
EXPLORINGDISCRETEDYNAMICS
SECOND EDITION

The DDLab Manual
Tools for researching Cellular Automata,

Random Boolean and Multi-Value Networks, and beyond.

update for ddlabz12
September 2024

ONLINE EDITION

ABOUT THE AUTHOR

Dr. Andy Wuensche is a former architect, the inventor of reverse algorithms for cellular automata
and discrete dynamical networks, the author of many academic publications including the book
The Global Dynamics of Cellular Automata (with Mike Lesser) in the Santa Fe Institute’s Studies
in the Sciences of Complexity. He created and continues to develop the classic software Discrete
Dynamics Laboratory (DDLab), widely used in research and education. He has lectured at
universities and conferences throughout the world. He is an independent academic, a visiting
Professor at the International Center of Unconventional Computing, UWE, Bristol, and a visiting
research fellow at the Dept. of Informatics, University of Sussex.

Oil on canvas by Paul Wuensche
http://paulwuensche.com/

http://paulwuensche.com/

ANDREWWUENSCHE

EXPLORINGDISCRETEDYNAMICS
SECOND EDITION

The DDLab Manual
Tools for researching Cellular Automata,

Random Boolean and Multi-Value Networks, and beyond.

Luniver Press
2016

This September 2024 online edition includes updates

Published by Luniver Press
Frome BA11 3EY United Kingdom

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

EXPLORING DISCRETE DYNAMICS Second Edition
(First Edition 2011 Luniver Press)

Copyright c© Luniver Press 2016

The cover images were created with DDLab. A space-time pattern (n=600) and a basin of attrac-
tion (n=15) are illustrated — both according to the same v2k5 one-dimensional cellular automata
rule (hex) 3dae2997.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any
means, electronic or mechanical, including photocopying, recording or by any information storage
and retrieval system, without permission in writing from the copyright holder.

ISBN-10: 1-905986-47-5
ISBN-13: 978-1-905986-47-7

While every attempt is made to ensure that the information in this publication is correct, no
liability can be accepted by the authors or publishers for loss, damage or injury caused by any
errors in, or omission from, the information given.

To Stephanie

.

Chapters

Preface . vii
Contents . xxviii
List of figures . xxxvi
List of tables . 1

0 Updates . 2
1 Overview . 14
2 Summary of DDLab functions . 23
3 Accessing DDLab . 40
4 Quick Start Examples . 46
5 Starting DDLab . 70
6 The first prompt in DDLab . 79
7 Value-range, v . 85
8 1d network size n, or range-n . 89
9 Neighborhood, k, or mixed-k . 97
10 The local neighborhood, and network geometry 104
11 Setting the wiring, quick settings 111
12 Setting special wiring . 115
13 Rule types . 124
14 Rulemix options . 136
15 Setting Canalyzation in a random rcode-mix 151
16 Setting a singe rule . 158
17 Reviewing network architecture . 202
18 Transforming network rules . 235
19 File/print network architecture . 243
20 Interactive Graphs: network, ibaf, jump 254
21 The Seed or initial state . 301
22 The Derrida plot . 328
23 Graphic conventions for attractor basins 338
24 Output parameters for attractor basins 344
25 Layout of attractor basins . 368
26 Display of attractor basins . 377
27 Pausing attractor basins, and data 390
28 Mutation of attractor basins . 406
29 Final options for attractor basins 414
30 Drawing attractor basins, and changes on-the-fly . . . 437
31 Output parameters for space-time patterns 445
32 Drawing space-time patterns, and changes on-the-fly 482
33 Classifying rule-space . 539
34 Learning, forgetting, and highlighting 563
35 Filing . 577
36 Vector PostScript capture of DDLab output 583
37 Glossary . 586

References . 593
Index . 597

vi

Preface

Figure 1: The basin of attraction field of a 3-value Cellular Automaton, v=3, k=3, n=8. There are in
fact 17 basins, but equivalent basins have been suppressed leaving just the 7 prototypes. One attractor
state is shown for each basin. The rcode rule-table is 020120122021201201011011022.

Dynamics on networks, and of networks

Networks of sparsely inter-connected elements with discrete values and updating in parallel are
central to a wide range of natural and artificial phenomena drawn from many areas of science:
from physics to biology to cognition, to social science and economics; to parallel computation,
emergence, self-organization and artificial life; to complex systems of all kinds.

Dynamics upon or on a network are its changing patterns of cell-states, while the underlying
network architecture, its connections and logic, remains fixed. DDLab studies these changing
patterns and how they “fall” along trajectories into attractors, revealing the fine detail of basins
of attraction. DDLab also deploys flexible methods for constructing and changing the network’s
architecture — the dynamics of the network — which of course has consequences for the dynamics
on the network.

To give an oversimplified example, take a network of neurons in a brain; the pattern of firing and
synaptic activity is the dynamics on the neural network sustaining automatic behavior, whereas
network plasticity, changes in synaptic micro-circuitry and connections between neurons, is the
dynamics of the network supporting learning and lifetime adaptation.

Networks like this are sometimes called “decision-making” because each element “decides” how
to change its state based on the signals arriving from other elements along its input connections,

vii

viii

mediated by its own internal logic, and each element provides outputs to other elements making
their “decisions”. The many decisions make a collective by simultaneous iteration and massive
feedback creating the possibility of all sorts of “emergent” dynamic patterns.

We can unravel the dynamics and gain some insight into the basic principles by studying
idealized networks were all aspects are discretized: value, space, and time, where dynamics on
the network are simplified into discrete time-steps updating synchronously, in parallel, or in some
partial order.

Cellular automata and random Boolean networks are the most common idealized dynamical
networks that have been studied, and together with their applications support a very large body
of literature. Applications [51] include complex systems and emergent patterns [19, 36, 38, 37],
artificial life [25, 27], collision-based computing [1], neural networks, memory and learning [41],
genetic regulatory networks [24, 32, 20, 40, 43], and theories of networks in general. The idealized
networks are interesting in themselves as mathematical/physical/dynamical systems. Because the
dynamics resist analysis by classical mathematics, computer simulation, a kind of experimental
mathematics, is unavoidable.

DDLab software

DDLab is able to construct these networks and investigate many aspects of their dynamical
behavior. The software utilizes interactive graphics and other methods to study cellular automata
(CA), random Boolean networks (RBN) [24], and the general case of discrete dynamical networks
(DDN), where the “Boolean” attribute is extended to multi-value. Together with hybrid networks,
and networks of interacting sub-networks, there is a huge diversity of behavior to be explored —
mostly terra incognita.

There are currently compiled versions1 of DDLab for Linux, Mac, Cygwin and DOS. The code is
written in C, and is open source “free software” under the GNU General Public License. As well as
generating space-time patterns in one, two or three dimensions, DDLab generates attractor basins,
graphs that link network states according to their transitions, representing “global” dynamics [38],
analogous to Poincaré’s “phase portrait” which provided powerful insights in continuous dynamical
systems. A key insight is that the dynamics on networks converge, thus fall into a number of basins
of attraction. The state transition graphs, consisting of trees rooted on attractor cycles, represent a
network’s memory[42], its ability to hierarchically categorize its patterns of activation (state-space)
as a function of the precise network architecture [40].

Relating this to space-time patterns in CA, high convergence implies order, low convergence
implies disorder or chaos [38, 49]. The most interesting emergent structures occur at the transition,
sometimes called the “edge of chaos” [26, 44].

DDLab is an applications program, it does not require writing code. Network parameters and
the graphics presentation can be flexibly set, reviewed and altered, including changes “on-the-fly”.
A wide variety of data, measures, analysis, and statistics are available. DDLab produces graphic
images of all aspects of the data, the networks, attractor basins, and moving images of space-time
patterns. Most images can be captured as vector PostScript files suitable for publication.

This book and its latest online update provide a comprehensive operating manual for the latest
version of DDLab.

1Earlier compiled versions are also available for Unix and Irix.

ix

Updates

Records of updates were listed in this Preface but since the 2021 online edition are in the seperate
chapter 0.

The precursor of DDLab

The precursor of DDLab was the Atlas software compiled in DOS, included on diskette inside the
back cover of The Global Dynamics of Cellular Automata, An Atlas of Basin of Attraction Fields
of One-Dimensional Cellular Automata [38], by Andrew Wuensche and Mike Lesser, published in
1992 in the Santa Fe Institute’s Studies in the Sciences of Complexity. The entire book, extracts,
reviews, commentaries[30], and the original “Atlas” software, are available via this link.

Acknowledgements

Many people have influenced DDLab by contributing ideas, suggesting new features, providing
encouragement, criticism, and helping with programming. I reserve all the blame for its short-
comings. I would like to thank Mike Lesser, Grant Warrell, Crayton Walker, Chris Langton,
Stuart Kauffman, Wentian Li, Pedro P.B. de Oliveira, Inman Harvey, Phil Husbands, Guillaume
Barreau, Josh Smith, Raja Das, Christian Reidys, Brosl Hasslacher, Steve Harris, Simon Frazer,
Burt Voorhees, John Myers, Roland Somogyi, Lee Altenberg, Andy Adamatzky, Mark Tilden,
Rodney Douglas, Terry Bossomaier, Ed Coxon, Oskar Itzinger, Pietro di Fenizio, Pau Fernandez,
Ricard Sole, Paolo Patelli, José Manuel Gómez Soto, Dave Burraston, Genaro Martnez, and many
other friends and colleagues (to whom I apologize for not listing). Also DDLab users who have
provided feedback, and researchers and staff at the Santa Fe Institute in the 1990s.

http://www.ddlab.org/gdca.html

Contents

Chapters vi

Preface vii

List of Figures xxix

List of Tables xxxvii

0 Updates 2
0.1 First edition updates 2011 . 2
0.2 Second edition updates 2016 . 3
0.3 Online updates 2018 . 6
0.4 Online updates 2021 . 8
0.5 Online updates 2023 . 10
0.6 Online updates 2024 . 12

1 Overview 14
1.1 Introduction . 14
1.2 Source code and platforms . 15
1.3 Discrete dynamical networks . 16
1.4 Space-time patterns and attractor basins . 18

1.4.1 Totalistic rules - forwards-only . 20
1.4.2 The iso-rule paradigm . 20

1.5 Categorization . 20
1.6 Size limits: network n and neighborhood k . 20

1.6.1 Network size limits . 20
1.6.2 Neighborhood size limits . 21

1.7 Parameters and options . 21
1.8 Measures and data . 21
1.9 Contents summary . 22

2 Summary of DDLab functions 23
2.1 DDLab’s prompts . 23
2.2 Initial choices . 23

2.2.1 Totalistic rules, forwards-only, TFO-mode . 23
2.2.2 Basin field or initial state . 23
2.2.3 Exceeding normal limits of n and k . 24

2.3 Setting the value-range . 24
2.4 Setting the network size . 24
2.5 The neighborhood k or k-mix . 24

x

CONTENTS xi

2.6 Wiring . 25
2.7 Boundary conditions . 26
2.8 Rules . 26
2.9 Initial network state, seed . 27
2.10 Networks of sub-networks . 28
2.11 Presentation options . 28

2.11.1 Space-time patterns . 28
2.11.2 Attractor basins . 29
2.11.3 Interrupting a run . 30

2.12 Graphics . 30
2.13 Filing and Printing . 31

2.13.1 Filing network parameters . 31
2.13.2 Filing data . 31

2.14 Vector PostScript images . 32
2.15 Bitmap images . 32
2.16 Printing the screen image . 32
2.17 Mutations . 32

2.17.1 Running Forward . 32
2.17.2 Running Backward . 33

2.18 Quantitative, statistical and analytical measures . 33
2.18.1 Behavior parameters . 33
2.18.2 Network connectivity . 33
2.18.3 Measures on local dynamics . 34
2.18.4 Measures on global dynamics . 35

2.19 Reverse algorithms . 36
2.19.1 1d CA wiring reverse algorithm . 37
2.19.2 Nonlocal wiring algorithm . 38
2.19.3 Exhaustive reverse algorithm . 38

2.20 Random map . 38
2.21 Asynchronous and Sequential updating . 38

2.21.1 Neutral order components . 39
2.22 Sculpting attractor basins . 39

3 Accessing and running DDLab 40
3.1 The DDLab website . 40
3.2 DDLab at SourceForge . 40
3.3 Unzipping and running — Linux-like versions . 40

3.3.1 Unix library files . 41
3.4 Unzipping and running - DOS . 41
3.5 The Quick Start Examples . 42
3.6 Extra data files . 42

3.6.1 Glider rule collections . 42
3.6.2 Selected 2d complex rules, v=3 . 43
3.6.3 Selected seeds . 43
3.6.4 Sorted rule samples . 44
3.6.5 Byl’s self reproducing loop . 44

3.7 Copyright, License and Registration . 45
3.8 Source code, and compiling . 45
3.9 Previous versions of DDLab . 45

4 Quick Start Examples 46

xii CONTENTS

4.1 The DDLab screen . 46
4.1.1 User Input . 46
4.1.2 Backtrack . 47
4.1.3 Quitting DDLab . 47
4.1.4 Skipping Forward . 47
4.1.5 The graphics setup . 47

4.2 Basin of attraction fields . 47
4.2.1 Changing network/rule parameters . 48
4.2.2 Changing basin presentation parameters . 48
4.2.3 Interactive basin of attraction field — ibaf-graph 49

4.3 Backwards space-time patterns, and state-space matrix . 51
4.4 Basin of attraction fields for a range of network sizes . 52
4.5 A single basin of attraction . 53
4.6 A subtree . 53
4.7 Space-time patterns — SEED-mode or TFO-mode . 55
4.8 1d space-time patterns . 55

4.8.1 1d ring of cells, and scrolling the ring . 57
4.8.2 Scrolling the ring . 57
4.8.3 Multi-value 1d space-time patterns in TFO-mode 58
4.8.4 Noisy space-time patterns . 59

4.9 2d Space-time patterns . 60
4.9.1 2d space-time patterns — game-of-Life . 61
4.9.2 2d Space-time patterns — binary totalistic rules 63
4.9.3 Multi-value 2d space-time patterns in TFO-mode 64

4.10 3d Space-time patterns . 65
4.10.1 3d Space-time patterns — examples . 65

4.11 “Screen-saver” demo . 66
4.12 RBN and DDN . 67

5 Starting DDLab 70
5.1 Running in Linux-like operating systems . 70

5.1.1 Linux within Windows — Cygwin . 71
5.1.2 Linux within Windows — VMware Player . 72

5.2 DOS within Windows . 72
5.3 Command line arguments . 72
5.4 The UNREGISTERED banner . 73
5.5 Title bar . 73
5.6 Saving, Loading and Printing the DDLab screen . 74

5.6.1 Saving and Loading the screen in DDLab’s own format 74
5.6.2 Saving and Printing the screen in Linux-like systems 74
5.6.3 Printing the screen in DOS . 76

5.7 DDLab version and graphics info . 76
5.8 The mouse pointer in DOS . 77
5.9 Memory (DOS only) . 77

5.9.1 Virtual Memory . 77
5.10 DDLab prompts, and backtrack . 78

5.10.1 Prompts: main sequence and pop-up windows . 78
5.11 Exit DDLab . 78

6 The first prompt in DDLab 79
6.1 TFO-mode, SEED-mode, FIELD-mode . 79

CONTENTS xiii

6.2 The first prompt . 80
6.2.1 TFO-mode: totalistic forwards-only . 80
6.2.2 FIELD, or a run requiring a SEED . 80
6.2.3 Notice of the current mode . 80
6.2.4 The exLimits option . 81

6.3 Graphics setup . 81
6.3.1 The DDLab screen resolution, Linux-like systems 82
6.3.2 The DDLab screen resolution in DOS . 82
6.3.3 White or black background . 83
6.3.4 The color palette . 83

6.4 Changing the font size and line spacing . 83
6.4.1 Font size and line spacing, Linux-like systems . 83
6.4.2 Font size, DOS . 83
6.4.3 Line spacing, DOS . 83

6.5 Changing the flashing cursor speed . 84
6.6 Random number seed . 84

7 Value-range v, and n,k limits 85
7.1 The value-range prompt . 85

7.1.1 extending kLim with exLimits . 86
7.2 Limits on neighborhood size, kLim . 86

7.2.1 TFO-mode with high v, k . 86
7.3 Limits on network size for FIELD-mode, nLim . 88
7.4 exLimits risks and insufficient memory . 88
7.5 Limits on network size — exhaustive algorithm, nexhL . 88

8 1d network size n, or range-n 89
8.1 Setting range of sizes, 1d . 89
8.2 Setting the size of one network, 1d . 90
8.3 Network size limits . 92
8.4 Computational and speed limitations for attractor basins 92

