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Abstract

We design a hexagonal ternary-state two-dimensional cellular automaton which im-
itates an activator-inhibitor reaction-diffusion system, where the activator is self-
inhibited in particular concentrations and the inhibitor dissociates in the absence
of the activator. The automaton exhibits both stationary and mobile localizations
(eaters and gliders), and generators of mobile localizations (glider-guns). A remark-
able feature of the automaton is the existence of spiral glider-guns, a discrete ana-
logue of a spiral wave that splits into localized wave-fragments (gliders) at some
distance from the spiral tip. We demonstrate how rich spatio-temporal dynamics,
of interacting traveling localizations and their generators, can be used to imple-
ment computation, namely manipulation with signals, binary logical operations,
multiple-value operations, and finite-state machines.

Key words: cellular automata, reaction-diffusion models, gliders, mobile
localizations, computation

1 Introduction

Reaction-diffusion chemical systems are widely known for their ability to per-
form various types of computation, from image processing and computational
geometry to the control of robot navigation and the implementation of logical
circuits. In a reaction-diffusion computing medium, data are represented by
the spatial configuration of the medium (e.g. local drastic changes of reagent
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concentrations or excitations), information is transferred by spreading diffu-
sion or excitation waves and patterns, computation is implemented by in-
teractions between spreading patterns, and the results of computations are
represented by the final concentration profile or the dynamic structure of ex-
citations. Numerous examples of simulated and chemical laboratory computers
can be found in the book [3].

Computation in a reaction-diffusion medium can be perceived as structureless,
or architectureless, because every micro-domain of the medium can potentially
conduct information in the form of a diffusion front or phase wave front. This
absence of compartmentalization in reaction-diffusion computing systems fits
extremely well within the paradigm of collision-based computing [1], with its
roots in logical computation in Conway’s Game-of-Life [5], Fredkin-Toffoli’s
conservative logic [6] and Margolus’s physics of computation [10]. In collision-
based computing, quanta of information are represented by compact patterns
traveling in an ‘empty’ space and performing computation by mutual col-
lisions. The absence or presence, as well as the type, of traveling patterns
encode values of logical variables. The trajectories of patterns approaching
a collision site represent input variables, and the trajectories of the patterns
ejected from a collision, and traveling away from the collision site, represent
the results of logical operations, output variables. The compact patterns can
be billiard balls in theoretical models, solitons, kinks or breathers in studies
of molecular systems, and cellular-automaton gliders. There is a particular
type of reaction-diffusion chemical system, the Belousov-Zhabotinsky reac-
tion in sub-excitable mode [13], that supports the existence of localized wave-
fragments (somewhat analogous to dissipative solitons [9]) which can play the
role of the ‘billiard-balls’ in a collison-based computing system.

Previously we demonstrated that using localized wave-fragments in experi-
mental and simulated reaction-diffusion systems we could implement function-
ally complete sets of logical gates and varieties of binary logic circuits [3]. The
functionality of these constructions, however, lasts for a markedly brief time
because the unstructured reaction-diffusion excitable devices lack stationary
localizations (which could be used as memory units) and stationary generators
of mobile localizations (which are essential for implementing negation).

In our search for real-life chemical systems exhibiting both mobile and station-
ary localizations we discovered a cellular-automaton model [16] of an abstract
reaction-diffusion system, which ideally fits the framework of the collision-
based computing paradigm and reaction-diffusion computing. The phenom-
enology of the automaton was discussed in detail in our previous work [16],
therefore in the present paper we draw together the computational properties
of the reaction-diffusion cellular automaton.

Why have we chosen cellular automata (CA) to study computation in reaction-



diffusion media? Because CA can provide just the right fast prototypes of
reaction-diffusion models. The examples of ‘best practice’ include models of
BZ reactions and other excitable systems [7,11], chemical systems exhibiting
Turing patterns [20,17,19], precipitating systems [3], calcium wave dynam-
ics [18], and chemical turbulence [8].

