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A key notion underlying the collective behaviour of discrete dynamical networks is that
state-space is organized into a number of basins of attraction, connecting states according
to their transitions, and summing up the network’s global dynamics[4, 5].

Discrete dynamical networks consist of a set of elements (cells) taking inputs from each
other, and changing each cell-state according to some logical function of its inputs. The
connectivity is usually sparse and cells are updated synchronously in discrete time-steps.
Examples of discrete dynamical networks are cellular automata, and the more general case,
random Boolean networks, where the Boolean attribute may be extended to multi-value.

In these finite, deterministic (though unpredictable) dynamical systems, an initial state
sets off a train of successor states (a trajectory) by the iteration of the logical functions
relating to each cell’s inputs. Any trajectory must encounter a repeat state (because state-
space is finite); this defines a state cycle (an attractor). So the dynamics organizes state-
space into transient states flowing to attractor cycles (basins of attraction) analogous to the
same concept in continuous dynamical systems, but with the important difference that in
discrete dynamical networks transients can merge outside the attractor. Basins of attraction
therefore consist of transient trees rooted on attractor cycles, where the leaves of the trees
are unreachable states that can only be introduced from outside the system.

Figure 1: The basin of attraction field (state transition graph) of a small random Boolean network, with 13
cells. Cells have between 1 and 5 inputs, which were randomly assigned together with their logical functions.
State-space (213=8192) is partitioned into 5 basins of attraction, size: 3998, 3294, 774, 98 and 29, with attractor
period: 1, 4, 4, 1, 1. The density of leaves (unreachable states) is 0.992. Each node represents a different state
in state-space. Time flows inwards to the attractor and then clockwise.
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Figure 2: A detail of the third basin in figure 1, showing the states as bit-strings.

Subtrees and basins of attraction (represented as state transition graphs as in figures 1
and 2) can be computed with algorithms which directly generate the predecessors of each
state[4, 5], driving the dynamics backwards in time along every valid reverse path. The exact
graph depends on the exact connections and logic for each cell in the network. The state
transition graph is to some extent stable to small perturbations/mutations in the network,
but even the most minimal mutations (if they hit a “sensitive spot”) may drastically alter
the graph. In general mutations to connections have more effect than mutations to the logic.

Figure 1 shows all the basins of attraction (the basin of attraction field) for a small ran-
dom Boolean network. Figure 2 shows a detail of the third basin. Time flows inwards to the
attractor and then clockwise. Note that the degree of convergence in the flow relates to no-
tions of order-chaos in space-time patterns, high convergence implies order, low convergence
implies chaos. Asimple measure of convergence is the leaf density of unreachable states.

How does this relate to memory? A network has “content addressable” memory from
its ability to categorize (thus recognize) input, by following the resulting flow to particular
attractors, Hopfield’s classic idea[1]. In discrete dynamical networks, there is also categoriza-
tion outside attractors making a hierarchy of sub-categories far from equilibrium, because the
root of each subtree is a sub-category, a richer system of content addressable memory than
attractors alone[6]. These ideas provide an approach to understanding memory in networks
of neurons in the brain[5, 6], and in genetic regulatory networks where basins of attraction
are said to correspond to cell types[2, 3, 7, 8].

Work in progress addresses learning, how to change the network architecture to make
desired categories and sub-categories, and the related “inverse problem” in genetics, how
to infer the network that results in observed patterns of gene expression, cell types, in the
organism.

This research is carried out with the help of the software Discrete Dynamics Lab (DDLab),
available at www.ddlab.org[9]. Papers by the author in the references are also available at
this site.
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