8.4.1 Times for basin of attraction fields . 93
8.4.2 Examples for 1d CA . 95
8.4.3 Examples for RBN and DDN . 96

9 Neighborhood, k, or mixed-k 97
9.1 Selecting k, or a k-mix, for 1d networks . 97

9.1.1 kLim and minimum k . 98
9.2 Effective k=0 . 98
9.3 Specifying the k-mix . 98
9.4 Loading a k-mix file . 99
9.5 Setting the k-mix by hand . 99
9.6 Setting a normal distribution . 99
9.7 Specify each k, or power-law distribution . 100

9.7.1 Specify the percentage of different k . 100
9.7.2 Setting a power-law distribution of k . 100
9.7.3 Showing the distribution . 101

9.8 Setting the k-mix at random . 101
9.9 Setting a k-mix with uniform k . 101
9.10 Increasing kmax . 102
9.11 Reviewing the k-mix . 102

xiv CONTENTS

9.11.1 Reviewing the k-mix in large networks . 103
9.11.2 Jumping to a new cell index . 103
9.11.3 Saving the k-mix file . 103

9.12 Reviewing the k-mix within “network architecture” . 103

10 The local neighborhood, and network geometry 104
10.1 The CA neighborhood . 104

10.1.1 The pseudo-neighborhood, RBN and DDN . 104
10.1.2 1d neighborhood . 105
10.1.3 2d neighborhood . 105
10.1.4 3d neighborhood . 107

10.2 Network geometry . 108
10.2.1 1d network indexing . 109
10.2.2 2d network indexing . 109
10.2.3 3d network indexing . 110

11 Setting the wiring, quick settings 111
11.1 The first wiring prompt . 111
11.2 Local 1d wiring . 111
11.3 Special wiring . 111
11.4 Loading the wiring scheme . 112
11.5 Random 1d wiring . 112
11.6 2d or 3d wiring . 112

11.6.1 Setting 2d and 3d network size — SEED/TFO-mode 112
11.6.2 Setting 2d and 3d network size — FIELD-mode 113

11.7 Set k, or k-mix . 114
11.8 Reviewing wiring, after quick settings . 114

12 Setting special wiring 115
12.1 Setting up the network geometry . 115
12.2 Hypercube wiring . 116

12.2.1 degrading the hypercube . 116
12.3 1d, 2d and 3d special wiring . 117

12.3.1 Random 2d and 3d . 117
12.4 Special wiring, local . 118

12.4.1 Local 1d treated as random . 118
12.4.2 Local 2d and 3d . 118

12.5 Special wiring, random . 118
12.5.1 Applying wiring biases to parts of the network 119
12.5.2 Confining random wiring to a set zone . 119
12.5.3 Setting local wiring as random . 119
12.5.4 Release wires from zone . 120
12.5.5 Suppress periodic boundary conditions . 120
12.5.6 Self-wiring . 120
12.5.7 Distinct wiring . 121
12.5.8 Suppress links to 3d layers . 121
12.5.9 Force a direct link to a 3d layer . 121
12.5.10 Force random links to specific 3d layers . 121
12.5.11 Same random wiring everywhere . 122

12.6 Wiring by hand . 122
12.7 Reviewing wiring . 123

CONTENTS xv

13 Rule types 124
13.1 Selecting the rule type . 124

13.1.1 Select full rule-tables, rcode . 124
13.1.2 Select kcode or tcode in TFO-mode . 125
13.1.3 options for density-bias, Post functions, neighborhood matrix 125

13.2 Rule types and combinations . 125
13.2.1 Rule-table size implications . 126

13.3 Binary full rule-table — rcode . 127
13.4 Binary totalistic rules . 128
13.5 Multi-value full rule-table — rcode . 129

13.5.1 Transforming rcode to the iso-rule . 130
13.6 Multi-value totalistic rules, tcode and kcode . 131

13.6.1 k-totalistic rules - kcode . 131
13.6.2 kcode v=3 matrix . 132
13.6.3 t-totalistic rules - tcode . 132

13.7 Outer-totalistic rules . 133
13.8 Reaction-Diffusion dynamics . 134

13.8.1 Reaction-Diffusion from outer-kcode . 135
13.8.2 Reaction-Diffusion from a full rule-table — rcode 135
13.8.3 Selecting the threshold interval . 135

14 Rulemix options 136
14.1 Single rule or rulemix, and other options . 136

14.1.1 Summary of rulemix and other options . 137
14.1.2 Density-bias (λ-parameter) . 137

14.2 Outer-totalistic kcode or tcode . 138
14.2.1 Setting reaction-diffusion by outer-kcode . 138
14.2.2 The game-of-Life and other Life-like rules by outer-kcode 138

14.3 Setting the neighborhood, k=0 . 140
14.4 Methods for setting the rulemix or rule-subset . 140

14.4.1 Setting a rulemix directly . 141
14.4.2 Setting a rulemix indirectly - specify a rule-subset 141
14.4.3 A rulemix with just one rule . 142

14.5 Rulemix - random . 142
14.6 Rulemix by hand . 143

14.6.1 By hand reminder . 144
14.6.2 By hand single rule prompt . 144
14.6.3 By hand options . 144
14.6.4 Change the selection method or rule index . 145
14.6.5 Complete the rulemix automatically . 145
14.6.6 Copy rules automatically for a k-mix . 146
14.6.7 Mixed k where all k’s (and rules) are the same 146

14.7 Rulemix - majority . 146
14.8 Rulemix - majority with shifted uniform outputs . 146
14.9 Rulemix for large networks, or large k . 147
14.10 The all 0s output . 147
14.11 Amend/save the neighborhood matrix graphic . 148
14.12 List Post functions . 149

14.12.1 Initial Post-function prompt . 149
14.12.2 Restrict Post-functions . 150
14.12.3 Set Post-function sample size . 150

xvi CONTENTS

14.12.4 Final Post-function prompt . 150

15 Setting Canalyzation in a random rcode-mix 151
15.1 Selecting Canalyzing . 151

15.1.1 Selecting canalyzing from the rcode-mix . 151
15.1.2 Selecting canalyzing from wiring graphic — transform rule 152
15.1.3 Selecting canalyzing from the Derrida plot . 152

15.2 The first canalyzing prompt . 152
15.3 Canalyzing percentage or number . 152
15.4 Canalyzing - homogeneous-k . 153
15.5 Canalyzing - mixed-k . 154

15.5.1 Canalyzing for the whole network - mixed-k . 155
15.5.2 Canalyzing for a particular k in a mixed-k network 156

15.6 Canalyzing for large networks, or large k . 157

16 Setting a singe rule 158
16.1 The first single rule prompt . 158

16.1.1 Single rule prompt examples based on rcode . 158
16.1.2 TFO-mode single rule prompt examples . 159

16.2 Methods for setting a rule . 159
16.3 Setting the rule at random . 160

16.3.1 Random rule density-bias (λ parameter) . 161
16.3.2 Rule value-bias . 162
16.3.3 Random rule parameters . 163

16.4 Setting the rule as bits or values . 164
16.4.1 Rules: bits/values reminder window . 164

16.4.1.1 rcode/kcode/tcode bits/values reminder 164
16.4.1.2 iso-rule bits/values reminder . 164
16.4.1.3 redefine kcode or tcode as rcode and iso-rule 165
16.4.1.4 rule bits/values reminder options . 166

16.4.2 Rule: bits/values current settings inset . 167
16.4.3 Rules: setting bits/values with the keyboard and mouse 167
16.4.4 Rules: save as 1d seed or PostScript . 168
16.4.5 Rules: PostScript prompt . 169

16.5 Setting the rule in hex . 170
16.6 Setting the rule in decimal . 171
16.7 Setting a majority rule . 171
16.8 Majority with shifted uniform outputs . 173
16.9 Setting Altenberg rules . 174
16.10 Isotropic rules — the iso-rule paradigm . 174

16.10.1 iso-rule n-templates . 177
16.10.2 iso-rule prototypes and order conventions . 177
16.10.3 iso-rule table sizes . 178
16.10.4 setting an iso-rule . 178
16.10.5 options from the iso-rule bit/value graphic . 180
16.10.6 iso-group graphics . 180

16.10.6.1 iso-group graphics — further options 183
16.10.7 The game-of-Life and other Life-like rules — rcode 183

16.10.7.1 Setting Life-like rules — rcode . 184
16.10.8 the IFH mutation/filter game . 185
16.10.9 Hensel notation for Golly . 187

CONTENTS xvii

16.10.9.1 Saving/Loading rcode in the Hensel notation 189
16.11 Setting a chain-rule . 190
16.12 Setting reaction-diffusion — rcode . 192
16.13 Repeating the last rule . 192
16.14 Load/Save a single rule . 193
16.15 Automatic saving of last rule . 193
16.16 Single rule file encoding . 193
16.17 Create a similar kcode with increased k . 194
16.18 Show the rule in the terminal . 195

16.18.1 Immediate rule data . 195
16.18.2 Immediate rule data for a rulemix by hand . 195
16.18.3 Rule data in more detail — vertical layout . 196
16.18.4 Additional rule data options for kcode . 196
16.18.5 Swapping kcode values . 197

16.19 The rule window . 197
16.19.1 Decoding the rule window . 198

16.20 Complementary values . 199
16.21 Transforming the single rule . 199
16.22 Saving/Loading a rule as an ASCII string . 200

16.22.1 ASCII rule encoding . 200

17 Reviewing network architecture 202
17.1 The network architecture prompt . 202
17.2 The wiring matrix . 204

17.2.1 Viewing the wiring matrix and creating vector PostScript 205
17.2.2 Amending the matrix . 205

17.3 The wiring graphic . 206
17.4 The wiring graphic reminder . 207

17.4.1 Wiring graphic options summary . 208
17.5 Wiring graphic, mouse pointer/click . 210
17.6 Wiring graphic, 1d . 211

17.6.1 Data — 1d wiring graphic . 212
17.6.2 Moving or jumping between cells, 1d . 213
17.6.3 Defining a block, 1d . 213
17.6.4 Toggling the block, 1d . 215
17.6.5 Include the pseudo-neighborhood, or direct wiring only, 1d 215
17.6.6 Recursive inputs to a cell, 1d . 215
17.6.7 Recursive outputs from a cell, 1d . 215
17.6.8 Untangling the wiring . 218
17.6.9 Deleting a cell . 218

17.7 Wiring graphic, 2d . 219
17.7.1 Data — 2d wiring graphic . 219
17.7.2 Moving or jumping between cells, 2d . 220
17.7.3 Alternative wiring presentation, 2d . 220
17.7.4 Include the pseudo-neighborhood, or direct wiring only, 2d 220
17.7.5 Defining a block, 2d . 221
17.7.6 Toggling the block, 2d . 222
17.7.7 Expand/Contract the scale, 2d . 222
17.7.8 Shifting the 2d graphic up and down . 222

17.8 Wiring graphic, 3d . 223
17.8.1 Data — 3d wiring graphic . 223

xviii CONTENTS

17.8.2 Moving or jumping between cells, 3d . 224
17.8.3 Alternative wiring presentation, 3d . 225
17.8.4 Include the pseudo-neighborhood, or direct wiring only, 3d 225
17.8.5 Defining a block, 3d . 225
17.8.6 Toggling the block, 3d . 226
17.8.7 Toggle 3d background grid . 226
17.8.8 Expand/Contract the scale, 3d . 227
17.8.9 Shifting the 3d graphic up and down . 227

17.9 Further options for the 1d, 2d and 3d wiring graphics . 228
17.9.1 Decoding wiring graphic data — 1d, 2d and 3d 228
17.9.2 Computing the (weighted) average λ and Z parameters 229
17.9.3 Options for learning pre-images . 229
17.9.4 Hand rewiring . 229
17.9.5 Random rewiring . 230
17.9.6 Biased random rewiring . 230
17.9.7 Local 1d, 2d or 3d wiring . 231
17.9.8 Changing the neighborhood size, k . 231
17.9.9 Kill a cell . 231
17.9.10 Revising and copying the rule . 232
17.9.11 Transforming the rule . 232
17.9.12 Filing, from the wiring graphic . 232
17.9.13 Link-histogram of the network’s k and output distribution 233
17.9.14 Creating a vector PostScript file of the wiring graphic 234

18 Transforming rules 235
18.1 Options for transforming rules . 236

18.1.1 Transform options, single rule . 236
18.1.2 Transform options, mixed-k . 236
18.1.3 Transform options, mixed rule, homogeneous-k 236
18.1.4 Transform all cells in a mixed rule network . 237

18.2 Saving or printing the transformed rule . 237
18.3 Inverting the rcode . 237
18.4 Solidifying the rule . 238
18.5 Equivalence classes and rule clusters . 238

18.5.1 Complementary transformation . 239
18.5.2 Equivalent rcode by the Negative transformation 240
18.5.3 Equivalent rcode by the Reflection transformation 240

18.6 Setting canalyzing inputs, single rcode . 240
18.6.1 Canalyzing inputs at random, single rcode . 240
18.6.2 Canalyzing inputs explicitly, single rcode . 241

18.7 Neutral transformations of the neighborhood k . 241
18.7.1 Equivalent rules with greater k . 241
18.7.2 Reducing kmax to the maximum k in the network 241
18.7.3 Effective k . 242
18.7.4 Reverse engineering - loading an exhaustive map 242

19 File/print network architecture 243
19.1 Network filing options . 243
19.2 Wiring/rulemix filenames . 244
19.3 Wiring/rulemix encoding . 244

19.3.1 Mixed-k encoding . 245

CONTENTS xix

19.4 Loading networks and sub-networks . 246
19.4.1 loading networks — compatibility . 246

19.4.1.1 Compatibility with v . 246
19.4.1.2 Compatibility with k . 247
19.4.1.3 Compatibility with n . 247
19.4.1.4 Compatibility with edge sizes and dimensions 247

19.4.2 Loading a complicated network into a CA and vice versa 248
19.4.3 Loading sub-networks in a set position . 249
19.4.4 Loading k-mix networks . 250

19.5 Saving just the k-mix . 251
19.6 Printing network data to the terminal or file . 251

20 Interactive Graphs: network, ibaf, jump 254
20.1 Interactive graphs . 256
20.2 Common themes between initial and drag graphs . 257

20.2.1 Common presentation options . 257
20.3 Initial-graph overview . 259
20.4 Drag-graph overview . 260

20.4.1 drag graph: choices . 262
20.4.2 drag graph: linked fragment in/out/either . 262
20.4.3 drag graph: cut or add links . 264
20.4.4 drag graph: single node . 264
20.4.5 drag graph: block . 264
20.4.6 drag graph: label . 265
20.4.7 drag graph: equalise node display . 265
20.4.8 drag graph: gap nodes . 265

20.5 The network-graph . 266
20.5.1 Selecting the network-graph — general case . 266
20.5.2 Selecting the network-graph — pausing STP . 268
20.5.3 The network-graph initial reminder . 268
20.5.4 The network-graph drag reminder . 269

20.6 The ibaf-graph . 269
20.6.1 Selecting the ibaf-graph . 269
20.6.2 The ibaf-graph initial reminder . 271
20.6.3 The ibaf-graph drag reminder . 271

20.7 The jump-graph . 272
20.7.1 Selecting the f-jump-graph . 272
20.7.2 Selecting the h-jump-graph . 273
20.7.3 The jump-graph initial reminder . 275
20.7.4 The jump-graph drag reminder . 275

20.8 The jump/network drag reminder . 276
20.8.1 The jump/network drag reminder: no links . 277

20.9 Initial-graph options . 277
20.10 Drag-graph options . 280
20.11 Defining a block . 284
20.12 Labels at nodes . 285
20.13 Probabilistic “ant” . 287

20.13.1 Active ant options . 287
20.13.2 Show ant-hits . 288

20.14 Redraw basins at jump-graph nodes . 289
20.14.1 Saving jump-graph basins to reload in ibaf-graph 290

xx CONTENTS

20.14.2 PostScript of jump-graph basins . 291
20.15 PostScript of interactive-graphs . 292
20.16 Graph layout file . 293
20.17 Revise settings . 293
20.18 Unreachable nodes . 293
20.19 The adjacency-matrix . 295

20.19.1 adjacency-matrix — network-graph . 295
20.19.2 adjacency-matrix — jump-graph . 296
20.19.3 adjacency-matrix — ibaf-graph . 296
20.19.4 adjacency-matrix options . 298

20.20 Space-time patterns within the network-graph . 299
20.21 network-graph from wring graphic — toggle . 299

21 The Seed or initial state 301
21.1 The seed prompt . 301
21.2 Methods for setting a seed . 303
21.3 Setting the seed at random . 304

