such a vague concept as similarity.

3From now on we will be referring to the cell states by colours.
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Index Neighbourhood State
0s 1s 2s

0 0 0 6 1

1 0 1 5 0

2 0 2 4 1

3 0 3 3 0

4 0 4 2 1

5 0 5 1 1

6 0 6 0 1

7 1 0 5 2

8 1 1 4 1

9 1 2 3 2

10 1 3 2 1

11 1 4 1 1

12 1 5 0 1

13 2 0 4 2

14 2 1 3 1

15 2 2 2 1

16 2 3 1 0

17 2 4 0 2

18 3 0 3 1

19 3 1 2 0

20 3 2 1 1

21 3 3 0 2

22 4 0 2 2

23 4 1 1 0

24 4 2 0 2

25 5 0 1 0

26 5 1 0 2

27 6 0 0 1

Table 1. The “burning paper” rule, expressed as a table. (k-code 1202022101201121112121110101)

4. Structure and Functioning of the Proposed Framework

The general architecture of the framework we present in thispaper is shown in figure 2. Its high-level
structure is the same as the one of a standard GA as, for instance, described in [17, 15], including the
initialization of a population of (typically random generated) potential solutions (or individuals) followed
by a loop aimed at fostering individuals of better quality ateach iteration (also called generations).
This loop iterates four basic steps consisting in the evaluation of the fitness of all the individuals in



S. Bandini et al. / A Neuro-Genetic Framework for Pattern Recognition in Complex Systems 7

Figure 2. A graphic representation of the general architecture of the framework presented in this paper.

the population and the application of genetic operators such as selection, crossover and mutation. This
generates a new population, possibly composed by individuals with better fitness. Potential solutions
contained into the population are CA rules coded as strings of characters in a way that closely resembles
the one used by Wolfram [42] to identify the rules of Elementary CA with binary strings. In particular,
each rule can be identified by a string, calledk-code. In our case, therefore, rules are represented as 28
characters long strings, whose alphabet is determined by the possible state values (i.e.0, 1 or 2). Those
individuals are then manipulated using the standard one-point variants of the crossover and mutation
operators [17, 15].

The main difference between the proposed framework and a standard GA is in the fitness evaluation.
To define the fitness of each GA individual, we need an instrument able to distinguish the patterns that
show somesimilarity with the ones generated by the “burning paper” rule from the ones that do not. This,
in addition to the difficulty of creating an efficient (even from the computational standpoint) human-made
similarity function for this task, led us to choose Machine Learning. In the following Section, we will
describe our analysis of two different Machine Learning approaches for this task. For now, however,
we simply assume that we have generated amodel(by means of a Machine Learning method) that is
able to accomplish this task. In other words, this model is a sort of “black box” able, when given a
lattice configuration, to output a number. The more the inputconfiguration exhibits the features we are
looking for, the higher the output value will be. Since we aretrying to evaluate the behaviour of CA
rules regardless the initial lattice state, the fitness score of a rule individual should be the result of several
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runs from different, random4 starting configurations, in order to reduce the risk of misclassification due
to spurious dynamics caused by some particular choices of the initial state. This forced us to take a
compromise between precision and efficiency: we chose to runthe CA rule from a given number of
different starting configurations, take sample snapshots from the dynamics they generated (one per run)
and consider the average of the output values of the classifier model as the resulting fitness value. This
led us to design the fitness function as reported in the following algorithm:

fitness := 0;

for s := 0 to R do
lattice := new Lattice(W, rule);

lattice.step(S);

for c := 0 to C do

begin
lattice.step(S);

fitness := fitness + model(lattice);

end
endfor
fitness := fitness/(R*C);

whereW is the width (and height) of the CA lattice,R is the number of times we run the CA on
different initial states,C is the number of snapshots we take for each CA run,T is the number of steps
to skip in fitness evaluation (Transient Length),S is the number of steps between subsequent snapshots
andmodel(lattice) is the output of our model onlattice, i.e. a number equal to 1 if the current
lattice configuration has been classified as “similar” to the target one by our model and zero otherwise.
In our experiments, we have used the following values for these parameters:W = 60, R = 5, C = 5,
T = 30, S = 30.

Each rule was executed and evaluated onW × W lattices, and then was iterated starting fromR
random initial configurations for a random number of steps between0 andS − 1, after the mandatory
execution ofT steps. The execution of at minimumT steps was enforced to avoid considering the CA
dynamics during the initial transient, because during thatperiod the automaton was very likely to be
heavily influenced by the specific initial states. For each run of the CA, after the initial transient, we
capturedC initial configurations, each separated byS steps from the following one, in order to ensure
that rules are classified according to their characteristic, long-duration behaviour.