We therefore consider it reasonable to interpret the CA rules we have discov-
ered in terms of reaction-diffusion chemical systems. We envisage that this
interpretation will provide the basis for experimental chemical laboratory de-
signs of reaction-diffusion computers, allowing stationary localizations to be
used as memory units [1].

Constructing logical gates is theoretically sufficient to the prove the compu-
tational universality of a system. However, to build working prototypes we
need to have more detailed techniques: for manipulating signals, memorizing
the intermediary results of a computation, and feeding data into the comput-
ing device, to name but a few. This is why we mainly concentrate on these
‘auxiliary’ means of computation in the paper.

The paper is structured as follows. The reaction-diffusion cellular automaton
and its phenomenology is defined in Sect. 2. We show how to input informa-
tion into the automaton in Sect. 3. Section 4 deals with the implementation
of memory devices. Possible ways of routing signals are presented in Sect. 5.
Non-trivial binary operations implemented in collisions between mobile local-
izations are studied in Sect. 6. And lastly, in Sect. 7 we construct a finite state
machine realized by stationary and mobile localizations.

2 The reaction-diffusion cellular automaton

We design a totalistic cellular automaton (CA), where a cell updates its state
depending on just the numbers of different cell-states in its neighborhoods.
Consider a ternary state automaton, where every cell takes one of the following
cell-states: substrate S, activator A and inhibitor /. The update rule can be
written as follows: 2! = f(o;(2)!, 04(2)t, 05(2)!), where o, (z)" is the number
of cell z’s neighbors with cell-state p € {I, A, S} at time step ¢t. As for all
classical CA, cell updates are made synchronously across the whole lattice in
discrete time-steps. Our CA is based on a 2D lattice with hexagonal tiling.
The neighborhood size is seven — the central cell and its six closest neighbors.

To give a compact representation of the CA rule, we adopt the formalism
in [2], and represent the cell-state transition rule as a matrix M = (m;;),
where 0 < i < j <7 0<i+7 <7 and my; € {I,A,S}. The output state
of each neighborhood is given by the row-index i (the number of neighbors



in cell-state I) and column-index j (the number of neighbors in cell-state A).
We do not have to count the number of neighbors in cell-state S, because
it is given by 7 — (i 4+ j). A cell with a neighborhood represented by indices
¢ and j will update to cell-state M;; which can be read off the matrix. In
terms of the cell-state transition function this can be presented as follows:
T = Mo, @)ion @y

The exact matrix structure, which corresponds to matrix Mz in [16], is as
follows, :

SATAITITII
STTAIII
SSTAII
SITTAI
M=JSSTA
SSI

S S

S

Do these matrix entries correspond to phenomena in reaction-diffusion chem-
ical systems? Indeed they do. Thus, My; = A symbolizes the diffusion of acti-
vator A, My, = I represents the suppression of activator A by the inhibitor I,
M,, =1 (z=0,---,5) can be interpreted as self-inhibition of the activator in
particular concentrations. M,3 = A (2 = 0,--- ,4) means a sustained excita-
tion under particular concentrations of the activator. Mo =S (z =1,---,7)
means that the inhibitor is dissociated in absence of the activator, and that
the activator does not diffuse in sub-threshold concentrations. And, finally,
M., =1, p > 4 is an upper-threshold self-inhibition.

The cell-state transition rule reflects the nonlinearity of activator-inhibitor in-
teractions for sub-threshold concentrations of the activator. Namely, for small
concentration of the inhibitor and for threshold concentrations (values 1 and
3), the activator is suppressed by the inhibitor, while for critical concentrations
of the inhibitor (value 2) both inhibitor and activator dissociate producing the
substrate, as symbolized in the following set of quasi-chemical reactions:



Fig. 1. A typical quasi-stable configuration of the CA which started its development
in a random initial configuration (with 1/3 probability of each cell-state). Cell-s-
tate I (inhibitor) is shown by a black disk, cell-state A (activator ) by a circle,
and cell-state S (substrate) by a dot. We can see there are two types of station-
ary localizations (glider eaters) and a spiral glider-gun, which emits six streams of
gliders.