21.3.1 Seed at random — further options . 305
21.3.2 Non-zero seed density-bias . 306
21.3.3 Seed or block value-bias . 307

21.4 Setting the seed as bits or values . 308
21.4.1 2d patch options . 309
21.4.2 Seed: bits/values reminder window . 309
21.4.3 Seed: bits/values options summary . 310
21.4.4 Seed: bits/values current settings inset . 313
21.4.5 Seed: setting bits/values with the keyboard and mouse 313
21.4.6 setting bits/values: 1d segments . 314
21.4.7 setting bits/values: 1d shown as 2d . 314
21.4.8 Setting bits/values: filing and PostScript . 314
21.4.9 Setting bits/values: saving a patch . 316
21.4.10 Setting bits/values: PostScript prompt . 317
21.4.11 Setting bits/values: PostScript 3d image . 318

21.5 Setting the seed in hex . 319
21.6 Setting the seed in decimal . 320
21.7 Loading a seed, and loading constraints . 321

21.7.1 loading a seed — all parameters equal . 321
21.7.2 loading a seed — unequal value-ranges . 321
21.7.3 loading a seed that fits within the base . 321
21.7.4 loading a seed that does not fit within the base, 2d and 3d 322
21.7.5 loading a seed that does not fit within the base, 1d 323

21.8 Saving a seed . 324
21.9 Seed file encoding . 324
21.10 Saving/Loading a seed as an ASCII string . 325

21.10.1 ASCII seed encoding . 326
21.11 Saving/Loading a seed in the Golly file format . 326

21.11.1 The Golly file prompt . 327

22 The Derrida plot 328
22.1 Selecting the Derrida plot . 329
22.2 Derrida plot options . 329

22.2.1 Derrida plot parameters . 330

CONTENTS xxi

22.3 Data within the Derrida plot . 331
22.3.1 Network data . 331
22.3.2 Derrida data . 331

22.4 Interrupting the Derrida plot . 332
22.5 Completing the Derrida plot . 332

22.5.1 Completing the Derrida plot parameters . 332
22.5.2 Data at the end of each plot . 333

22.6 The Derrida coefficient . 333
22.7 Automatic plots of CA rule clusters . 334

23 Graphic conventions for attractor basins 338
23.1 Basins of Attraction — the idea . 338
23.2 Network states, nodes . 339
23.3 Attractor cycles . 341
23.4 Transient trees . 341

23.4.1 Transient tree colors . 341
23.4.2 Transient trees for uniform states . 342
23.4.3 Subtree only . 343

24 Output parameters for attractor basins 344
24.1 The first output parameter prompt for attractor basins . 344

24.1.1 Output parameters for attractor basins — options summary 345
24.2 PostScript of attractor basins . 346
24.3 Select the ibaf-graph or jump-graph . 346

24.3.1 Jump-graph basins applied to the ibaf-graph . 347
24.4 Miscellaneous (hard to categorize) options . 348
24.5 State-space matrix . 348

24.5.1 State-space matrix — options summary . 349
24.5.2 Toggle the matrix on-the-fly . 351

24.6 In-degree frequency histogram . 351
24.6.1 In-degree frequency cut-off . 351
24.6.2 Drawing the in-degree histogram . 352
24.6.3 In-degree data and prompts . 354
24.6.4 in-degree window — data decode . 354
24.6.5 in-degree window — options summary . 354
24.6.6 In-degree log plot . 355
24.6.7 Rescaling the x/y-axis . 355

24.7 Density classification problem — attractor basins . 356
24.8 Screen-saver demo . 357
24.9 G-density, Z and λ . 357

24.9.1 G-density, Z and λ — options summary . 359
24.9.2 G-density plotted against network size . 359
24.9.3 G-density against Z and/or λratio . 360

24.9.3.1 G-density for tcode, or rcode k ≤ 3 361
24.9.3.2 G-density for k > 3 rcode . 361

24.9.4 Z - λratio plots . 361
24.9.4.1 Z - λratio or Zleft - Zright . 362
24.9.4.2 Z - λratio or Zleft - Zright for k ≥ 4 rcode 362
24.9.4.3 Z - λratio or Zleft - Zright for tcode 363

24.9.5 Proportions of canalyzing inputs and λratio-P . 364
24.10 “Backwards” space-time patterns . 365

xxii CONTENTS

24.10.1 Scroll space-time patterns . 365
24.11 Basin speed . 367
24.12 Basin on-the-fly options . 367

25 Layout of attractor basins 368
25.1 The layout preview . 368
25.2 The first layout prompt . 369

25.2.1 Reset all layout defaults . 370
25.2.2 Reset transient scale . 370
25.2.3 Mutants for single basins on one screen . 372
25.2.4 Basin scale, attractor radius . 372
25.2.5 Basin start position . 372
25.2.6 Show the field as successive basins . 372
25.2.7 Basin spacing and stagger rows . 372
25.2.8 Select minimum right border width . 373
25.2.9 Amend the spacing increase for a range of n . 373
25.2.10 Accept or revise layout parameters . 374

25.3 Amend the layout during pause . 374
25.3.1 Amend the orientation and fan angle during pause 374
25.3.2 Amend the spacing and right border during pause 374
25.3.3 Amend the next position during pause . 375
25.3.4 Amend the spacing increase during pause . 376

26 Display of attractor basins 377
26.1 Attractor basins with null boundary conditions . 377
26.2 Compression of equivalent CA dynamics for periodic boundaries 378

26.2.1 Deactivate compression . 380
26.2.2 Pre-images of uniform states . 380
26.2.3 Suppress copies of trees (and subtrees) . 382

26.3 Node display . 382
26.3.1 Node colors . 384
26.3.2 Highlight attractor, or subtree root, in 2d . 385
26.3.3 Change the 2d node i, j . 386
26.3.4 Alter scale, divisions and dots — node as bits/values 386
26.3.5 Alter decimal or hex node scale . 386

26.4 Change orientation, fan angle, edge color . 387
26.4.1 Orientation . 387
26.4.2 Pre-image fan angle . 387
26.4.3 Edge color . 388

26.5 Limiting backward steps . 389

27 Pausing attractor basins, and data 390
27.1 Pause stages hierarchy . 390

27.1.1 Pause after each field for a range of fields . 391
27.1.2 Pause after each basin, tree, or pre-image fan . 391
27.1.3 The pause prompt . 391

27.2 Attractor basin complete — data window . 391
27.2.1 Data on basin of attraction fields . 392
27.2.2 Errors in basin of attraction fields . 393
27.2.3 Data on basins . 393
27.2.4 Data on trees . 394

CONTENTS xxiii

27.2.5 Data on pre-image fans . 394
27.2.6 Data on subtrees . 395
27.2.7 Data on subtrees from a uniform state . 396

27.3 Print or save data . 398
27.4 Data format . 399

27.4.1 Network parameters data . 399
27.4.2 Basin field data . 399
27.4.3 Key to basin data order . 400
27.4.4 Tree data . 400
27.4.5 Key to tree data order . 401
27.4.6 Single basin data . 402
27.4.7 Subtree data . 402

27.5 List of states . 403
27.5.1 Just the list of states . 403
27.5.2 The list of states with basin data . 404
27.5.3 The list of states with basin and tree data . 405

28 Mutation of attractor basins 406
28.1 The first mutation prompt . 406

28.1.1 The first mutation prompt — options summary 406
28.2 Mutate wiring . 407
28.3 Special mutation options . 409

28.3.1 Bit-flip or value-flip in sequence . 411
28.4 Flip bits or values . 412
28.5 No pause before next mutant . 413

29 Final options for attractor basins 414
29.1 Subtree or single basin . 414
29.2 Subtree: Run forward before running backwards . 415
29.3 Single basin of attraction . 415

29.3.1 Single basin history limit . 415
29.3.2 Interrupting while looking for attractor . 415

29.4 Final attractor basin prompt . 416
29.4.1 Final attractor basin prompt — conditions and reminders 416
29.4.2 Final attractor basin prompt — options summary 416

29.5 Limit backward steps . 417
29.5.1 The bare attractor — limit backward steps to zero 418

29.6 Viewing the partial pre-image stack . 420
29.6.1 Partial pre-image stack, local wiring . 421
29.6.2 Partial pre-image stack, nonlocal wiring . 421
29.6.3 Reorder to optimize the nonlocal reverse algorithm 421

29.7 Exhaustive algorithm . 423
29.7.1 Generating the exhaustive list . 424
29.7.2 Compute and activate the ibaf-graph . 425
29.7.3 Saving the exhaustive pairs . 425
29.7.4 Printing the exhaustive pairs in the terminal . 425

29.8 Random map . 426
29.8.1 Loading the random map or exhaustive pairs . 428
29.8.2 Biasing the random map by Hamming distance 428
29.8.3 Random map data . 428

29.9 Sequential updating . 429

xxiv CONTENTS

29.9.1 Random order . 429
29.9.2 Set specific order . 430
29.9.3 List all orders . 431
29.9.4 List all orders — set order seed . 432
29.9.5 Drawing the attractor basin with sequential updating 432

29.10 Neutral order components . 432
29.10.1 Neutral subtree . 434
29.10.2 Neutral field . 435

30 Drawing attractor basins, and changes on-the-fly 437
30.1 The progress bar for basin of attraction fields . 437
30.2 Attractor basins, interrupting and changing . 438

30.2.1 Abandoning a tree and continuing with the next tree 439
30.2.2 Errors in attractor basins . 440
30.2.3 Abandon the attractor basin . 440

30.3 Attractor basin options, on-the-fly . 440
30.4 Attractor basin complete prompt . 441
30.5 Further attractor basin complete options . 442

30.5.1 Attractor basin — revising rule/s . 443
30.5.2 Attractor basin - revising the seed . 443

31 Output parameters for space-time patterns 445
31.1 The first output parameter prompt for space-time patterns 445

31.1.1 Output parameter prompt for space-time patterns — options summary 446
31.2 Miscellaneous options — space-time patterns . 447

31.2.1 Color cells by value or neighborhood . 447
31.2.2 State-space matrix and return map . 448

31.2.2.1 State-space matrix . 448
31.2.2.2 Return map by value . 449

31.2.3 Frozen generation size . 450
31.2.4 Cell scale . 450
31.2.5 Space-time patterns in other than the native dimension 450
31.2.6 Scrolling 1d space-time patterns . 450
31.2.7 Pause and step . 451
31.2.8 Speed of iteration . 451
31.2.9 Glider rule order . 451
31.2.10 Inverting the kcode in TFO-mode . 452

31.3 Periodic or Null boundary conditions . 452
31.4 Asynchronous and noisy updating . 452

31.4.1 Probabilistic updating . 453
31.4.2 sequential updating — space-time patterns . 454
31.4.3 partial order updating — space-time patterns . 455

31.5 Input-Frequency Histogram (IFH) . 456
31.5.1 input-entropy and pattern density . 458
31.5.2 entropy/density prompt . 458
31.5.3 Single cell input-entropy and pattern density . 460
31.5.4 Generation size - moving window of time-steps 460
31.5.5 On-the-fly changes to input-entropy and pattern density 460

31.6 Damage, the difference between two networks . 461
31.6.1 Duplicate the network and seed . 462
31.6.2 The Damage Histogram . 463

CONTENTS xxv

31.6.3 Drawing the damage histogram . 464
31.6.4 Pausing the damage histogram . 466

31.7 Attractor histogram . 468
31.7.1 Density classification problem — attractor histogram 469
31.7.2 Drawing the attractor histogram . 469

31.7.2.1 Histogram window information . 470
31.7.3 Pausing the attractor histogram . 470
31.7.4 Rescaling the attractor histogram . 472
31.7.5 Attractor histogram data . 473

31.7.5.1 Attractor histogram screen data . 473
31.7.5.2 Attractor histogram data decode . 473
31.7.5.3 Histogram data for density rules . 474

31.7.6 Print/Save attractor state data . 474
31.7.7 Sorting the attractor histogram . 474
31.7.8 Attractor histogram jump-graph . 476

31.8 Skeleton (fuzzy attractor) histogram . 477
31.8.1 Skeleton parameters prompt . 477
31.8.2 Drawing the Skeleton histogram . 479
31.8.3 Pausing the skeleton histogram . 479
31.8.4 Skeleton histogram data . 481

31.8.4.1 Skeleton histogram data decode . 481
31.8.5 Sorting the skeleton histogram . 481

32 Drawing space-time patterns, and changes on-the-fly 482
32.1 On-the-fly key index . 482
32.2 On-the-fly prompts — bottom title bar . 484
32.3 Summary of on-the-fly options for space-time patterns . 484
32.4 Updating (tog) . 489

32.4.1 U/Y..sync-seq/sync-porder . 489
32.4.2 {/}..prob:update1-0.95/output1-0.95 . 489

32.5 Change rule . 490
32.5.1 r,R/K/k..rnd/vrnd/tcode/kcode . 490
32.5.2 [/]..iso/togflip(on) . 490
32.5.3 O/A/M/C..Orig/Alt/Maj/Chain . 491
32.5.4 1/?/2..rnd bitflip/restore . 492
32.5.5 Z/z..force Z higher/lower . 492
32.5.6 b/B..flip all0s->0/allVs->V . 493
32.5.7 8..rulemix-single . 493

32.6 Rule samples . 493
32.6.1 g..load glider rule (rnd) . 493

32.6.1.1 creating a glider rule collection . 495
32.6.2 V..load, jmp, scan . 496
32.6.3 w/:/9..next/prev/rnd . 496
32.6.4 uE..create sample . 496

32.7 Change wiring . 497
32.7.1 m/W..move 1 wires . 497
32.7.2 7..local-nonlocal . 498
32.7.3 ?..re-rnd(off) . 498
32.7.4 |..periodic-null . 498

32.8 Change seed/size . 498
32.8.1 4/v/\//..rnd seed/block/vseed/vblock . 498

xxvi CONTENTS

32.8.2 l/L..rnd value/block . 498
32.8.3 o/∼..original/last . 499
32.8.4 5/6..singleton seed . 499
32.8.5 N/n..inc/decrease 1 cell . 499

32.9 Presentation . 500
32.9.1 x..tog slant(off) . 500
32.9.2 x..tog hex(off) . 500
32.9.3 i/!.tog divs(off) . 500
32.9.4 @..tog balls outline . 501
32.9.5 3/./∧..incolor/dot/bground . 502
32.9.6 d/-..tog shuffle colors/restore . 502
32.9.7 S..tog space-time display . 502
32.9.8 P..tog skip steps=1 (off) . 502
32.9.9 $..tog sound . 502
32.9.10 e/c..expand/contr scale . 502

32.10 1d 2d 3d . 503
32.10.1 T..tog 1d-2d-3d . 504
32.10.2 t..tog 2d-2d+time . 505
32.10.3 t..tog grid3d . 505
32.10.4 I..tog balls . 505
32.10.5 p..plane . 506
32.10.6 J..invisible . 506

32.11 Frozen/Filter . 506
32.11.1 h..nor-dy-f1-f2-bin . 506
32.11.2 H..f-gens (now 20)/bins(10) . 509
32.11.3 frozen generations . 510
32.11.4 frequency bins . 510
32.11.5 f/F/a/=/-..filter/undo/all/anti/app . 510

32.12 Analysis . 513
32.12.1 0/%..tog lookuphist:1-2/1-time . 514
32.12.2)/(..lookhist: amplify/restore . 515
32.12.3 /&..lookhist: shrink/inc&col . 516
32.12.4 s..tog entropy-density . 517
32.12.5 j..tog ent-in-both . 518
32.12.6 u..tog entropy/density plot . 518

32.12.6.1 entropy/density plot — linked history 520
32.12.6.2 entropy/density plot — output/save data 520

32.12.7 ;..density return map . 521
32.12.7.1 density return map — linked history 522
32.12.7.2 density return map — saving the data 522

32.12.8 G..a-gens (now 10) . 522
32.12.9 D..return map by value . 522
32.12.10 y..state-space . 523
32.12.11 =..tog diff (keep damage) . 523

32.13 Miscellaneous . 523
32.13.1 X..index display . 523
32.13.2 *..tog endpause (on) . 523
32.13.3 #..tog scrolling . 523

32.13.3.1 1d scrolling . 524
32.13.3.2 2d diagonal scrolling . 524
32.13.3.3 network-graph scrolling . 524

CONTENTS xxvii

32.13.3.4 2d+time scrolling . 524
32.13.4 +..tog time-step pause . 524
32.13.5 </>..slow/max speed . 525
32.13.6 q..pause . 525

32.14 Interrupting space-time patterns . 525
32.15 Rule details for space-time patterns . 525
32.16 Space-time pattern interrupt/pause prompt . 526