One important objection to the proposed approach could be that, by reducing the number of samples
(i.e. considering onlyC snapshots per run, and onlyR runs from different initial states), the fitness
function could be not very precise in measuring how “good” a rule individual is. Moreover, since the
initial configurations are chosen randomly, the fitness function of an individual is neitherdeterministic
nor monotone, even if the rule it represents is deterministic and does notchange between generations.
This, however, is not as true as one might expect: because of the nature of the GAs, high-fitness individ-
uals can survive, unchanged, longer than the other ones. This means that the fitness of such individuals
is evaluated at least once per generation and therefore, if a“bad” individual got a high fitness because
of the particular choice of the initial states used to evaluate it, it is quite unlikely that this eventuality

4The starting configurations are generated by setting the state each cell to a random value in{0, 1, 2} with uniform probability.
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would happen again at the next generation. If it does, that could mean that maybe the individual we are
considering is not as bad as we thought.

One of the main advantages of this way to compute the fitness value of an individual is the fact the
the Machine Learning model used to classify instances can bereally considered as a sort of “black box”.
Therefore, it can be easily replaced with different models (even human-written procedures). This feature
can be useful to use the same framework we developed to test the performances of other classifiers, or
even to look for rules with different behaviours.

5. The Evaluator Component

The evaluator component is the central and most important aspect of the framework presented in this
paper. We used the Weka platform [41] implementation for theMachine Learning methods, since it
includes many different classifiers and allows extensive testing on the models that can be obtained though
it. An important point in using Weka (but typical of the Machine Learning paradigm) is the choice of
the attributes (features) to use in classification. In this section, we describe how we transformed static
CA lattice configurations to the instances we used to train the classifiers, pointing out the pros and cons
of the choices we made. We performed a good amount of experiments but we list here only the ones
that have returned the most promising results: models basedon Support Vector Machines (presented in
section 5.1) and on Multilayer Perceptron (presented in 5.2).

5.1. Support Vector Machines

We adopted the LIBSVM implementation of SVM by Chang and Lin [9], ported to Weka by El-Manzala-
wy and Honavar [13]. The SVM-based models allow larger training sets with respect to other classifiers.
In addition, the instances themselves can include a huge number of attributes. For this reason, we adopted
a model that was able to faithfully encode the information contained in the lattice configurations: we
defined a 3-value attribute for each cell in the lattice. Thisresults in instances with many attributes
(namelyw × h, wherew andh are, respectively, the width and the height of the lattice).In our tests,
we considered60 × 60 lattices, resulting in3600 attributes that encode, quite explicitly, the spatial
configuration of the lattices.

The parameters we adopted in the generation of the SVM are thedefaults of the LIBSVM wrapper for
Weka. They are listed in Table 2 to allow the reproducibilityof the experiments (see [19] for a description
of the meaning of those parameters and how they influence the performances of the classifier).

In our experiments, we created different models using training sets of growing sizes (100, 200, 500,
1000 and 2000 elements), with instances selected in order toensure that every set is included in the larger
ones. The training sets were created using the following method:

• one half of the instances (tagged asyes) were generated from a set of snapshots (calledY) of the
dynamics generated by the “burning paper” rule;

• the other half (classno) was generated from a set of configurations (calledN) produced by ran-
domly chosen (but different from the one used to populate classyes) rules.

In both cases, each configuration was taken by iterating the application of a rule for a random number
of steps (between 30 and 500, with uniform probability) on a different initial configuration, chosen
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Parameter Value Description

type C-SVC

coefficient 0

cost 1

kernel degree 3

ε 0.0010 tolerance of termination criterion

kernel type Radial Basis Function (see [41])

normalise false

probability estimates true

use shrinking heuristic true

Table 2. Parameter setting of SVMs used in our experiments.

randomly, but with uniform distribution of state values. Wedid not consider configurations produced
within less than 30 steps from the initial state because we wanted to allow the system to settle to its
“typical” behaviour [44, 5] before starting to take snapshots. The performance of the resulting models
were evaluated using both a 10-fold cross-validation on thetraining set and a separate test set of 600
instances not used during training. A summary of the resultsis presented in Table 5.1.