A+65— A A+T—1 A+31 — 1
A+2I — S 24 — I
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Starting in a random initial configuration the automaton will evolve towards a
quasi-stationary configuration, with typically two types of stationary localiza-
tions, and a spiral generator of mobile localizations (Fig. 1). By analogy with
Conway’s Game-of-Life we call mobile localizations gliders, the generators of
mobile localizations — glider-guns, and stationary localizations — (glider)
eaters. Eaters usually annihilate gliders that collide into their central body,
but they can also modify gliders that brush past interacting with the outer
edge. The core of a glider-gun is a discrete analog of a ‘classical’ spiral wave
(commonly found in excitable chemical systems like the Belousov-Zhabotinsky
reaction) (Fig. 2). However, at some distance from the spiral wave tip the wave
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Fig. 2. The principle scheme of the glider-gun: the core of the spiral wave rotates
clockwise, wave-fragments break off from the tail of the spiral wave and travel in 6
directions: East, South-East, South-West, West, and North-West; the wave-fragment
that will travel North-East has not been is generated yet.

Fig. 3. The basic gliders come in five types, shown here traveling West, in the
direction of their activator head (cell-state A), with a tail of trailing inhibitors
made up of several cell-states I. The glider designator G refers to the numbers of
trailing inhibitors. (a) and (b) two forms of glider Gs4. (c) glider Gy4. (d) glider G5.
(e) and (f) two forms of glider Ga4, (g) and (h) two forms of glider Gus.

front becomes unstable and splits into localized wave-fragments. The wave-
fragments continue traveling along their originally determined trajectories and
keep their shape and velocity vector unchanged unless disturbed by other
localizations. So, the wave-fragments behave as in sub-excitable Belousov-
Zhabotinsky systems [13].

Basic gliders, those with one (activator) head, are found in five types (Fig. 3),
which vary by the number of trailing inhibitors. Three types (Gay, Gag, G43) al-
ternate between two forms. Two types (G4, G5) have just one form. The spiral
glider-gun in Figs. 1 and 2 release GG34 gliders. An alternative, low frequency,
spiral glider-gun [16] (not shown) releases G4 gliders. These basic gliders, and
also a variety of more complicated gliders including mobile glider-guns, are
also generated by many other interactions.

The existence of stationary localizations, or eaters, (Fig. 4) is yet one more
important feature of the CA. Eater F3 (Fig. 4a) consists of three activator
states surrounded by nine inhibitor states. Eater Eg (Fig. 4b) has a core of one



Fig. 4. Stationary localizations (eaters). (a) eater E3, (b) eater Fg.

inhibitor-state surrounded by six activator-states, which in turn are encircled
by six (in its minimal symmetric form) inhibitor-states.

We can speculate that our CA is analogous to a combination of two types
of chemical system in one physical space: excitable systems where classical
spiral waves are formed, and sub-excitable systems where no spiral waves
are formed, but only traveling localized wave-fragments (assuming space is
uniform and homogeneous). Such ‘hybrid-functionality’ systems were never
observed experimentally, however there is evidence of complete spiral breakup
and a subsequent transition to spatio-temporal chaotic states, e.g. reported
n [12]. Also, in a modified Barkley model of an excitable reaction-diffusion
system, a break-up of a spiral wave far away from the rotating tip was reported
in [4]. However, this was achieved in somewhat “artificial” conditions, in which
the ratio of time-scales, of the local dynamics of the activator and inhibitor
variables, were dynamically changing, increasing during simulation.

3 Input interface

Fig. 5. Activation of one site of the lattice leads to formation of six Gs4 gliders.

How can we input information into the hexagonal CA computing device? One
sensible way to input a quantum of information might be to activate (or in-
hibit) just one site of the lattice, however such an action can lead to the
generation of several gliders (Fig. 5), and thus potentially ‘pollute’ the com-
putational space.



What if we try to ‘stimulate’ localizations E3 and Eg, so they can play the
role of stationary sensors, or elements of an input interface?