32.16.1 Revising rule/net . 527
32.16.2 Classified samples of rule-space — load/keep . 528
32.16.3 Directly scanning for PostScript . 528
32.16.4 Revising the seed and native PostScript . 528
32.16.5 Space-time patterns on the network-graph . 530
32.16.6 Fixed borders . 530
32.16.7 Finer control of filtering . 530
32.16.8 Space-time — skip, pause, step and speed . 531
32.16.9 Miscellaneous options . 532

32.17 Quit and further options . 532
32.18 Directly scanning STP for vector PostScript . 533
32.19 Network-graph layout of space-time patterns . 535

32.19.1 On-the-fly options within the network-graph . 537
32.19.2 Network-graph space-time pattern as vector PostScript 538

33 Classifying rule-space 539
33.1 Input entropy and variability (min-max or sdev) . 542
33.2 Creating a rule sample — initial prompts . 544

33.2.1 Biasing random rules . 544
33.3 Running a test . 545

33.3.1 Test data . 545
33.3.2 Test options . 547

33.4 Creating an automatic rule sample . 547
33.5 Loading, sorting and displaying a sample . 549
33.6 The rule sample scatter plot . 551

33.6.1 Probing the scatter plot with the mouse, and selecting rules 551
33.6.2 Defining a scatter plot patch with the mouse or keyboard 551
33.6.3 The scatter plot as a 2d pile-up frequency histogram 552

33.7 Scanning sample space-time patterns . 556
33.7.1 Scanning on-the-fly . 556
33.7.2 Scanning automatically in blocks of time-steps 556
33.7.3 Scanning 1d samples . 558
33.7.4 Scanning 2d or 3d samples . 559

33.8 Listing a sample . 559
33.8.1 Selecting a rule from the list . 559

33.9 Listing by plot coordinates or probing with the mouse . 560
33.10 Rule sample encoding . 562

34 Learning, forgetting, and highlighting 563
34.1 Learning/forgetting methods . 563

34.1.1 Highlighting states in attractor basins . 564
34.1.2 Basin layout for learning . 564

34.2 Selecting the learn/forget/highlight window . 566
34.2.1 Selecting the wiring graphic . 567

xxviii CONTENTS

34.2.2 Selecting the network architecture prompt . 567
34.3 Select the target state . 567
34.4 Select aspiring pre-image/s . 568

34.4.1 Odd or even parity . 569
34.4.2 Range of decimal equivalents . 569
34.4.3 Pre-images according to Hamming distance . 569
34.4.4 List of aspiring pre-images . 570
34.4.5 Review target state and aspiring pre-images . 570

34.5 Learn, forget, or highlight only . 570
34.5.1 1d CA — local wiring and highlighting . 571
34.5.2 Nonlocal wiring — learn, forget, or highlight only 571
34.5.3 Learning/forgetting by wire moves or bit/value-flips 572

34.6 Learning/forgetting by bit/value-flips . 572
34.7 Learning/forgetting by wire-moves . 573
34.8 Highlighting options . 576
34.9 Learning/forgetting/highlighting complete . 576

35 Filing 577
35.1 File naming constraints in DDlab . 577
35.2 File types, default filenames, and extensions . 577
35.3 The filing prompt . 580
35.4 Loading constraints and warnings . 581
35.5 Changing the directory . 581
35.6 List files . 582

36 Vector PostScript capture of DDLab output 583
36.1 Cropping and editing vector PostScript . 584

36.1.1 Cropping the PostScript image . 584
36.1.2 Amending the width of lines . 584

37 Glossary 586

References 593

Index 597

List of Figures

1 The basin of attraction field of a 3-value Cellular Automaton vii

1 A single basin of attraction . 6
2 ibaf-graph v3k3 CA n=10 . 12

1.1 The basin of attraction field of a Cellular Automaton . 14
1.2 Themes in DDLab . 15
1.3 The space-time pattern of a 1d complex CA with interacting gliders 18
1.4 The basin of attraction field of a complex CA . 19
1.5 A detail of a basin of attraction . 19

2.1 Cell value color scheme . 24
2.2 2d lattice with a hex/triangular lattice . 25
2.3 Drawing a 2d seed . 27
2.4 Space-time patterns of a 1d CA . 29
2.5 The basin of attraction field of a random Boolean network 30
2.6 A basin of attraction of a random Boolean network . 31
2.7 Order–chaos measures for RBN . 34
2.8 1d CA space-time patterns showing ordered, complex and chaotic dynamics 35
2.9 Subtrees of ordered-complex-chaotic CA . 37

3.1 2-way glider-gun, 2d space-time . 43
3.2 Byl’s self reproducing loop . 44

4.1 A basin of attraction field . 47
4.2 A basin of attraction field, multi-value . 49
4.3 A rearranged ibaf-graph . 49
4.4 Backwards space-time patterns . 51
4.5 The state-apace matrix . 51
4.6 Basin of attraction fields for a range of network size . 52
4.7 Examples of single basins . 54
4.8 A subtree . 54
4.9 A 1d space-time pattern . 56
4.10 A 1d CA shown as a scrolling ring of cells. 58
4.11 A 1d CA and filtered Altenberg rule . 59
4.12 Space-time patterns of the 2d game-of-Life . 60
4.13 Space-time snapshots of the 2d game-of-Life — frozen options 61
4.14 Space-time patterns of the 2d game-of-Life scrolling diagonally 62
4.15 2d space-time patterns, v2k7 CA on a hexagonal grid . 63
4.16 2d space-time patterns, v3k6 k-totalistic 2d CA . 64
4.17 Examples of 3d v2k7 CA . 65

xxix

xxx LIST OF FIGURES

4.18 The screen-saver . 66

5.1 Typical graphical user interface when starting DDLab . 71
5.2 The main sequence of prompts . 75

6.1 A very small DDLab screen in Linux . 82

7.1 Value color key, v = 2 to 8 . 85

8.1 Basin of attraction fields for a range of network size . 90
8.2 Single basins for a range of network size . 91
8.3 Subtrees for a range of network size . 91
8.4 A subtree for a 1d CA chain-rule . 93
8.5 Basin of attraction fields for a range of network sizes, k=5 94
8.6 CA Basin of attraction field, v2k3 rcode (dec)110, n=31 94
8.7 Basin of attraction fields for a range of network sizes, RBN, v2k3 95

9.1 A normal k distribution . 99
9.2 A power-law k distribution . 101
9.3 An example k-mix . 102
9.4 k-mix, 1d wiring graphic, time-steps . 103

10.1 1d neighborhood templates . 105
10.2 2d neighborhood templates . 106
10.3 3d neighborhood templates and indexing . 107
10.4 3d neighborhoods displayed in 2d . 108
10.5 1d network indexing . 109
10.6 2d network indexing . 109
10.7 3d network indexing . 110
10.8 3d network indexing, i, j, h=1 . 110

12.1 Hypercube and degraded hypercube . 116
12.2 Hypercubes for n ≥ 32 . 117
12.3 Confining 1d random wiring within a local zone . 119
12.4 Confining 2d k=9 random wiring within a local zone . 120
12.5 Confining 3d random wiring within a local zone . 120
12.6 Setting wiring by hand on the blank wiring matrix . 122

13.1 The binary neighborhood neighborhood matrix k=1 to 9 128
13.2 Multi-value neighborhood matrix examples . 130
13.3 majority rules . 130
13.4 iso-group examples . 131
13.5 Reaction-diffusion dynamics, 2d . 134
13.6 Reaction-diffusion dynamics, 3d . 134

14.1 Glider guns in v=8 Life . 139
14.2 Effective neighborhood k=0 . 141
14.3 2d CA perturbed by a chaotic block of rules . 143
14.4 Shifted majority kcode-mix with random wiring . 147
14.5 Multi-value neighborhood matrix, part only . 148

15.1 Canalyzing frequency/saturation - homogeneous-k . 153

LIST OF FIGURES xxxi

15.2 Canalyzing saturation - 2d, mixed-k . 154
15.3 Canalyzing - 2d, mixed-k, for just one k . 155
15.4 Canalyzing for large networks, large k . 156

16.1 v8k4 kcode according to the default rule value-bias . 162
16.2 Setting bits starting with all 0s . 164
16.3 Setting values — alternative presentations . 165
16.4 The game-of-Life rule . 165
16.5 Spiral rule: kcode, rcode, iso-rule . 165
16.6 Drawing bits or values on the rcode pattern . 168
16.7 Setting rcode in hex . 170
16.8 Setting iso-rule in hex . 170
16.9 Majority rcode v2k9 . 172
16.10 Majority kcode v8k6 . 172
16.11 Majority tcode v8k7 . 173
16.12 Flipped v=2 majority rcode with random wiring . 173
16.13 Altenberg kcode v8k7 . 174
16.14 2d glider-gun iso-rules . 175
16.15 and 1d CA . 175
16.16 Isotropic space-time patterns . 176
16.17 2d and 3d n-templates . 177
16.18 graphic iso-groups . 181
16.19 complete iso-rule neighborhoods . 182
16.20 The game-of-Life rule . 183
16.21 Fredkin’s replicator . 184
16.22 Glider-guns in v=3 Life . 185
16.23 Sayab-glider-gun iso-histogram . 186
16.24 Encryption with chain-rules . 190
16.25 Encryption with chain-rules, multi-value . 191
16.26 v4k7 reaction-diffusion CA . 192
16.27 Analogous kcode with increased k . 194
16.28 Rule window examples . 198
16.29 Equivalent kcode - two values swapped, v3k5 . 199

17.1 Wiring matrix examples . 204
17.2 The 1d wiring graphic, time-steps . 206
17.3 The 1d circle wiring graphic . 211
17.4 The 1d graphic, showing wiring to a block . 212
17.5 The 1d graphic, showing the wiring of the whole network 213
17.6 Include the pseudo-neighborhood or direct wiring, 1d . 214
17.7 Recursive inputs (direct and indirect) to a cell . 216
17.8 Recursive outputs (direct and indirect) from a cell . 217
17.9 Untangling the wiring . 218
17.10 The 2d wiring graphic, pseudo-neighborhood, square, hex, direct 219
17.11 Alternative ways of showing cell connections, 2d . 220
17.12 2d block, solid alternative . 221
17.13 2d block, alternative presentations . 222
17.14 2d wiring graphic of a large network . 223
17.15 3d wiring graphic . 224
17.16 Alternative ways of showing cell connections, 3d . 225
17.17 3d block, solid alternative . 226

xxxii LIST OF FIGURES

17.18 3d block, alternative presentations . 227
17.19 3d wiring graphic of a large network . 228
17.20 Hand rewiring a single cell . 230
17.21 Unbiased random wiring, 2d and 3d . 230
17.22 Histograms of a power-law distribution of network links 233

18.1 Transforming rcode . 237
18.2 Equivalence class — rule 193 . 239

19.1 Loading 3d network into 1d . 246
19.2 Loading a 3d CA into a 2d CA . 248
19.3 Loading a DDN into a CA . 248
19.4 Loading a 2d CA into a larger 2d CA . 249
19.5 Loading a small 3d DDN into a 3d DDN . 250
19.6 Space-time snapshot of a 2d CA inside another 2d CA with different k 251

20.1 Power-law network-graphs) . 255
20.2 The ibaf graph CA rcode 110 . 255
20.3 The jump-graph + basins . 256
20.4 Sample range of font sizes . 258
20.5 Node displays — ibaf-graph . 259
20.6 dragging with “snap” . 262
20.7 Dragging a 2d connecte fragment . 263
20.8 cutting links to the active node . 263
20.9 Dragging a 2d an 3d block . 264
20.10 Pruning the graph . 265
20.11 Simple network-graphs . 267
20.12 Unscrambling the network-graph of a scale-free RBN . 267
20.13 Defalt ibaf-graph . 271
20.14 Unsorted attractor histogram and h-jump-graph, small sample 274
20.15 Sorted attractor histogram and h-jump-graph, large sample 275
20.16 Dragging the jump-graph, further examples . 276
20.17 ibaf-graph: ranking a spiral layout . 278
20.18 Dragging network-graph nodes and fragments — 1d, 2d, and 3d 281
20.19 Example of arbitrary labels in ibaf . 286
20.20 Probabilistic ant-hits . 288
20.21 Inserting basins in the jump-graph . 290
20.22 Reload jump-graph basins to ibaf-graph . 291
20.23 Basins of attraction at the jump-graph nodes . 292
20.24 Disconnecting and isolating unreachable nodes . 294
20.25 The ibaf-matrix . 297
20.26 The ibaf-graph showing numbers at nodes, rcode30 . 297
20.27 A 2d CA shown as a scrolling ring of cells. 299
20.28 Toggling wiring graphic and network-graph. 300

21.1 Seed array indexing, 1d . 301
21.2 Seed array indexing, 2d . 302
21.3 Seed array indexing, 3d . 302
21.4 Setting a seed at random . 305
21.5 Setting the density-bias . 307
21.6 Playing with a 2d active patch . 309
21.7 Divisions between cells . 311

LIST OF FIGURES xxxiii

21.8 1d seed aspect ratio . 311
21.9 Drawing bits or values on a 2d seed . 313
21.10 Examples of PostScript seed output . 315
21.11 Symbols for PostScript seed output . 317
21.12 3d bit/value seed . 319
21.13 Loading a 2d seed into a 3d network . 319
21.14 Setting the seed in hex . 320
21.15 Loading 3d and 2d seeds that fit into a 3d base network 322
21.16 Loading seed, 3d to 2d, and 2d to smaller 2d . 323
21.17 Loading seed, 1d to 2d and 3d . 324

22.1 Derrida plots . 329
22.2 The Derrida coefficient . 334
22.3 Derrida plots of the elementary rules . 335
22.4 Rule cluster examples . 336
22.5 Derrida plots of v2k5 totalistic rules . 336

23.1 Basins of attraction — the idea . 339
23.2 Point attractors (period=1) . 340
23.3 The pre-image fan of a single pre-image of a point attractor 340
23.4 Attractors with period 2 . 340
23.5 Attractors with periods≥3 . 340
23.6 Subtrees from a root state . 342

24.1 Jump-graph basins setting ibaf-graph layout . 347
24.2 The state-space matrix, n=6 . 349
24.3 The state-space matrix, n=12,13 . 350
24.4 State-space matrix, further examples . 351
24.5 In-degree histogram of a basin of attraction field, n=18 352
24.6 Rescaling the in-degree histogram of a subtree . 353
24.7 in-degree histogram log-log . 355
24.8 Density classification in emergent computation . 356
24.9 A subtree showing exceptions to density classification . 356
24.10 Basin of attraction field of a density classification rule . 357
24.11 A view of rule-space . 358
24.12 The attractor basin window while drawing graphs . 360
24.13 Plotting G-density against a range of n . 360
24.14 G-density against both λratio and Z . 361
24.15 λratio - Z plot . 362
24.16 Zleft - Zright graph . 363
24.17 “Backwards” space-time patterns . 366

25.1 Layout preview, single basin . 369
25.2 Layout preview, basin field . 369
25.3 The layout preview . 370
25.4 Resetting transient parameters . 371
25.5 The basin of attracion field for a range of network size . 373
25.6 Amending the layout of a basin of attraction field on-the-fly 375

26.1 1d CA Basin of attraction field with null boundary conditions 378
26.2 1d RBN basin of attraction field with null boundary conditions 378
26.3 Compression of equivalent dynamics . 379

xxxiv LIST OF FIGURES

26.4 Compression deactivated . 379
26.5 CA uniform state attractors . 380
26.6 Suppressing equivalent subtrees . 381
26.7 Alternative node display . 382
26.8 Symmetric states only . 383
26.9 Just leaf-states or exclude leaf-states . 384
26.10 Bit pattern colors of a uniform state’s pre-images . 384
26.11 Highlighting all non-equivalent attractor states . 385
26.12 Highlighting all attractor states in a RBN . 385
26.13 Changing the orientation of attractor basins . 387
26.14 Decreasing the pre-image fan-angle of a subtree . 388
26.15 Increasing the pre-image fan-angle of a basin of attraction 388
26.16 Alternative edge start colors . 389

27.1 A basin of attraction field of a CA illustrating data . 392
27.2 A subtree for a CA, n=150 . 395
27.3 subtree=basin . 396
27.4 Prototype subtrees from a uniform state, CA, n = 14 . 397
27.5 A single CA basin rule 110 . 400
27.6 Detail of basin rule 110 . 402
27.7 Listing states of a basin of attraction field . 403

28.1 Mutation by one wire move . 408
28.2 Single basin mutation by one wire-move . 409
28.3 32 one-bit mutant basins of attraction . 410
28.4 Mutation of field by one bit-flip . 411
28.5 Single basin mutation by one value-flip . 412