M100 M200 M500 M1000 M2000

cross-validation

accuracy 96.00% 95.50% 97.00% 97.10% 97.65%

precision (yes) 0.926 0.933 0.943 0.947 0.956

recall (yes) 1 0.98 1 0.998 0.999

precision (no) 1 0.979 1 0.998 0.999

recall (no) 0.92 0.93 0.94 0.944 0.954

custom test set

accuracy 93.32% 93.82% 94.82% 94.99% 94.99%

precision (yes) 0.893 0.9 0.915 0.918 0.918

recall (yes) 1 1 1 1 1

precision (no) 1 1 1 1 1

recall (no) 0.849 0.86 0.883 0.887 0.887

Table 3. Results of the tests on the SVM-based models. Precision and recall are listed separately for each class
(yes andno).

Despite the very promising results obtained by the classifiers themselves, the SVM-based approach
performed quite poorly when used in the GA algorithm. Even ifthe first SVM model allowed some
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times the discovery of rules that could be considered, to some extent, acceptable more often it did not,
resulting in different, even though interesting. This is due to the fact that the SVMs appeared to classify
instances by using, as a main criterion, thefrequenciesof the cell states in the single configurations. The
configurations that belong to classyes have all a similar and characteristic frequency distribution that can
be considered, somehow, as a sort of “fingerprint” or “signature” of the rule that was used to generate
them. Even if this fact helps in discarding, with a good degree of confidence, configurations that were
not generated by the rule we examined earlier, it means also that the early SVM model can easily make
mistakes that result in false positives. To prove that this intuition is correct, we generated a new data
set using lattice configurations designed to have the same state densities of the ones used to generate
classyes. To guarantee this property, the instances were obtained bymodifying in a random way lattice
configurations generated using the “burning paper” rule. Inparticular, the resulting configurations, that
obviously had the same state frequencies of the configurations used to generate classyes, were shuffled
until they were significantly different from the original ones. The result was a new data set (we will call it
S) of configurations that did not show the properties we look for, but have the same global state densities
of the configurations in classyes. Since the resulting lattice snapshots look “random” when compared to
the ones inY, they are all tagged asno. Testing revealed that each of the models whose performances
are reported in Table 5.1 incorrectly classifies practically every instance ofS.

Furthermore, this SVM-based approach has another weakness: because of the format of the instances,
the models can be used (in training, testing and actual classification) only with instances obtained from
configurations with the same geometry. For instance, it would be impossible to use a model obtained with
a training set generated from60 × 60 lattice configurations with40 × 40 ones, because of the different
number of attributes that will be present in the resulting instances.

5.2. Multilayer Perceptron

When Artificial Neural Networks are trained, the cardinality of the input instances can become an issue,
in particular when a large number of hidden units are required to process information, as it is generally the
case for Multilayer Perceptron trained with the Backpropagation learning rule. For this reason, we did not
use the Multilayer Perceptron with the instances we described in the previous section: instead of having
an attribute for each lattice cell, we tried to encode thespatial information about the configurations
using the concept of neighbourhood. This choice was inspired by the fact that the previous models,
after training, used density information as a major criterion for classification. This led to an hypothesis:
if the number of the cells with a particular state at any giventime step can help identifying a lattice
configuration, counting the number of cells having a specificneighbourhood should provide even more
information about the spatial properties of a configuration. Wuensche in [44] used the neighbourhood
frequencies (rule-table look-upfrequencies, ork-block frequencies) to calculate the input-entropy and
then classify the behaviour of Cellular Automata. Therefore, we tried to use the neighbourhood counts
as a set of features for classification, hoping that it would result in better classification and it would allow
the perceptron to distinguish also configurations that havethe same state densities, but are the product of
different rules. The new instances, therefore, are now composed by3 + 28 = 31 attributes, the first 3
(attributes 0, 1 and 2) being the number of cells with states 0, 1 and 2, respectively, while the following
28 are calculated as follows: the value of attribute3+ i is the number of cells in the current configuration
whose neighbourhood is the one identified by indexi in the table codying the “burning paper” rule.
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Table 4 contains the parameters used to generate the Multilayer Perceptron models. As previously,
we used the default values provided by Weka [41].

Parameter Value Description

auto build true add and build hidden layers

decay false causes a decrease in the learning rate

hidden layers a (attribs + classes) / 2

learning rate 0.3

momentum 0.2

normal to binary filter true

normalise attributes true

normalise numeric class true

random seed 0

reset true

training time 500 number of epochs to train through

validation set size 0 do not perform validation

Table 4. Parameters used to generate the Multilayer Perceptron model.