Let us take the eater E5 and stimulate — switch to the activator-state —
one of its inhibitor-sites (Fig. 6). The activation of six of the nine inhibitor-
sites leads to the transformation of E3 into a G5 glider traveling in one of six
directions, as shown by the straight arrows in Fig. 6. The activation of the
other inhibitor-sites (zig-zag arrows in Fig. 6) cause the annihilation of Ej.

Fig. 6. Outcomes of the activation of the inhibitor-sites of the stationary localization
(eater) E3. When an inhibitor-site (marked by the rhomboid end of an arrow) is
switched externally to the activator-state, Fs is transformed into a G5 glider. The
activation of sites marked my the zig-zag arrows leads to the annihilation of Ej.

Fig. 7. Outcomes of external switching of an activator-site in the stationary local-
ization (eater) Eg to a resting or inhibitor state. In both cases Ej is transformed to
a Gy glider .

The inhibition of any of three activator-sites in E3 will destroy it. Fj3 is also
stable to the external switching of an inhibitor-state to a resting substrate-
state: an inhibitor-site is restored in one time-step. However, when one of
activator-sites in Fs5 is switched to a substrate-state, the localization Fj is
destroyed.



Fig. 8. Switching the northern inhibitor-site of eater to Eg to the substrate-state
leads to the formation of two more inhibitor-sites in the ‘inhibitor-shell’ of Eg. (a) Eg
in its “normal” form, (b) the northern inhibitor-site is forced to a substrate-state,
(c) the configuration of inhibitor-sites is updated.

(h)

Fig. 9. The external switching of one of distal inhibitor-sites of Eg to the activator-s-
tate, transforms Fjg into two G4 gliders (a) the “normal” form Fjg, (b) the northern
inhibitor-site is switched to the activator-state, (c)—(f) two G4 gliders are formed
and (g) travel outward. The velocity vectors of the gliders formed by activating the
inhibitor-sites are shown in (h).

Eater Ejg is more sensitive to external inputs comparing to F3. Thus when we
switch one of the activator-sites in Ejg to either a substrate or inhibitor state,
Es is transformed to an Fj glider (Fig. 7).

The external switching of one of the distal inhibitor-sites in Fjg, the northern
inhibitor-site in Fig 8a, to the substrate-state (Fig 8b), leads to the recovery



of the site and the switching of two neighboring sites to the inhibitor state
(Fig 8c). The updated configuration (Fig 8c) can be detected by gliders, as
shown in later sections.

The activation one of the outer inhibitor-sites of Fg transforms the localization
to two G4 gliders, as shown in Fig. 9.

4 Memory device

Fig. 10. Write bit.

The eater Eg can play the role of a 6-bit flip-flop memory device. The substrate-
sites (bit-down) between inhibitor-sites (Fig. 4) can be switched to an inhibitor-
state (bit-up) by a colliding glider.

An example of writing one bit of information in Fy is shown in Fig. 10. Initially
Eg stores no information. We aim to write one bit in the substrate-site between
the northern and north-western inhibitor-sites (Fig. 10a). We generate a glider
G34 (Fig. 10bc) traveling West. (i34 collides with (or brushes past) the North
edge of Eg resulting in GG34 being transformed to a different type of glider, G4
(Fig. 10gh). There is now a record of the collision — evidence that writing
was successful. The structure of Fg now has one site (between the northern
and north-western inhibitor-sites) changed to an inhibitor-state (Fig. 10j) —
a bit was saved.

To read a bit from the Eg memory device with one bit-up (Fig. 11a), we collide
(or brush past) with glider G4 (Fig. 11b). Following the collision, the glider
(34 is transformed into a different type of basic glider, G4 (Fig. 11g), and the
bit is erased (Fig. 11j).
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Fig. 11. Read and erase bit.

5 Routing and tuning signals

To route signals we can potentially employ either stationary localizations (to
act as reflectors) or use other gliders to act as mobile reflectors. In practice, we
were unable to find a stationary (eater) reflector of gliders; in all cases studied,
gliders where either transformed to a different type, or where annihilated, but
never changed their trajectory when colliding with an eater. However, mobile
reflectors do exist.