29.1 Basin of attraction — limiting backward steps . 418
29.2 Game-of-Life glider-gun attractor . 418
29.3 X-rule glider-gun attractors, GGa and GGb . 419
29.4 Partial pre-image stack of a 1d local CA . 420
29.5 Partial pre-image stack of a 1d nonlocal CA . 422
29.6 The final partial pre-image histogram, not reordered . 423
29.7 CA, DDN/RBN, and random maps . 424
29.8 Random map graphs with different Hamming bias . 427
29.9 Basin of attraction field with sequential updating . 430
29.10 The rule window for sequential updating . 432
29.11 Neutral subtree . 433
29.12 The neutral field . 434

30.1 The basin of attraction field progress bar. 437
30.2 Drawing a basin of attraction field . 438

31.1 1d space-time pattern, colors by value and neighborhood 447
31.2 2d space-time pattern, colors by value and neighborhood 448
31.3 3d space-time pattern, colors by value and neighborhood 448
31.4 State space matrix . 449
31.5 Return map . 449
31.6 Probabilistic updating . 453
31.7 Sequential and partial order . 455
31.8 input-frequency histograms for Life, SapinR . 456

LIST OF FIGURES xxxv

31.9 input-frequency histograms for Variant, Precursor, Sayab 457
31.10 Pattern Density and Input-Entropy plots . 459
31.11 The difference in the dynamics between two 1d CA . 462
31.12 A duplicated 2d network . 463
31.13 A duplicated 2d seed . 463
31.14 2d “damage” . 464
31.15 2d automatic statistics on damage . 465
31.16 The damage histogram showing actual damage . 466
31.17 The damage histogram showing damage bins . 467
31.18 The attractor histogram for density classification . 468
31.19 The attractor frequency histogram . 471
31.20 The attractor histogram sorted by different measures . 472
31.21 Transient data . 475
31.22 The attractor histogram jump-graph . 476
31.23 The skeleton histogram . 478
31.24 Examples of frozen skeletons . 478
31.25 The skeleton frequency histogram . 480

32.1 On-the-fly key index for space-time patterns . 483
32.2 Setting a random k-rcode on-the-fly . 490
32.3 1d isotropic rules . 491
32.4 Mutate/restore on-the-fly by a random bit/value flip . 492
32.5 Info when changing Z on-the-fly . 493
32.6 Examples of v2k5 complex space-time patterns with interacting gliders 494
32.7 Space-time 2d snapshots of complex kcode . 494
32.8 Loading glider rules on-the-fly . 495
32.9 Info when loading a glider rule on-the-fly . 495
32.10 Randomising wiring by stages . 497
32.11 A positive and negative singleton seed . 499
32.12 Slanting 1d space-time patterns . 500
32.13 Hex or square 2d lattice . 500
32.14 Divisions between cells . 501
32.15 The cell outline in network-graph space-time patterns . 501
32.16 Skipping time-steps . 503
32.17 Time-step spacing in scrolling network-graph STP . 503
32.18 A 3d network shown in 2d . 504
32.19 2d+time, 2d diagonal scrolling — toggle “balls” . 505
32.20 3d cells shown as balls or parallelograms . 505
32.21 Gilders with time-trails . 506
32.22 Top-right 5-way space-time pattern info . 507
32.23 Alternative presentations, 2d space-time patterns . 508
32.24 2d CA frequency bins . 509
32.25 frequency bins set by hand . 510
32.26 Examples of filtering space-time patterns . 511
32.27 Filtered lookup-frequency histogram . 511
32.28 Filtering a complicated background domain . 512
32.29 Filtering showing discontinuities within a chaotic domain 512
32.30 filtering emergent spirals . 513
32.31 The input-frequency histogram in 3d . 514
32.32 adjusting bar length . 515
32.33 adjusting a multi-row IFH . 516

xxxvi LIST OF FIGURES

32.34 input-frequency histogram bar width . 517
32.35 entropy or density plot . 517
32.36 Entropy/density scatter plot . 518
32.37 Entropy/density plot, and the density return map . 519
32.38 Pulsing dynamics from a randomly wiring a complex rule 520
32.39 Wave-length . 521
32.40 Directly scanned 1d space-time patterns for vector PostScript 534
32.41 PostScript 1d space-time patterns, dots and divisions . 534
32.42 1d CA space-time patterns in network-graph layout . 536
32.43 2d CA space-time patterns within the network-graph . 537

33.1 A 2d pile-up histogram of an entropy-variability scatter plot 539
33.2 Input-entropy variability . 540
33.3 1d v8k5 tcode sample . 541
33.4 2d pile-up histogram - other presentations . 541
33.5 1d v8k3 kcode sample . 542
33.6 Life iso-rule entropy time-plot . 543
33.7 Running a test . 546
33.8 Creating an automatic sample . 548
33.9 Loading, sorting and displaying a sample . 549
33.10 The scatter plot color scheme . 551
33.11 v3k7 iso-rule scatter-plots . 552
33.12 rule sample scatter plot . 553
33.13 2d pile-up frequency histogram of the rule sample scatter plot 553
33.14 scatter plot grid and 2d pile-up histogram at a lower resolution 554
33.15 rule sample scatter plot, Z-parameter and λ-ratio . 554
33.16 On-the-fly info when scanning sample space-time patterns 556
33.17 2d v4k7 kcode sample . 557
33.18 Scanning a 2d CA in blocks of time-steps scrolling diagonally 558
33.19 Listing the rule sample . 560
33.20 Listing by plot coordinates or probing with the mouse . 561

34.1 The basin of attraction field of a RBN, before learning . 564
34.2 The basin of attraction field of a RBN after learning . 565
34.3 The RBN networks before and after learning . 565
34.4 Nodes other than target and pre-image suppressed . 566
34.5 Selecting parity . 569
34.6 Highlighting states in rule 110 . 574
34.7 Highlighting states in a v=4 CA . 575

35.1 Listing files . 582

List of Tables

7.1 kLim for different value-range v . 87
7.2 Basin of attraction field: nLim for different value-range v 87

8.1 Times for increasing k and n for v=2, basin of attraction fields, 1d CA. 95
8.2 Times for increasing v and n for k=3, basin of attraction fields, 1d CA. 95
8.3 Times for increasing k and n for v=2, basin of attraction fields, RBN. 96
8.4 Times for increasing v and n for k=3, basin of attraction fields, DDN. 96

9.1 Effective k=0 neutral rules . 98

13.1 The size of rule-tables k =1 to 13 . 127
13.2 The size of rule-tables . 129
13.3 kcode size: for v and safe kLim . 132
13.4 The size of kcode-tables . 132
13.5 kcode v=3 matrix . 132
13.6 tcode size: for v and kLim . 133

14.1 Post function list v2k3 . 149
14.2 Post function list v2k5 . 149
14.3 Post function list (multi-value) v3k5 . 150

16.1 The default rule value-bias . 162
16.2 Rules in decimal — rule-table size limitations . 171
16.3 iso-rule sizes . 178
16.4 details of a 2d isometric rule v2k5 . 179
16.5 The Hensel matrix . 187
16.6 Hensel’s full matrix . 188
16.7 Details for the Sayab rule . 188
16.8 Group details, Sayab rule . 189
16.9 Immediate rule data in the terminal . 195
16.10 Rule details in the terminal . 196
16.11 Horizontal and matrix layout options for kcode in the terminal 197
16.12 Swapped kcode — some terminal layouts . 197

20.1 The adjacency-matrix of the network-graph . 295
20.2 The jump-matrix . 296

21.1 2d and 3d seeds in the terminal . 303
21.2 The default seed value-bias . 307
21.3 Seeds in decimal — network size limitations . 320

xxxvii

LIST OF TABLES 1

24.1 Canalyzing, λratio and P data, k=3 . 364
24.2 Canalyzing, λratio and P data, k=4 . 364

26.1 Alternative presentations bit/value nodes . 386

29.1 Maximum network size for the exhaustive testing algorithm 424
29.2 Printing exhaustive pairs v2 . 425
29.3 Printing exhaustive pairs v4 . 425

31.1 List of attractors in the terminal . 477

Chapter 0

Updates

Updates were originally listed in the Preface but are now in this seperate Chapter 0, started
in the 2021 online edition. DDLab updates are also described and illustrated online in
http://www.ddlab.org and the link “New Features”, and sucessive DDLab versions in
http://www.ddlab.org/download_ddlab_versions_sussex.html.

0.1 First edition updates 2011

Listed below are the significant DDLab updates, since the 2001 online manual, also documented
in the 2011 paperback first edition of Exploring Discrete Dynamics [52].

0.1.1 multi-value

DDLab was generalized for multi-value logic, with up to 8 values (or cell-states, or colors), instead
of just Boolean logic (two values: 0,1). Of course, with just 2 values selected, DDLab behaved as
before. The multi-value version opened up new possibilities for dynamical behavior and modelling.

0.1.2 totalistic rules

DDLab could be constrained to run “forward-only” for various types of totalistic rules which depend
on just the totals of each value in a neighborhood, including outer-totalistic and reaction-diffusion
rules. This option reduced the relative sizes of rule-tables allowing larger neighborhoods, with an
upper limit of 25 instead of 13, at the cost of disabling basin of attraction functions. In 2d the
neighborhoods were predefined to make hexagonal as well square lattices. Many interesting cellular
automaton rules with “Life-like” and other complex dynamics were found in totalistic multi-value
rule-space, in 3d as well as 2d [47, 48].

0.1.3 vector graphics Postscript files

Options were provided to capture most of DDLab’s graphic output, including space-time patterns
and attractor basins, the network-graph and the attractor jump-graph, as vector PostScript files,
which is a preferred format for publication than the previously available bitmap images.

2

http://www.ddlab.org
http://www.ddlab.org/download_ddlab_versions_sussex.html

3

0.2 Second edition updates 2016

A number of significant DDLab updates released since the publication of the first paperback
edition of Exploring Discrete Dynamics in 2011 [53], are included and documented in the 2016
paperback Second Edition [53], as well as various other improvements and corrections. The
significant updates, listed in no particular order, are as follows:

0.2.1 greater system sizes

DDLab now allows greater sizes in a range of parameters (summarised in section 1.6) — value-
range, neighborhoods and rule-tables (chapter 7), and network size (sections 1.6.1, 8.3). These
greater sizes can be extended even further with a new initial “exLimits” option (section 2.2.3).
Greater sizes of networks are especially useful for 2d and 3d space-time patterns, but this presented
a challenge in displaying, manipulating and filing which have been resolved. Maximum sizes depend
on your CPU and DDLab version (32-bit or 64-bit), and avaliable RAM.

0.2.2 network “block” in 2d and 3d

As a consequence of larger network sizes, in 2d and 3d the new default when defining a network
block (its wiring and/or rules) is to show just the block edges, to speed up the graphics presentation
for large blocks, but this can be toggled to show the block in full as before (sections 17.7.5 and
17.8.5). When a block is active, setting random or special wiring applies either within the block
(as before), or (a new option) to the remainder of the network outside the block.

0.2.3 use of the mouse pointer in the wiring graphic

New functions in the wiring graphic (section 17.5) allow a mouse pointer/click to reposition the
active cell, and the last two clicks to define the default corners of a block. This makes it easier to
explore and amend network wiring. The pointer/click methods apply to any wiring graphic, 1d,
1d circle layout, 1d as 2d, 2d (square or hex), and 3d where the pointer moves on the 2d version
of the 3d network.

0.2.4 neighborhood size extended up to 27 in all dimensions

The maximum neighborhood size k is now extended up to 27 cells, and predefined for 1d, 2d
(square or hex) and 3d. New and modified 3d neighborhood templates all now fit within a 3×3×3
volume (figure 10.3).

0.2.5 2d hex/triangular neighborhoods

New 2d hex/triangular neighborhoods sizes k=3 and k=4 are introduced (figure 10.2) which permit
investigating the dynamics on these simpler lattices, with many instances of complexity, for example
figure 2.2.

4 CHAPTER 0. UPDATES

0.2.6 null boundary conditions

Nearly all DDLab functions and options can now be applied to systems with null boundary con-
ditions (NBC), whereas previously only periodic boundary conditions (PBC) were available. This
includes multi-value, CA in various dimensions, but also RBN and DDN (section 2.7). The excep-
tion is that for attractor basins NBC applies to 1d only.

NBC are of interest in pattern recognition, and applications where the system is grounded or
quenched, or bounded by an edge, skin or membrane. As for PBC, NBC are also interesting as
mathematical/dynamical systems in their own right.

0.2.7 saving/loading a seed as an ASCII string and in Golly format

As well as the standard binary DDLab format, a seed can now be saved/loaded as an ASCII string
(sections 21.10) which is useful for interchanging the seed between DDLab and alternative software.
A 2d binary seed can also be saved/loaded as an ASCII string following the “Golly” file format
(section 21.11), software used in the game-of-Life community.

0.2.8 saving the rule as a 1d seed file

The rule-table pattern can be saved as a 1d seed file (section 16.4.4), allowing a rule string to seed
a basin of attraction, which itself is able to classify rule-space [6, 7].

0.2.9 repetitive blocks of rules

When setting a rulemix from a limited subset of rules (section 14.4.2) as well as assigning rules
randomly from the subset, the subset itself can be assigned to form repetitive blocks of rules —
thus implement so called “hybrid CA” or HCA.

0.2.10 transient data

In the “attractor histogram” (section 31.7) which provides statistical attractor data by running
forward, a new option allows data to be recorded on the set of unique transients found so far,
to each attractor, without duplication (figure 31.21). This provides additional data required for
models of genetic regulatory networks.

0.2.11 dynamic trails for gliders

Mostly effective in 2D CA to highlight mobile configuration such as gliders, glider-collisions, and
glider-guns, a new feature allows these objects to leave green time-trails for a specified number of
time-steps (section 32.11.1, figure 32.21).

0.2.12 lattice and rule presentation

Improvements have been made to the graphic presentation of both states (seeds) and rules,
including the color of the division lines of the current lattice (figures 21.7, 32.14).

5

0.2.13 manipulating a predefined 2d patch

All preexisting options for manipulating and editing 2d states (seeds) can now be applied to just
a predefined patch set by the last 2 mouse clicks. This is useful to design, edit, manipulate and
duplicate configurations for 2d complex rules, such as the game-of-Life [10], the Spiral rule [48],
and the X-rule [14]. The options include: jump, copy, move, spin, flip, complement, and save the
pattern or patch as a DDLab seed or vector PostScript file (figure 21.6).

0.2.14 equivalent CA and the Derrida plot

New Derrida plot options include automatic plots of equivalent CA (figure 22.5), and lists of
equivalence classes and rule clusters [38] (section 22.7).

0.2.15 display of the bare attractor for very large networks

For single basins, just the bare attractor can be displayed by setting the number of backward steps
to zero (section 29.5.1) so that reverse algorithms do not come into play. This new function allows
the graphic image of the attractor for very large networks, including 2d, to be generated as in
figures 29.2 and 29.3.

0.2.16 reaction-diffusion dynamics in 3d as well as 2d

Reaction-diffusion dynamics (section 13.8) can be applied in 3d networks (figure 13.6) as well as
in 2d as before (figure 13.5).

0.2.17 density return map

A scatter plot of the density return map can be created, plotting the density of each value at
t−1 y-axis, against t0 x-axis (section 32.12.7) as in figure 32.37. This can be interesting when the
densities pulsate, follow periodic oscillations, which occurs for a network with random wiring and
a homogeneous v=3 complex glider rule[54, 55], for example rules from the complex kcode rule
collections in section 3.6.2.

While the density return map (section 32.12.7) is active, a new option, dnsty-d, in the top-right
interrupt window (section 32.16) allows saving the density return map data (section 32.12.7.2).

0.2.18 resetting transient parameters

The transient scale can be reset, independently from the basin scale and attractor radius
(section 25.2.4). When drawing transients, the gap between successive transient levels away from
the attractor or subtree root is made to decrease asymptotically according to default parameters
— applied for drawing attractor basins (state transition graphs) as illustrated throughout this
book. However, new options allow these transient parameters to be varied for greater control of
the presentation (section 25.2.2). This is especially useful to curtail the projection of very long
transients, characteristic of chaos as in figure 1.

6 CHAPTER 0. UPDATES

A pencil drawing of a basin of attraction from the
very early days before DDLab’s automatic computer

drawing was perfected.

The same basin drawn by the graphics algorithm,
with transients curtailed (=6, section 25.2.2 and fan

angle increased (=12, section 26.4.2).

Figure 1: A single basin of attraction, elementary rule 30 — a chaotic rule, n=12, attractor period=102,
maximum transient levels=126 — further examples in figure 25.4.