The model was generated from a mixed training set composed of8000 instances: 50% of them was
obtained from configurations inY, 25% fromN and the remaining 25% fromS. The instances generated
from configurations inS were added to the training set in order to make it harder, for the classifier,
to rely heavily on the first 3 attributes to discriminate between classes. The results of the first test,
performed using 10-fold cross-validation, were extremelyimpressive: the perceptron-based model was
able to correctly classify 99.26% of the instances. In orderto compare this model with the ones that can
be built using SVMs, we used the same training set to generatea new SVM model (the SVM parameters
were still the ones in Table 2). The newly obtained model performed very poorly (its accuracy was only
of 50.73%), showing that changing only the attributes to be included in the instances is not enough to
obtain better results, but it is necessary to also adopt teh right classifier. Table 5.2 reports a comparison
of the performances of the Multilayer Perceptron and of the SVMs.

These results are encouraging and pave the way for the use of the models generated by the Multilayer
Perceptron to calculate the fitness of GAs individuals.

Furthermore, it is important to notice that the models obtained using the Multilayer Perceptron are
not tightly bound to the lattice size: if the instances attributes are state and neighbourhoodfrequencies,
they do not depend on the number of cells.

6. General Behavior of the Framework

Due to the nature of the task we are trying to accomplish, it isnot possible to provide in this section
quantitative results, i.e. to measure “how much” our experiments were successful. We can, however, list
some of the rules we obtained through evolution and some of the configuration they produce.
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SVM multilayer perceptron

accuracy 50.73% 99.26%

precision (yes) 0.504 0.99

recall (yes) 1 0.996

precision (no) 1 0.995

recall (no) 0.015 0.99

Table 5. Comparison between the results of the models based on Support Vector Machines and Neural Networks,
calculated using 10-fold cross validation

The structure of the Genetic Algorithm we used to evolve CA rules is fairly standard: we used
Tournament Selection as selection scheme, i.e. each time weneeded to select an individual for mating,
we chose the best one from a group of 20 (TournamentSizein Table 6) randomly chosen ones. The initial
populations we considered were composed of 600 randomly generated rules. The other parameters used
are summarized in table 6. The two probability values chosenfor crossover and mutation were among
the most widely used in previous works with Evolutionary Algorithms [17, 15, 22].

Parameter Default Description

pc 0.95 Probability of crossover

pm 0.001 Probability of mutation

Iterations 100 Maximum amount of iterations to perform

TournamentSize 20 The size of the tournament to use in selection

PopulationSize 600 The number of individuals in the population

Table 6. Parameters of the Genetic Algorithm

We have performed 500 indipendent GA executions. Table 7 reports 18 rules (represented by their k-
code) that the GA has been able to find (we do not report all the 500 rules found in the 500 GA executions
to save space).

By examining the strings that represent some of the rules obtained from experimentation it emerges
that some of the rule components (i.e. characters) are more important than others in determining the
nature of the behaviour of a rule. This is not a complete surprise: Wuensche and Adamatzky [47] have
highlighted this aspect when considering the effect of mutations on a given rule. In other words, it is
easy to imagine that, from a set of rules such as the one in Table 7, it is possible to extract a sort of
schema[17, 15], that can distinguish all the rules that generate the kind of behaviour we are looking
for. This fact confirms the suitability of the choice of usingGAs as an optimization method (see for
instance [17, 15] for a detailed discussion of schema theoryand its importance in GAs).

Figures 3, 4, 5, 6, 7 and 8 report the snapshots of some of the configurations generated by 6 of the
rules reported in table 7 (the ones marked with a “*” in the table). We do not report snapshot from all
the 500 rules found by the 500 GA executions that we have performed to save space. Nevertheless, we
can state that all the 500 rules found by the GA have generatedconfigurations that a human being would
probably consider “similar” and all of them are very “similar” to the ones shown in these figures.
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k-code

1222212120101111112211122211

2222220202010021101101111122

1222201211002121112121110100

1222222111211120101111110011

1212222200211121001111110101

1212222200211121001111110101

1222222100211100110011112211

1212112101211021100011111111

1222212221011110110111112010

1212222111200011111121111112

1212202201211001100101110110

1222112110201001100011111120

* 1212122210202111010111111111

* 1212212212211120000021111120

* 1212222112202121001001111022

* 1212222220000211001011111111

* 1222212221200020110011111120

* 1222222102211000111011112011

Table 7. Some rules obtained using the search approach we describe here. The codes marked with a “*” are the
ones displayed in the remainder of this section.