Figure 12 shows how a glider traveling North-West collides with a glider trav-
eling West, and is reflected South-West as a result of the collision. However
both gliders are transformed to different types of gliders. This is acceptable
on condition that both types of glider represent the same signal, or signal
modality.

Fig. 12. Glider reflection.

There are two more gates which though not essential in demonstrating com-
putational universality, are nevertheless useful in designing practical collision-
based computational schemes. They are the FANOUT gate and the ERASE gate.

11



Fig. 14. Signal 1 to 2 multiplication, FANOUT gate.

The FANOUT gate is based on glider multiplication. There are a few scenarios
where one glider can be multiplied by another glider (for details see the original
beehive rule [15], though this does not feature a spiral glider-gun). In Fig. 13 we
see how a glider moving East collides with another moving West (Fig. 13ab),
four new gliders are formed as a result of the collision (Fig. 13g), traveling
East, West, North-East and South-West. This is an example of a one-to-three
FANOUT gate.

12



We can make a FANOUT gate by colliding glider G4 with glider Go4, as shown
in Fig. 14. Glider Gj3,4 traveling North-West collides with glider G4 traveling
West (Fig. 14ab). The gliders almost annihilate as a result of the collision —
just a tiny fragment, two sites made up of one activator and one inhibitor state
remain (Fig. 14e). The activator-inhibitor pair grows into a more complicated
pattern (Fig. 14fg), which finally splits into three G5 gliders. One glider con-
tinues traveling West along the original trajectory of glider G54. Ignoring the
fact that the glider types change in the collision, we can assume that both Goy
and G5 gliders represent a control signal traveling West. Two other gliders,
the result of multiplication, travel South-West and South-East (Fig. 14h—j),
while gliders initially involved in the collision continue along their original
trajectories.

Fig. 15. Glider annihilation, ERASE gate, with eaters (top and middle collisions in
each subfigure), and another glider (bottom collision).

To annihilate a glider we can collide it with the central bogy of an eater, as
demonstrated in Fig. 15, or with another glider (head-on collisions usually
lead to annihilation).

6 Binary operations

The Boolean logical universality of the spiral rule CA can be proved using the
collision-based computing paradigm [1], where a glider represents the value
TRUE, and the absence of a glider represents the value FALSE. When two
gliders collide their trajectories may change or new gliders may be generated
— a glider emerging on a new trajectory stands for conjunction, the gate AND.
So Boolean variables can be represented by colliding gliders.

The details of basic logical gates implemented in glider collisions were fully
demonstrated in our previous paper [2], so we do not provide any examples
here. We should just mention that in contrast to hexagonal reaction-diffusion
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Fig. 16. Asynchronous XOR gate. (a) position of output cell is shown by ®. (b) op-
eration implemented by the gate, input state Gs4 is logical TRUE, output state .S is
FALSE, output state I is TRUE.

CA studied in [2], the spiral rule CA exhibits stationary glider-guns, or genera-
tors of mobile localizations, which are essential in implementing negation. The
computing medium represented by the spiral rule CA is fully programmable
because, as demonstrated in [16], not only can we generate stationary local-
izations (eaters) in collisions between gliders, but we can also transform sta-
tionary localization to make generators of mobile localizations (glider-guns),
and destroy glider-guns when required.

Conjunction and negation are sufficient to demonstrate the logical functional
completeness of the CA. In this section we go a bit further and discuss the
implementation of an asynchronous XOR gate and a five-valued binary opera-
tion.

The asynchronous XOR gate can be constructed from the memory device in
Figs. 10 and 11, employing the eater Fg and the glider G34. The incoming
trajectory of gliders is an input = (x,y) of the gate, and the state of the
cell which is switched to the inhibitor state by gliders, is an output z of the
gate (this cell is shown by ® in Fig. 16a). As seen in Fig. 10, when glider G4
brushes by the eater Fjg it ‘adds’ one inhibitor state to the eater configuration
(Fig. 10, t 4+ 7), and transforms itself in glider Gy3. If glider G34 brushes by
Eg with an additional inhibitor state (Fig. 11, ¢) it ‘removes’ this additional
state and transforms itself into glider G4 (Fig. 11, ¢t + 11).