0.3 Online updates 2018

Some updates and bug fixes to DDLab have been made since the publication of the paperback
Second Edition of Exploring Diuscrete Dynamics. The updates are included in the 2018 online
pdf[53] and are summarised below,

0.3.1 initial DDLab screen/window

In Linux-like operating systems (including Mac) the initial DDLab screen/window has been
adapted to appear correctly, at a reasonable size, on very high resolution monitors. The method
now apples for any screen resolution (section 5.1).

0.3.2 local zone in 2d and 3d networks

For non-square 2d networks and non-cubic 3d networks, random wiring within a local zone is no
longer limited to the shortest axis (section 17.9.5).

0.3.3 on-the-fly options for the input-frequency histogram

New on-the-fly options have been added to amend the presentation of the input-frequency
histogram (section 32.12.3).

7

0.3.4 on-the-fly scale of basins of attractor basins

New on-the-fly options have been added to expand/contract the scale of basins of attraction
(section 30.3). This change was made for active control of the “savescreen demo” (section 4.11),
but it also applies whenever basins are being drawn, including basin of attraction fields, single
basins, and basins for a range of network sizes.

0.3.5 Derrida plot options improved

The Derrida plot options (chapter 22) have been slightly amended and improved, including showing
the Z-parameter in automatic plots.

0.3.6 isotropic rcode

New options are added for setting isotropic rcode and transforming an existing rcode to isotropic
rcode — rnd-iso-i in sections 16.1.1. Isotropic dynamics is arguably closer to natural physics.
These options remain current but are superceeded and improved by the new iso-rule paradigm
(sections 0.4.1, 16.10).

0.3.7 Golly format Hensel notation for 2d binary rules

As well as saving/loading a 2d binary seed in Golly format (section 21.11), an isotropic rule can
be saved/loaded in Golly’s “Hensel notation” (section 16.10.9), making DDlab more compatible
with this software used in the game-of-Life community.

0.3.8 re-randomise at each time-step

While running space-time patterns, a new on-the-fly option allows nonlocal (random) wiring to be
re-randomised at each time-step (section 32.7.3). The network will be re-randomised according to
any random wiring biases originally set in chapters 11 and 17.

0.3.9 options in the wiring graphic for 2d and 3d

New presentations options have been added in the 2d and 3d wiring graphics, (section 17.4.1),

gaps-T . . . to toggle gaps between cells. Eliminating gaps results in simple grid lines
which may be preferable, especially for a solid block of cells.

gridcolor-! . . . to toggle the outline color of cells in a block, between grey and black.

fill-W . . . to toggle the color of cells in a block, between red and white (empty).

0.3.10 functions/prompts: network-graph and attractor jump-graph

Functions for dragging nodes or fragments have been made more efficient — significant for large
networks — and the current (toggled) drag method is indicated more clearly in prompts —
elastic/snap or snap/elastic (section 20.10).

8 CHAPTER 0. UPDATES

0.3.11 consecutive option for classifying rule-space

For small rule-tables, expressible in decimal, consecutive rules can be generated to classify the entire
rule-space (section 33.2.1). The method automatically omits rule-tables with missing values, or
were the all-0 neighborhood does not output 0.

0.3.12 on-the-fly options related to pulsing behaviour

These on-the-fly options for space-time-patterns (chapter 32), relate to the study of pulsing
behavior, rhythmic density/entropy oscillations[54, 55], but are also applicable in other contexts.

keyhit ; . . . (semi-colon key) if “pattern density” is active (section 32.12.4), the semi-
colon key will toggle the density return map (section 32.12.7).

keyhit ” . . . (inverted coma key) while the entropy/density plot is active (section 32.12.6),
the inverted coma key will toggle automatic data in the terminal to iden-
tify the pulsing wavelength and waveheight, which can also be saved
(section 32.12.6.2).

keyhit , . . . (coma key) while the entropy/density (section 32.12.6) or density return
plot (section 32.12.7) are active, the coma key will toggle connecting su-
cessive dots for a linked history.

0.4 Online updates 2021
The iso-rule paradigm[56] — a major update to DDLab since the 2018 online pdf — is documented
in this 2021 update. There are also improvements to the input-frequency histogram (IFH) and
interactive mutation/filtering. These updates, which apply especially to chapters 13, 16, 31 and
32, are summarised below.

0.4.1 the iso-rule paradigm

Isotropic CA dynamics operate equivalently in all directions and orientations, including gliders
and glider-guns, so arguably closer to natural physics[56]. The iso-rule paradigm (section 16.10)
refines previous methods for isotropic dynamics based on full rcode look-up tables or totalistic
rules. The new methods rely on “iso-groups” as the basis for the “iso-rule” table — more compact
than rcode, but finer-grained than totalistic.

The iso-rule can express the input-frequency histogram (IFH) (section 31.5) and its depen-
dent functions: input-entropy (sections 33.1, 31.5.1), filtering (sections 32.11, 32.11.5), muta-
tion (section 32.5.4), their interactions to explore rule-space genetically close to significant rules
(section 16.10.8), and classifying rule-space by entropy-variability (chapter 33). These iso-rule
updates are summarised below.

0.4.2 setting the iso-rule

For symmetric n-templates in 1d, 2d and 3d (section 16.10.1) an iso-rule is created by trans-
forming the rcode bit/value graphic (section 13.5.1) with options in section 16.4.1.1. Totalistic
rules must first be expressed as rcode (section 16.4.1.3). Iso-rules are set with any of the options
>iso-I/R/H/* described in section 16.10.4. However option >iso-R has special properties sum-
marised in section 0.4.3 below.

9

0.4.3 the iso-rule bit/value graphic

Option iso-R in section 16.10.4 displays the iso-rule bit/value graphic (e.g figure 16.4) which
is subject to all the usual options (section 16.4.1.2) and revisions with the keyboard and
mouse (section 16.4.3); any revisions to the graphic conserves isotropy. The options include —
iso-file/rnd/group-f/R/G — explaned in section 16.10.5 and a summary below.

0.4.3.1 load/save the iso-rule

Enter iso-file-f in section 16.10.5 to save/load the iso-rule as a binary *.isr file (section 16.14),
as an ASCII string *.tbl file (section 16.22), or revise in hexadecimal (section 16.5).

0.4.3.2 random iso-rule

Enter iso-rnd-R in section 16.10.5 for random iso-rules which can be biased for a given λ parameter
or proportions of values (section 16.3). This updates the method for a random istoropic rcode,
rnd-iso-i, which is still present in section 16.1.1).

0.4.3.3 showing iso-groups

Enter iso-group-G in section 16.10.5 to show iso-groups or iso-rule prototypes as graphic images
(i.e. figures 16.18, 16.19) with various options explained in sections 16.10.6 and 16.10.6.1, including
saving as PostScript files. This provides reality checks and illustrates the iso-rule paradigm.

0.4.4 Input-Frequency Histogram (IFH) updates

The IFH (section 31.5) allows rule-space to be explored by means of an interactive mutation/filter
game (section 16.10.8), automatic classification by input-entropy variability (chapter 33), and other
measures on local dynamics (section 2.18.3). The IFH can be made to comply with the iso-rule,
and there are various updates to presentation, filtering, and mutation, which apply to the IFH of
all rule types — described below.

0.4.4.1 setting IFH for the iso-rule

If the iso-rule was set in section 16.10.4 the IFH can also be made to comply with the iso-rule.
Enter entropy-e at the first output parameter prompt (section 31.1) then iso-i in section 31.5.2 to
activate the IFH for the iso-rule (or entropy-e for the rcode IFH — the default for 1d).

0.4.4.2 log2 IFH

The IFH can be toggled on-the-fly between the value-IFH and a new log2-IFH (e.g. figures 31.9,
32.32(a)) which clearly shows all bars but still distinguishes between rare and frequent. This is
done from the default value-IFH (figure 32.32(b)) with an extra keyhit ’(’ (left bracket). Enter
’)’ (right bracket) to revert to the value-IFH which can be amplified (figure 32.32(b-f)). The
options are described in section section 32.12.2.

10 CHAPTER 0. UPDATES

0.4.4.3 manipulating the IFH presentation

Enhancements have been made for manipulating the IFH presentation (section 32.12.3) to modify
multi-rows in stages to a single-row (figure 32.33) and to shrink the IFH window (figure 32.34) which
can avoid the windows of other functions. These changes are made on-the-fly with a combination
of keyhits ’ ’ (underscore) and ’&’. Any mutation/filter marks are conserved.

0.4.4.4 one pixel IFH plot

Enter 0 (zero) on-the-fly to toggle between any other IFH presentation and the most compact
form, a single-row with 1-pixel black bars (figure 32.33(e)). This is useful for a quick overall view
of a large multi-row IFH. Any mutation/filter marks do not appear but remain when toggling back.

0.4.4.5 IFH mutation/filter updates

On-the-fly mutation with keyhits 1/?/2 (section 32.5.4) and filtering with keyhits f/F/a/=/-
(section 32.11.5) can be made separately or in combination to explore the landscape of genetically
related rules as in the mutation/filter game (section 16.10.8).

A new feature marks a mutation with a red block in line with the mutated IFH bar, spaced
ouside the position of black blocks marking filtered bars (e.g. figure 16.23). Mutations are random
but non-repeating, and will initially avoid filtered bars, unmutating proceeds in reverse order.
Filtering proceeds from the biggest to smallest bar and unfiltering in reverse order.

Keyhit ’a’ unfilters all simultaneously, and there are two new functions: keyhit ’=’ (equals sign)
toggles antifilter (swaps filtered/unfiltered), and keyhit ’-’ (dash) toggles just the appearance of
filtering without affecting black blocks.

0.4.5 Outlining a patch in the classified rule-space scatter plot

When activating a patch in a classified rule-space scatter plot (section 33.6.2) the patch is now
outlined by a black rectangle when defined with right mouse clicks, or a red rectangle if overridden
from the keyboard (figure 33.11).

0.4.6 PostScript file of the neighborhood matrix image

The neighborhood matrix image (e.g. figures 13.1 — 13.3) can now be saved as a PostScript file;
default file name my mrxPS.ps (section 14.11).

0.5 Online updates 2023
This DDLab update introduces the “interactive basin of attraction field” graph, (ibaf-graph), where
the usual basin of attraction field (state transition graph) presentation is redrawn in a way that
allows nodes and their directed links to be dragged with the pointer, together with their defined
components/fragments, and manipulated using similar methods to those for the network-graph
and attractor jump-graphs, though the functions for all three graph types have been augmented
and enhanced, including a range of node displays, and the option to create multi-line labels at
nodes.

11

The ibaf-graph functions, and the enhanced functions to the network and jump graphs, are
described in an updated chapter 20 with its new title: “Interactive Graphs: network, ibaf, jump”1.
Other sections of this book are amended accordingly, notably sections 4.2.3 and 24.3.1.

0.5.1 The ibaf-graph

The ibaf-graph is essentially a directed network-graph with out-degree one, where each node repre-
sents a state in state-space and each directed output link represents the forward time-step from a
state to its unique successor — conversely the input links to a node represent its set of pre-images,
if any. The ibaf-graph depends on the exhaustive reverse algorithm (section 29.7) so as well as CA,
RBN amd DDN, the ibaf-graph is valid for null boundaries, random maps and sequential updat-
ing. The ibaf-graph is initially presented as an interactive image of the usual basin of attraction
field, though a selected basin (component) can be isolated. To select and run the ibaf-graph, see
section 4.2.3 in “Quick Start Examples” or section section 20.6.

Nodes and their attached “fragments” or whole components (basins) can be dragged, rescaled
and relabelled according to “inputs/outputs/either” and a time-step distance, where “nolimit”
combined with “either” captures a whole basin, and nodes displays within a fragment can be
toggled between discs/decimal/hex/1d/2d/none, as in figure 2.

0.5.2 Interactive graphs — revised/enhanced options

Revised and enhanced options for some or all of the three graph types, “network”, “ibaf” and
“jump”, include the following below, otherwise options are basically as before. There are two
types of top-right reminders, for the “initial-graph” and the “drag-graph”, with (overlapping)
valid options — the relevant type is indicated,

keyhits changed . . . previously . . . exp/contr:nodes-e/c links-E/C both-B/b

nodes-(/) . . . (initial and drag) round brackets — “(” to contract, “)” to expand,
the size of nodes.

links-{/} . . . (initial and drag) curly brackets — “{” to contract, “}” to expand,
the length of links — the distance between nodes.

both-[/] . . . (initial and drag) square brackets — “[” to contract, “]” to expand,
the size of nodes and links at the same time.

new keyhit options . . .

nodes-= . . . (initial and drag) the equals sign, to toggle nodes display between,
discs/decimal/hex/1d/2d/none for the ibaf-graph, or discs/decimal/none
for the linked network/jump graph.

in/out-z . . . (initial — linked network-graph only) — to toggle scaling based on
inputs or outputs. “in/out” or “out/in” shows which is current.
Nodes/links will be scaled if curently unscaled.

graph-g . . . (iinitial — ibaf-graph only) to reset the default ibaf-graph layout of
separate basin compunents, useful if the graph was rearranged with
other layout options.

1The previous title of chapter 20 was “The network-graph, and attractor jump-graph”.

12 CHAPTER 0. UPDATES

just-j . . . (drag — ibaf-graph only) to show just the basin with the active node,
a separate component, to work on it in isolation. Enter “just-j” again
to toggle between the isolated basins and the whole field.

Label-L/+ . . . (drag — “single” status only) to create (or remove) a multi-line
node label at the active node, overwriting the current node display
(section 20.12). Enter “Label-+” (plus sign) to toggle between the
label and the current display.

net-# . . . (initial and drag) to restore the original links in the graph, undoing
any cuts or additions.

6478Labels at nodes
can be created,
and node display
can be toggled

5385
5376

3920

3674

2761
574

Figure 2: The ibaf-graph of the same CA as figure 1 in the Preface, with 17 basins (components)
dragged to new posttions. Nodes are scaled according to inputs. The lower right basin has been
manipulated, some subtree node displays were toggled to 2d patterns and numbers — a label was
created upstream of node 574. (v=3, k=3, n=8, rcode (hex) is 0861226184514a)

0.6 Online updates 2024
Various updates relating to ddlabz12 and edits to this September EDD online edition include CA
Derrida plots (section 22.7) and some adjustments to functions for interactive graphs (chapter 20.)

0.6.1 Labels at nodes of interactive graphs

The default start position of a new “label” is amended to overlap the node, but can be lowered so
that the current node display remains visible (section 20.12).

13

0.6.2 Toggling between ibaf-graph and wiring graphic

The interactive network-graph can now be directly accessed from the wiring graphic allowing
toggling between the two.

A new option graph-g is added to the (1d, 2d or 3d) wiring graphic reminders (section 17.4)
to immediately activate the network-graph — then the option win-w showing what lies below the
graph window provides a useful toggle between the two presentations (section 20.21). To resolve
conflict, the wiring graphic option all-g is changed to all-a.

Chapter 1

Overview

Figure 1.1: The basin of attraction field of a Cellular Automaton, v=2, k=3, n=14. There are in fact
15 basins, but equivalent basins have been suppressed leaving just the 6 prototypes. State nodes have
been omitted. This is one of the computationally universal “elementary” rules, 193 (equivalent to the
famous rule 110 [35])
.

1.1 Introduction
DDLab is interactive graphics software, able to construct, visualize and manipulate a hierarchy of
discrete systems: Cellular Automata, Random Boolean Networks, Discrete Dynamical Networks in
general, intermediate or hybrid networks, and random maps, and investigate and visualize many
aspects of the dynamics on the networks, both from the time-series perspective —- space-time
patterns, and from the state-space perspective —- attractor basins, with interactive graphical
methods, as well as data gathering, analysis, and statistics. The term “attractor basin” refers to
any type of state transition graph: a basin of attraction field, single basin, or subtree.

Figure 1.2 gives a glimpse of the main themes in DDLab, and also the broad, slippery, and
overlapping categories of the systems available, listed below (see also figure 29.7),

• CA: Cellular Automata: a local neighborhood of k inputs (1d, 2d, 3d, with periodic or null
boundary conditions), and one rule (but possibly a mix of rules to extend the definition).

• RBN: Random Boolean Networks: non-local or (possibly biased) random wiring of k inputs
(but possibly with mixed-k,) and a mix of rules (but traditionally just one rule).

14

15

Figure 1.2: The various themes, methods, functions and applications in DDLab, loosely connected.
Top Left: The expanding hierarchy of networks: CA → RBN/DDN → within the super-set of random
maps (directed graphs with out-degree one), imposing decreasing constraints on the dynamics. There
are also multiple sub-categories, for example totalistic rules (T), hybrids (H) and networks of networks.