Figure 3. Snapshots of the configurations produced by rule 1212122210202111010111111111 at iterations 15,
30, 45, 60, 75, 90.
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Figure 4. Snapshots of the configurations produced by rule 1212212212211120000021111120 at iterations 15,
30, 45, 60, 75, 90

Figure 5. Snapshots of the configurations produced by rule 1212222112202121001001111022 at iterations 15,
30, 45, 60, 75, 90.

Looking at this snapshot, it is straightforward that the configurations generated by the rules found by
the proposed framework could be considered “similar” to theones generated by the “burning paper” rule
by a human being. In particular, all the rules have generatedconfigurations that respect the two properties
required: white cells tend to “stick together” (i.e. they usually form more or less compact groups) and
black cells are localized mostly on the edge of the white aggregations. In all the GA executions that we
have performed, the maximum number of iterations does not seem to influence the performances of the
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Figure 6. Snapshots of the configurations produced by rule 1212222220000211001011111111 at iterations 15,
30, 45, 60, 75, 90.

Figure 7. Snapshots of the configurations produced by rule 1222212221200020110011111120 at iterations 15,
30, 45, 60, 75, 90.

search algorithm as much as the number of individuals in the GA population: in almost all the cases, the
GA found the definitive solution within the first 25 or 30 iterations.

Furthermore, it is interesting to note that, surprisingly,most of the experiments (roughly more than
85% of the GA runs) resulted in rules that produced either a rapidly expanding population of white cells
or a population of black ones that rapidly consumes the whites5. This is particularly interesting since in

5The rest of the experiments usually led to rules that tend to quicly establish oscillating patterns.
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Figure 8. Snapshots of the configurations produced by rule 1222222102211000111011112011 at iterations 15,
30, 45, 60, 75, 90.

this work we focused onstaticpatterns, and we did not expect to necessarily find this kind of dynamic
behaviour by examining only isolated snapshots. This couldreveal that there is some deep correlation
between the patterns generated by a CA and the kind of dynamics it produces.

7. Conclusions and Future Work

A generic and modular framework based on Genetic Algorithms(GAs) to search for rules that generate
some specific patterns has been presented in this work. The approach is said to be generic because
the nature of the target family of rules can be indirectly specified using a particular component, called
evaluator, whose task is to assign to each configuration a real number that measures how “good” a rule
is with respect to the class we are looking for. In this paper,as a proof of concept, the rule class to look
for was defined indirectly, starting from another rule: we were interested in finding rules that are able
to generate patterns such as the ones generated by a specific rule called the “burning paper” rule. We
assumed the rule to be unknown, and defined an evaluator to recognise (i.e. assign an high score to) the
patterns that resembled the ones generated by this specific one.

We considered the possibility to use as evaluators many different kinds of classifiers, but experi-
mental results showed that two of them are the most promising: one based on Support Vector Machines
(SVM), and another one based on a Artificial Neural Networks (ANN) and, in particular, Multilayer
Perceptrons. To develop an efficace evaluator module, we hadto choose: wether to use SVMs or ANNs,
an appropriate training set and a satisfactory format for the instances to be classified (i.e. the choice
of the attributes to provide the classifier with in order to allow it to perform classification). In order to
choose the most appropriate values for these three, closelyrelated, aspects, we tested various combina-
tions of classifiers, instance formats and training sets. The ANNs based method, with particular features
and input data, returned outstandingly good results, with aclassification accuracy of above99%. The
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resulting model was then used as the evaluator component, and included in the calculation of the fitness
function of the GA. The generic nature framework, however, allows the user to change the module being
used as evaluator with minimal effort. This could allow, forexample, to try several other classifiers and
choosing the best one for the problem being faced, or even to try using hand written algorithms to assign
a score to the configurations. The results of the search performed by the overall system were particularly
encouraging. Not only we were able to find rules that generateconfigurations that exhibit the desired
features, but, in the wide majority of cases, the dynamical behaviour of the rules that resulted from the
GA-based search resembled the ones of the “burning paper” rule (e.g. a rapidly expanding population of
white cells or a population of black ones that rapidly consumes the whites).

The results described in this paper are, in our opinion, promising: not only we were able to develop
a Machine Learning model that is able to recognise the familyof patterns we were considering, but we
also managed to find similar rules using the GA search. This should pave the way to further research
using the same methodology and possibly generalising it andapplying it to real-life pattern recognition
applications.
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