Assume that the presence of glider G34 symbolizes input logical TRUE and
its absence — input FALSE, inhibitor state I in cell ® — output TRUE and
substrate state S — output FALSE. The result of this logical operation can
be read directly from the configuration of Eg or by sending a control glider
to brush by Es to detect how the glider is transformed (see details of glider
transformations in Sect. 7). Then the structure implements exclusive disjunc-
tion (Fig. 16b). The gate constructed is asynchronous because the output of
the operation does not depend on the time interval between the signals but
only on the value of signals: when inhibitor state is added or removed from FEjg

14
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Fig. 17. Binary operations realized in a collision between a glider traveling West and
a glider traveling North-West. Two different operations are represented by West (a),
and South-West (b), output trajectories. Glider G4 is represented by a, G4 by b,
G5 by ¢, Goy4 by d, and the absence of glider is 0.

the configuration of Fg remains stable and does not change till another glider
collides into it.

Interpreting different gliders as states of a multiple-valued logic variable could
bring a new dimension to the study of collision-based computing. Multiple-
valued gates will be invaluable in designing CA representations of fuzzy rea-
soning, emotions and consciousness.

Let us look at just one example of the interpretation, and consider pairwise
collisions involving any two out of four types of glider: G4, G4, G5, and Goy.
One of the pair moves West, the other North-West, positioned before the
collision as follows. In this particular example of binary collisions we assume
the activator-head (state A) of the glider traveling West is positioned at cell
(7,7). Then (0,0) is a northwest-most corner of the lattice and the activator-
head of the glider traveling North-West occupies the cell with coordinates
(1—1, j+2) (see the example of the initial position at Fig. 12a). We assume that
the glider traveling West represents the value of variable x, and glider traveling
North-West represents the value of variable y. Following the collision, one new
glider continues traveling West (let it represent the value of variable z;, the
result of operation ®), another is “reflected” South-West (let it represent the
value of variable zy, the result of operation ®3). We encode glider G34 by the
symbol a, G4 by b, G5 by ¢ and Go4 by d, and the absence of a glider by 0.

Operations realized by this gate are shown in Fig. 17. Let us briefly discuss
the algebraic systems A; = (®1,{0,a,b,¢,d}) and Ay = (®9,{0,a,b,c,d})
implemented in the glider collision. Both systems have neither identities nor
zeros. The element 0 is the only idempotent (0 ®; 0 = 0 and 0 ®3 0 = 0).
However 0 is right zero in A; and A (for any = € {0, a,b, c,d} we have 20,0 =
0 and z ®2 0 = 0), and left identity in A; (for any x € {0,a,b, ¢,d} we have
0 ®; & = z). Operations ®; and ®9 are not associative and not commutative.
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Fig. 18. Encoding the internal states of the glider-eater machine in the configuration
of eater Ejg.

Singleton {d} is the only minimal generator in A; and Ay: d®1d = b, d®1b = a,
dora=c,andd®yd=a,a®ya=b,a®yd=c.

7 Implementation of the finite state machine

While developing the exact construction of a memory device, described in
Sect. 4, we discovered that eater Eg can take four different configurations
resulting from the interactions of gliders brushing past, and there are seven
types of glider produced in collisions with the eater (including some basic
types flipped). We therefore envisaged that a finite state machine can be im-
plemented in the eater-glider system. The internal state of such a machine
is represented by the configuration of the eater, the type of incoming glider
symbolizes the input symbol of the machine, and the type of outgoing glider
represents the output state of the machine.

To construct the full state transition table of the eater-glider machine we
collided seven types of glider into four configurations of the eater and recorded
the results of the collisions. For the sake of compact representation we encoded
the configurations of the eater as shown in Fig. 18. We denote the gliders as
follows: G4 as a, Gas as b, G5 as ¢, G4 as d, Gay as e, G* (glider G4 flipped
horizontally) is f, and G* (glider Gy3 flipped horizontally) is g. The state
transition table is shown in Fig. 19.