• DDN: Discrete Dynamical Networks: as RBN, but allowing a value-range v ≥ 2. Binary CA
are a special case of RBN, and RBN and multi-value CA are special cases of DDN.

• Random maps: directed graphs with out-degree one, where each state in state-space is
assigned a successor. CA, RBN and DDN, which are usually sparsely connected (k ≪ n) are
all special cases of random maps, but if fully connected (k = n), mixed rule CA and the rest
are equivalent to random maps.

DDLab and its ideas have been used widely in research and education, and have been applied
to study complexity, emergence and self-organization [38, 44, 48], in the behavior of bio-molecular
networks such as neural [40, 41] and genetic [24, 32, 20, 43] networks, and in many other disparate
areas — from physics and cosmology [11] to art [3] and creativity [2]. The results in this book, and
in the References (section 37) citing Wuensche and co-authors, can be implemented with DDLab.
As well as scientific applications, DDLab’s imagery has featured in art exhibitions [45], as the light
show at events, and has been applied for generative music [6, 7, 8].

1.2 Source code and platforms

The DDLab code is free software under the GNU General Public License (GPL) as published by
the Free Software Foundation. Registration is subject to a modest fee, whereby the annoying
UNREGISTERED banner can be easily removed (section 5.4).

16 CHAPTER 1. OVERVIEW

Compiled versions of DDLab (64-bit unless specified as 32-bit) are maintained for UNIX based
(Linux-like) operating systems, and also for DOS, as follows:

• Linux/PC: compiled in Ubuntu 6.06 and Ubuntu 11.04 (64-bit).

• MAC OSX with X11: compiled in PowerPC G4 10.4.11, MackBook Pro 10.5.8, and Mountain Lion
10.8.2.

• CygwinX/Windows/PC: this is a Linux environment running in MSWindows98 and above. The
default packages plus xorg-x11-devel, xorg-x11-fnts, must be installed. The CygwinX version is
preferable to the DOS version below.

• DOS/PC: compiled with WatcomC 11. There is no native MSWindows version of DDLab at present.

The following compiled versions from 2005 are available but no longer maintained, though
up-to-date versions could be compiled from source:

• UNIX/XWindows/Sun: compiled in SunOS 5.8. The libraries libX11.so.6.1 and libsunmath.so.1

need to be accessible.

• Irix/SGI: compiled for IRIX 6.5.27 with MIPSpro C 7.4.3m and -n32.

The manual covers all maintained versions, which function in essentially the same way, though
aspects of the graphics presentation might be slightly different. The manual will refer to the
Linux/MAC/CygwinX/UNIX/Irix versions as Linux-like, as opposed to the DOS version.

DDLab is in the process of continual development. New features are being added in response
to various research needs. Some aspects of this manual may be out of date or not applicable to
particular platforms.

For information on the latest versions, downloads, installation, documentation, registration,
platforms, source code, compiling, updates, examples of output, applications, and related publica-
tions, consult one of the DDLab websites below:

http://www.ddlab.org

http://users.sussex.ac.uk/~andywu/ddlab.html (Univ. of Sussex)

1.3 Discrete dynamical networks

A discrete dynamical network in DDLab can be imagined as a software simulation of a collection
light bulbs which transmit information to each other about their color state (on/off for binary), and
change color according to arriving signals. More abstractly, the network is made up of automatons,
elements1 or “cells”, connected to each other by directed links or “wires”, where a wire has an
input and output terminal. A cell takes on a value (or color, or cell-state), and transmits this value
down its output wires. Its value is updated as a function of the values on its input wires.

Updating is usually done in parallel, synchronously, in discrete time-steps, but may also be
sequential in a predetermined or random partial order. These dynamics are deterministic, but
noise can be added.

1The term “cell” (as in cellular automata) denotes a network “element”, and should not be confused with a
biological cell. In random Boolean network models of genetic regulatory networks, a network element represents a
gene, whereas in neural network models, a network element represents a neuron.

http://www.ddlab.org
http://users.sussex.ac.uk/~andywu/ddlab.html

17

This is the system in a nutshell. It remains to set up the network according to its various
parameters,

• SEED, FIELD or TFO mode: An initial choice to establish the type of system (section 6.1).
SEED-mode requires a seed (an initial state) for running forward or seeding a single basin of
attraction. FIELD-mode is for a basin of attraction field which does not require an external
seed to be set — seeds are set automatically. TFO-mode (Totalistic Forwards-Only) restricts
DDLab to running forward only from a seed according to just totalistic rules. These initial
choices effect maximum safe sizes — of the network n, and its connectivity k. An additional
choice, “exLimits” allows these safe sizes to be exceeded.

• The “value-range”, v: The range of values (cell-states) available to a cell, currently from 2 to 8
(chapter 7). In other words, the number internal states, or colors, or letters in a cell’s
“alphabet”. Prior 2003 DDLab was limited to binary or Boolean logic — just 2 values (0,1).

• The system size, n: The number of network elements. Maximum n is much less in FIELD-
mode than in SEED/TFO-modes, but the new limits (section 8.3) have increased since the
2011 edition.

• The network “geometry”: How the elements are arranged in space: in a 1d, 2d or 3d lattice
with axial dimensions i, j, h, or some other arrangement (chapter 10). The network geometry
may have real meaning (depending on the “wiring scheme” below), or it may simply allow
convenient indexing and representation.

• The connectivity: The number of input wires, k, to each cell, or the “k-mix” if k is not
homogeneous. Maximum k currently supported in DDLab (kLim) depends on the value-
range v, and has increased since the 2011 edition (table 7.1).

• The “wiring scheme”: defining the location of the output terminals of each cell’s input wires
— its “neighborhood” (e.g. section 17). Cellular automata have a homogeneous near-
est neighbor (or next nearest etc.) local neighborhood throughout the network, in 1d,
2d or 3d. RBN and DDN may have a completely arbitrary wiring scheme (a “pseudo-
neighborhood”).The wiring can be assigned at random, or may be biased - for example, by
confining an element’s pseudo-neighborhood close to itself, or to make scale-free networks.
The wiring can be assigned to create a hybrid of CA/DDN, or a network of sub-networks in
any combination.

The wiring scheme defines the lattice and its boundary conditions. CA wiring usually requires
“periodic boundary conditions” where lattice edges wrap around to their opposite edges.

• The “rule scheme”: the rules or logical functions in the network (e.g. section 14). Each
element applies a rule to its inputs to compute its output. Usually this is made into a
lookup-table, the “rule-table”, listing the outputs of all possible input patterns (rcode), or
some subset of input patterns (e.g. isotropic rcode, kcode or tcode) and the new “iso-rule
paradigm” (section 16.10). Cellular automata have a homogeneous rule scheme, the same
rule throughout the network. DDN may have a completely arbitrary rule scheme. The rule
scheme can be a CA/DDN hybrid. Rules and rule schemes can be biased in various ways.

A special case of a rule scheme are outer-totalistic rules where the rule to be applied depends
on a cell’s current value, thus requiring v separate rules. Outer totalistic rules are used to
implement reaction-diffusion, the game-of-Life, and other Life-like rules.

18 CHAPTER 1. OVERVIEW

DDLab is able to create and modify these networks, and graphically represent and analyze
both the networks themselves, and the local and global dynamics on the networks - the changing
patterns made by the complex web of feedback.

Acronym glossary: (chapter 37 provides a detailed glossary)

• CA: cellular automata: homogeneous wiring/rules; a local universal wiring template
(for example: nearest neighbor) and a universal rule, the same rule everywhere.

• RBN: random Boolean networks: v=2, arbitrary wiring and heterogeneous rules, Kauffman’s
famous model [23, 23], but possibly with heterogeneous connectivity k.

• DDN: discrete dynamical networks: as RBN, but allowing for a value-range v > 2
(CA and RBN are special cases of DDN).

1.4 Space-time patterns and attractor basins

DDLab has two alternative ways of looking at network dynamics. Local dynamics, running the
network forwards for space-time patterns, and global dynamics, running the network backwards
for attractor basins — the idea is explained in figure 23.1.

Running “backwards” generates multiple predecessors rather than a trajectory of unique suc-
cessors. This procedure reconstructs the branching subtree of ancestor patterns rooted on a
particular state. States without predecessors will be disclosed, the so called “garden-of-Eden”
states, the “leaves” of the subtree. Subtrees, basins of attraction (with a topology of trees rooted
on attractor cycles), or the entire basin of attraction field (referred to collectively as “attractor
basins”) can be displayed in real time as directed graphs (state transition graphs), with many
alternative presentation options including the new interactive “ibaf-graph” methods (chapter 20),
and methods for gathering/analyzing data. The attractor basins of “random maps” may be gen-
erated, with or without some bias in the mapping.

Figure 1.3: The space-time pattern of a 1d complex CA with interacting gliders. 308 time-
steps from a random initial state. Value-range v=2, neighborhood size k=7, system size n=700,
rcode(hex)=3b46 9c0e e4f7 fa96 f93b 4d32 b09e d0e0. Cells are colored according to neighborhood
look-up instead of the value. Space is across and time down the page. The basin of attraction field for
this rule (n=16) is shown figure 1.4.

19

see detail

Figure 1.4: The basin of attraction field of a complex v2k7 CA, n=16, defined in figure 1.3, which
shows its space-time patterns. The 216 = 65536 states in state space are connected into 89 basins of
attraction. Only the 11 non-equivalent basins are shown, with symmetries characteristic of CA [38].
The period (p), percentage of state space in each basin type(s), and number of each type (t), of
the biggest three basins (top row), are as follows: (1) p=1 s=15.7% t=1. (2) p=5 s=55.8% t=16.
(3) p=192 s=22.9% t=1. The field’s G-density=0.451, λratio=0.938, Z=0.578.

Figure 1.5: A detail of the 2nd basin of attraction in figure 1.4. The states are shown as 4×4
bit patterns.

20 CHAPTER 1. OVERVIEW

1.4.1 Totalistic rules - forwards-only

DDLab can be constrained to run “forwards-only” for various types of totalistic rules which depend
on just the totals of each value or color in a neighborhood, including outer-totalistic rules and
reaction-diffusion rules (e.g. chapter 13). The rule-tables of totalistic rules (tcode and kcode) are
much smaller than full rule-tables (rcode), so larger neighborhoods are possible (kLim=25, instead
of 13) at the cost of disabling basin of attraction functions.

1.4.2 The iso-rule paradigm

This edition of EDD includes a new and more efficient method for isotropic CA in 1d, 2d and 3d —
the iso-rule paradigm[56] — which has necessitated many updates, in particular section 16.10. The
iso-rule is constructed by scanning the current rcode to identify and aggregate the set of isotropic
“iso-groups” and assign a single output to each, making an iso-lookup-table much shorter than
the rcode-table. The input-frequency histogram and all its dependent functions: input-entropy
(section 31.5.3), filtering (section 32.11), mutation (section 32.5.4), and classifying rule-space by
entropy-variability (chapter 33), then operate according to the iso-rule avoiding redundant rcode
information.

1.5 Categorization

It can be argued that attractor basins represent the network’s “memory” by their hierarchical
categorization of state-space [39, 40]. Each basin is categorized by its attractor and each subtree
by its root. Learning/forgetting algorithms allow attaching/detaching sets of states as predecessors
of a given state by automatically mutating rules or changing connections. This allows sculpting
the basin of attraction field to approach a desired scheme of hierarchical categorization. More
generally, preliminary “inverse problem” or “reverse engineering” algorithms are included to find
the network that satisfies a given set of transitions (chapter 34).

1.6 Size limits: network n and neighborhood k

The size limits of networks n and neighborhoods k have increased since the 2011 edition, especially
for 64-bit systems. The usual limits are indicated below, but can be increased with a new option
for extra limits — “exLimits”. However, high values of n or k may be impractical because of time
and memory constraints.

1.6.1 Network size limits

Whereas large networks may be run forward to look at space-time patterns (SEED/TFO-modes),
or backward to look at subtrees (SEED-mode), the system size n is limited when generating the
entire basin of attraction field (FIELD-mode), given that state-space S grows exponentially with n
(S = vn, where v is the value-range). DDLab’s upper limits, nLim, (including “exLimits” — extra
limits) in FIELD-mode are listed in table 7.2. For binary systems the basic nLim is 31 (with
exLimits active 35).

In SEED/TFO-modes the basic limit of n is 8388607 (with exLimits active 4294967295). For 2d

21

i, j or 3d i, j, h any sub-multiples of n apply — for a square 2896×2896, for a cube 203×203×203.
In practice much smaller sizes are appropriate for single basins and subtrees2. Large size may
impose unacceptable time, memory or display constraints. For RBN and DDN, running backwards
generally imposes a greater computational load than for CA.

1.6.2 Neighborhood size limits

The maximum neighborhood size k, depending on value-range v, is set out in table 7.1. For binary
networks (v=2) the upper limits of k, kLim, is 27, which allows a 3×3×3 neighborhood in a 3d
network. The (pseudo-)neighborhoods are predefined in chapter 10.

1.7 Parameters and options

DDLab is an applications program, it does not require writing code. The network’s parameters,
and the graphics display and presentation, can be very flexibly set, reviewed and altered from
DDLab’s graphical user interface.

Space-time patterns can be altered on-the-fly (chapter 32), including changes to rules,
connections, current state, scale, and alternative presentations highlighting different properties.
Networks of whatever dimension can be interchangeably represented in 1d, 2d, and 3d. 2d
dynamics can be shown with a time dimension (2d+time) in isometric projections.

The network architecture, states, data, and the screen image can be saved and loaded in a
variety of tailor-made file formats (chapter 35), and most graphic output can be saved as vector
PostScript files (chapter 36).

1.8 Measures and data
Various quantitative, statistical and analytical measures and data on both forward dynamics and
attractor basin topology are available in DDLab, as well as various global parameters for rules
and network architecture. The measures and data, shown graphically as well as numerically in
most cases, include the following:

• Rule parameters: λ, P, Z.

• The frequency of canalyzing inputs. This can be set to any arbitrary level.

• Various measures on forward dynamics such as pattern density, frozen islands, damage spread
between two networks, the Derrida plot, rule-table lookup input-frequency histogram (IFH)—
which allows filtering, input entropy and its variability — which allows ordered, complex and
chaotic rules to be classified automatically [44].

• Various global measures on the topology of attractor basins including garden-of-Eden density
and in-degree frequency.

2Networks with disordered (chaotic) dynamics, which have low in-degree or branchiness in their subtrees such as
CA chain-rules [49], allow backwards computation of much larger networks than for ordered dynamics which have
high in-degree. For CA, rules giving chaotic dynamics have a high Z parameter, rules giving ordered dynamics have
a low Z parameter [44].

22 CHAPTER 1. OVERVIEW

1.9 Contents summary

• Chapter 2 provides a descriptive summary of DDLab’s functions.

• Chapter 3 describes how DDLab can be accessed, and information about the GPL license,
copyright and registration.

• Chapter 4 describes DDLab’s graphical user interface and gives some “quick start” examples.
Its probably a good idea to try these right away to get the flavor of DDLab before reading
on, or tackling the detailed reference manual.

• Chapters 5 to 36 contain the detailed reference manual.

For further background on space-time dynamics and attractor basins of CA, RBN, DDN, and
their implications, see publications [38]-[56] available on the DDLab website.

Chapter 2

Summary of DDLab functions

This chapter provides a descriptive summary of DDLab’s functions.

2.1 DDLab’s prompts

DDLab’s graphical user interface (chapter 5) allows setting, viewing and amending network
parameters, and various presentation and analysis functions, by responding to prompts or
accepting defaults. The prompts present themselves in a main sequence and also in a number
of context dependent prompt windows. You can backtrack to previous prompts, and in some
cases skip forward. A flashing cursor indicates the current prompt. “Return” (or the left
mouse button) steps forward through the prompts, “q” (or the right mouse button) backtracks,
or interrupts a running process (a run), such as space-time patterns or attractor basins being
generated. There are also many on-the-fly changes by keyhits during a run (chapters 32, 30).

2.2 Initial choices
Some initial choices in the prompt sequence set the stage for all subsequent DDLab operations,
and cannot be amended later (or not easily) without backtracking. These include the following,

2.2.1 Totalistic rules, forwards-only, TFO-mode

There is a choice to constrain DDLab to run “forwards-only” for various types of totalistic rules and
reaction diffusion rules (TFO-mode). This reduces memory load by cutting out full rule-tables and
all attractor functions (prompts for these will not be displayed), and allows larger neighborhoods,
(kLim=27, instead of 13). Choosing TFO-mode can only be made at the first prompt (chapter 6).