Consider the internal states of the eater-glider machine as unary operators on
the set {a,b,c,d, e, f, g}, i.e. the machine’s state is reset to its initial state after
the collision with the glider. For example, the unary operator o implements
the following transformation: a« — b, b — ¢, ¢ - a,d — a, e — d, f — e,
g — e. The operators have the following limit sets: operator o has the limit
set {a,b,c}, B — set {c}, x has two limit sets {a,d} and {b, c}, and operator
d — two limit sets {a, b, c,d} and {e, f}. Considering unary operators a, - - -,
g operating on set {«, 3, x,d} we obtain the limit sets shown in Fig. 20. Many
of the operators have more then two limits sets, which may indicate significant
computational potential of the eater-glider machine.
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Fig. 19. The state transition table of the eater-glider machine. Tuple zy, a pair
made up of an eater state x and glider state y, at the intersection of the ith row
and jth column, signifies that being in state ¢ while receiving input j the machine
takes state x and generates output y.

operator| limit set
a | {a,0},{0}
b {64}
¢ [ {ah {010 X}
d | {o}, {8} {x}

e | {0} {8, x}
fo et Ax3 {0}
g {a, 0}, {8, x}
Fig. 20. Limit sets of unary operators a, -« -, g.

&b & 4 e g
al (bd)* c(ce)* b*  e* (de)* e* (ca)*
Bl (db)* (ec)* ¢ ¢ (

X

J

d*  e(ec)* (fg)* a* b(gh)* a* e
b* (ce)” (g9f)* ea” (ed)* e* (ac)*

Fig. 21. Input string to output string transformations implemented by the
eater-glider machine. String s, at the intersection of the ith row and jth column,
tells us that being initially in state ¢ and receiving a uniform string j, the machine
generates string s.

To characterize the eater-glider machine in more detail we studied what output
strings are generated by the machine when the machine receives the uniform
infinite string s*, s € {a,---g} on its input. These input string to output
string transformations are shown in Fig. 21.

Input string abedefg evokes the following output strings when fed into the
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machine. The machine starting in state o generates string begabac, in state
(8 — string dcgabac, in state y — string deccgae, and in state o — string
beeegae.

8 Discussions

We have designed a hexagonal CA imitating an abstract spatially-extended
three-species chemical system with non-trivial interactions between activator,
inhibitor and substrate. The model we have constructed exhibits significant in-
teractions: a range of traveling and standing quasi-particles, or wave-fragments
or gliders, and generators of the traveling patterns.

We proved that all the basic components — necessary for constructing a gen-
eral purpose computing device — are implemented in the spatio-temporal
dynamics of the automaton. They include signal reflectors, multiplicators,
erasers, memory devices, binary and multiple-valued gates, and a finite state
machine.

Amongst the problems that remain to be unravelled we can mention a few
that are the most important:

e To build a configuration of reusable sensors, i.e. restorable eaters. Currently,
to input a piece of information to the computing medium, we switch the
state of one site of a stationary localization, thus transforming the localiza-
tion to a mobile localization. The sensor-localization is destroyed as a result
of ‘sensing’, which may be inconvenient for certain applications.

e To find ways of using eaters to change the trajectories of signal-gliders.
So far, when a glider collides (or brushes past) an eater, the glider either
changes its type or is annihilated, but the glider never starts moving along
a new trajectory.

e To invent techniques for reading a bit from a memory device (see Sect. 4)
without destroying the bit, at present, reading is associated with erasing.

On the experimental front, we are eager to see real-life chemical systems, which
exhibit behavior similar to that discovered in the present paper, particularly
concerning localization dynamics. Some promising results have been obtained
already by Vanag and Espstein [14], who demonstrated experimentally the
existence of spiral waves emitting localized wave-fragments. However, this was
not done in a ‘conventional’ setup of a liquid-phase chemical system, but in
a Belousov-Zhabotinsky reaction dispersed in water nanodroplets of a water-
in-oil microemulsion. We are not aware if any standing localizations existing
in the same physical domain of the medium with travelling localizations. We
hope to clarify these matters in future experiments.
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