2.2.2 Basin field or initial state

If DDLab is not constrained in TFO-mode there is a further choice, to set either,
FIELD-mode — for the basin of attraction field, which does not require a seed (initial state), or
SEED-mode — for anything else (which does require a seed) — space-time patterns, a single basin
of attraction, or a subtree. This choice can be amended at a later stage, in section 30.4.

23

24 CHAPTER 2. SUMMARY OF DDLAB FUNCTIONS

2.2.3 Exceeding normal limits of n and k

A new initial option since the 2011 edition “exLimits” allows exceeding the usual limits of system
size n and neighborhood size k, but with a warning that RAM may be exceeded (section 6.2.4).

2.3 Setting the value-range

Figure 2.1: The cell value color key window (for
a black background, v=8) that appears when the
value-range is selected. The values themselves are
indexed from 7 to 0. See figure 7.1 for all color keys.

The value-range v can be set from 2 to 8. If v=2 DDLab behaves as in the old binary version.
Note that as v is increased, kLim will decrease (section 2.5), depending on whether TFO-mode was
set in section 2.2.1. The selection of the value-range can only be made at this early stage in the
program.

2.4 Setting the network size

The network size n for 1d is set early on in the prompt sequence, but this is superseded if a 2d (i, j)
or 3d (i, j, h) network is selected in a subsequent prompt window. Although the size of n for 1d can
be increased or decreased by one cell on-the-fly when drawing space-time patterns (section 32.8.5),
in general the network size can only be changed at these early prompts.

For space-time patterns, the upper limit of network size nLim=8388607 (with exLimits active
4294967295). For 2d i, j or 3d i, j, h any sub-multiples of n apply — this allows a square 2896×2896,
and a cube 203×203×203. This limit also applies for single basins and subtrees, though in practice
much smaller sizes are appropriate, except when generating subtees for maximally chaotic CA
chain-rules (section 16.11).

For basin of attraction fields, however, the upper limit of network size, nLim, is much smaller,
and depends on the value-range v as set out in section 7.3.

2.5 The neighborhood k or k-mix

The size of the neighborhood k, the number of inputs each cell receives, can vary from 0 to
kLim, which depends on the value-range v, and also on whether or not DDLab was constrained
to run forwards-only for totalistic rules (TFO-mode, section 2.2.1). For example, for v=8 and
unconstrained DDLab, kLim=4 to handle the large lookup-table whereas in TFO-mode kLim=11.
kLim for increasing value-range v, for both cases, is set out in section 7.2.

k can be homogeneous, or there can be a mix of k-values in the network. The k-mix may be set
and modified in a variety of ways, including defining the proportions of different k’s to be allocated
at random in the network, or a “scale-free” distribution, A k-mix may be saved/loaded from a file,
but is also implicit in the wiring scheme (section 2.6).

25

2.6 Wiring

The network’s wiring scheme (i.e. its connections) has predefined neigborhood templates (n-
templates) for local CA (for 1d, 2d and 3d) for neigborhood size, k=1 to kLim (chapter 10). The
3d n-templates define a cuboid lattice with periodic boundary conditions. In 2d, the n-templates
define a toroidal lattice which can be either square, hexagonal or new hex/triangular lattice for k3
or k4 (figure 2.2). The square lattice includes the 5-cell von Neumann neighborhood and the 9-cell
Moore neighborhood . Wiring can also be set at random (nonlocal wiring), with a wide variety
of constraints and biases, or by hand (chapter 12). The predefined n-templates in this case act as
pseudo-neighborhoods to which the rule is applied. A wiring scheme can be set and amended just
for a predefined sub-network, which can may be saved/loaded (chapter 19).

Nonlocal wiring can be constrained in various ways (section 12.5) including confinement within
a local zone with a set diameter in 1d, 2d and 3d. Part of the network only can be designated to
accept a particular type of wiring scheme, for example rows in 2d and layers in 3d, and the wiring
can be biased to connect designated rows or layers.

The network parameters can be displayed and amended in a 1d, 2d or 3d graphic format, in
a “spread sheet” (chapter 17), or as a network-graph which can be rearranged in various ways,
including dragging nodes with the mouse (chapter 20).

Figure 2.2: New 2d hex/triangular n-templates are available for k3 and k4 neighborhoods, which permit
investigating the dynamics on these simpler lattices, with many instances of complexity. The example
shown is a snapshot of v3k4 kcode 2a945900 from a random initial state (88×88) — growing and
stable structures emerge which act as glider-guns. The inset shows the k4 hex/triangular n-template
from figure 10.2.

26 CHAPTER 2. SUMMARY OF DDLAB FUNCTIONS

2.7 Boundary conditions

By default, a network’s neighborhood (or pseudo-neighborhood) is assigned with periodic boundary
conditions (PBC), where lattice edges (and wiring inputs) wrap around to their opposite edges.
This makes a ring in 1d, a torus in 2d, and a 3-torus in 3d.

Various options (sections 26.1, 31.3, 32.7.4) allow null boundary conditions (NBC), where
inputs beyond the network’s edges are held at a constant value of zero. NBC are of interest
in pattern recognition, and other applications where the system is grounded or quenched, or
bounded by an edge, skin or membrane. As for PBC, NBC and their dynamics are interesting as
mathematical/dynamical systems in their own right.

Nearly all DDLab functions and options for computation, display and analysis can also be
applied to NBC systems, multi-value as well as binary. This includes CA in various dimensions,
but also random Boolean networks (RBN) and discrete dynamical networks (DDN), because irre-
spective of the wiring scheme, for NBC any part of the pseudo-neighborhood that extends beyond
the network’s edges is made to take zero as its input.

NBC space-time patterns (running forward) apply to 1d, 2d and 3d networks (section 31.3) –
NBC and PBC can be toggled one on-the-fly (section 32.7.4). All (forward) functions and methods
apply — such as the look-up entropy, filtering, damage, and attractor histograms.

NBC basins of attraction (running backward) apply to 1d networks only, employing three
completely different reverse algorithms, where the original PBC algorithms have been modified for
NBC: (1) for CA, (2) for RBN/DDN as well as CA, and (3) the exhaustive reverse algorithm for
any of the above, thus providing a reality check of results. All (backward) methods and functions
for basin of attraction fields, single basins and subtrees apply (section 26.1).

2.8 Rules

The most general update logic or rule is expressed as a full rule-table (lookup-table), referred to as
“rcode”, but there are important subsets of the general case: the more physics-like iso-rule where
rotated/reflected neighborhoods have the same output (secton 16.10), and two types of totalistic
rules which are necessarily isotropic, “kcode” and “tcode” (chapter 13). The simplest, tcode,
depends on the sum of values in the neighborhood; kcode depends on the frequency of each value
(color) in the neighborhood. If k=2, tcode and kcode are identical. Both types of totalistic rules
can be made into outer-totalistic rules (also called semi-totalistic), where a different rule applies
for each value of the central cell — the game-of-life is one such rule. Outer-totalistic rules also
allow implementation of reaction-diffusion rules or excitable media [18].

As mentioned in section 2.2.1 DDLab can be constrained to run “forwards-only” for these
various types of totalistic rules (TFO-mode), which allows greater [v, k] networks than for rcode.
Transformations and mutations would then apply to just the restricted rule-table, kcode or tcode.

If DDLab remains unconstrained, tcode and kcode (but not outer-totalistic rules) can still be
selected, but they will be transformed into the full rcode rule-table, which allows attractor basins.
Transformations and mutations will apply to the rcode. Within rcode there are also subsets of rules
that can be automatically selected at random, including isotropic rules, majority rules, maximally
chaotic chain-rules, Altenberg rules, and “game-of-Life” rules.

A network may have one homogeneous rule as for CA (chapter 16), or a rulemix as for RBN and
DDN (chapter 14). The rulemix can be confined to a subset of pre-selected rules. Rules may be

27

set and modified in a wide variety of ways, in decimal, hex, as a rule-table bit pattern, at random
or loaded from a file. A rule scheme can be set and amended just for a predefined sub-network
within the network, and can be saved/loaded (chapter 19).

Rules may be changed into their equivalents (by reflection and negative transformations), and
transformed into equivalent rules with larger or smaller neighborhoods (chapter 18). Rules trans-
formed to larger neighborhoods are useful to achieve finer mutations. Rule parameters λ and Z,
and the frequency of canalyzing inputs in a network can be set to any arbitrary level (chapter 15).

2.9 Initial network state, seed

Figure 2.3: Drawing a 2d seed “portrait”, 88×88, v=8, with the mouse and keyboard, shown top-left.
The seed was then transformed by applying a CA majority rule (v8k4) for three time-steps.

An initial network state (a seed, chapter 21) is required to run a network forward and generate
space-time patterns. A seed is also required to generate a single basin, by first running forward
to find the attractor, then backward from each attractor state. A seed is required to generate a

28 CHAPTER 2. SUMMARY OF DDLAB FUNCTIONS

subtree, by simply running backwards from the seed. However, for most CA/RBN/DDN, most
states in state-space have no predecessors (they are the leaves of a subtree, “garden-of-Eden”
states), so from a random seed its usually necessary to run forwards by a few steps to penetrate
the subtree before running backwards — this option provided is (section 29.2). A basin of attraction
field does not require setting a seed, because appropriate seeds are automatically provided.

As in setting a rule, there are a wide variety of methods for defining the seed (chapter 21),
in decimal or hex, as a bit pattern in 1d, 2d or 3d, or at random with various constraints or
biases. The bit pattern method is a mini paint program, using the mouse and keyboard to draw
colors. Figure 2.3 shows the method applied to draw a portrait, which is then transformed by
applying a CA rule for three time-steps. When loading, a seed-file can differ in value-range, size,
and dimension from the base network (section 21.7).

2.10 Networks of sub-networks
Its possible to create a system of independent or weakly coupled sub-networks within the base
network, either directly, or by saving smaller networks to a file, then loading them at appropriate
positions in the base network (section 19.4). Thus a 2d network can be tiled with sub-networks,
and 1d, 2d or 3d sub-networks can be inserted into a 3d base network.

The parameters of the sub-networks can be different from the base network, provided the base
network is set up appropriately to accommodate the sub-network. For example, to load a DDN
into a CA, the CA may need be set up as if it were a DDN. To load a mixed-k sub-network into
single-k base network, k in the base network needs to be at least as big as the biggest k in the
sub-network. Options are available to easily set up networks in this way. Once loaded, the wiring
can be fine-tuned to interconnect the sub-networks.

A network can be automatically duplicated to create a total network made up of two identical
sub-networks. This is useful to see the difference pattern (or damage spread) between two networks
from similar initial states (section 31.6).

2.11 Presentation options

Many options are provided for the presentation of attractor basins and space-time patterns.
Again, many of these settings can be changed “on-the-fly”.

2.11.1 Space-time patterns
chapters 31 and 32

A cell in a space-time pattern is colored according to its value, or alternatively according to a
predefined color depending on its neighborhood at the previous time step, the entry in the rule-
table that determined the cell’s value (figure 2.4). Space-time patterns can be filtered to suppress
cells that updated according to the most frequently occurring neighborhoods, and the presentation
can be set to highlight cells that have not changed in the previous x generations, where x can be set
to any value — these function are able to expose “gliders” and other structures (section 32.11). The
emergence of such frozen elements is associated with “canalyzing inputs”, and underlies Kauffman’s
RBN model of gene regulatory networks [24, 20].

1d space-time patterns are usually presented as successive time-steps scrolling vertically. 2d

29

←− space −→

time
↓

Figure 2.4: Space-time patterns of a 1d CA, v2k3, n=51, rcode (dec)90. 24 time-steps from an initial
state with a single central 1. Two alternative presentations are shown. Left: cells by value.
Right: cells colored according to their look-up neighborhood.

networks are presented as a “movie” of successive time-steps, but can also be displayed with a time
dimension (2d+time) where successive time-steps scroll either vertically or diagonally, in isometric
projections. 2d networks can be toggled between square and hexagonal layout. 3d networks are
presented as a “movie” within a 3d “cage”. The presentation of space-time patterns can be switched
“on the fly” between 1d, 2d, 2d+time, and 3d, irrespective of their native dimensions. DDLab
automatically unravels or bundles up the dimensions. There are many other on-the-fly options,
including changing the scale of space-time patterns, changing the seed, rule/s, wiring, and the size
of 1d networks (chapter 32).

Concurrently with these standard presentations, space-time patterns can be displayed in a
separate window according to the network-graph layout. This can be rearranged in many ways,
including various default layouts (section 32.19). For example a 1d space-time pattern can be
shown in a circular layout which can also be scrolled (i.e. figure 4.10).

2.11.2 Attractor basins
chapters 20 and 24 to 30

Options for attractor basins allow the selection of the basin of attraction field, a single basin
(from a selected seed), or a subtree (also from a seed). Because a random seed is likely to be a
garden-of-Eden state, to generate subtrees an option is offered to run the network forward a given
number of steps to a new seed before running backward. This guarantees a subtree with at least
that number of levels.

Options (and defaults) are provided for the layout of attractor basins, their size, position,
spacing, and type of node display (as a spot, in decimal, hex or a 1d or 2d bit pattern, or none). The
basin of attraction field as in figure 2.5 can be redrawn as an interactive “ibaf-graph” (chapter 20).

Local 1d and 2d CA produce attractor basins where subtrees and basins are equivalent by
rotational symmetry. This allows “compression” of basins (by default) into non-equivalent proto-
types, though compression can be turned off. Attractor basins are generated for a given system
size, or for a range of sizes. As attractor basins are generating, the reverse space-time pattern can
be simultaneously displayed.

An attractor basin run can be set to pause to see data on each transient tree, each basin, or
each field. Any combination of this data, including the complete list of states in basins and trees,
can be saved to a file (chapter 27). Normally a run will pause before the next “mutant” attractor
basin, but this pause may be turned off to create a continuous demo of new attractor basins. A
“screen-saver” demo option shows new basins continually growing at random positions (figure 4.18,
section 24.8).

30 CHAPTER 2. SUMMARY OF DDLAB FUNCTIONS

Figure 2.5: The basin of attraction field of a
random Boolean network, v2k3, n=13, (also shown
in the jump-graph, Figure 20.3). The 213 = 8192
states in state space are organized into 15 basins,
with attractor periods ranging between 1 and 7.
The number of states in each basin is: 68, 984,
784, 1300, 264, 76, 316, 120, 64, 120, 256, 2724,
604, 84, 428. figure 2.6 shows the arrowed basin in
more detail. Right: the network’s architecture, its
wiring/rule scheme (n13RBN.wrs — section 3.6).

this basin shown
in more detail in
figure 2.6

cell wiring rule
12 10,1,7 86
11 6,2,9 4
10 10,10,12 196
9 2,10,4 52
8 5,6,8 234
7 12,5,12 100
6 1,9,0 6
5 5,7,5 100
4 4,11,7 6
3 8,12,12 94
2 11,6,12 74
1 6,5,9 214
0 12,9,6 188

2.11.3 Interrupting a run

At any time, a space-time pattern or attractor basin run can be interrupted to pause, save or print
the screen image, change various parameters, or backtrack through options (chapters 32 and 30).

2.12 Graphics
In Linux-like versions, the DDLab screen starts up at 925×694 or a smaller size automatically
set to comfortably fit on the monitor. This can be resized, moved and iconized in the usual way.
In DOS the graphics will start up at a resolution of 640×480 (VGA) but can be reset to higher
resolutions, or initially with a program parameter. The default background color is black, but can
be reset to white either from within the program or with a program parameter. The text size and
spacing is set automatically according to the screen resolution, but can be resized.

31

garden-of-Eden states
or leaves of subtrees

transient tree
and subtrees

one of 7
attractor states

attractor
cycle

tim
e

ti
m

e

Figure 2.6: A basin of attraction (one of 15) of the random Boolean network, v2k3, n=13, shown in
figure 2.5. The basin links 604 states, of which 523 are garden-of-Eden states. The attractor period = 7,
and one of the attractor states is shown in detail as a bit pattern. The direction of time is inwards from
garden-of-Eden states to the attractor, then clock-wise.

2.13 Filing and Printing

DDLab allows filing a wide range of file types, including network parameters, data, the screen
image and vector PostScript files. (sections 19, 35). For compatibility with DOS, filenames follow
the DOS format, so a filename has up to eight characters starting with a letter (but not “q”) plus
a 3 character extension. For example myfile25.dat. In DDLab, only the first part of the filename
is selected — without the extension (or a default filename can be accepted), the extension is
added automatically to identify the file type.

2.13.1 Filing network parameters

Network parameters and states can be saved and loaded for the following: k-mix, wiring schemes,
rules, rule schemes, wiring/rule schemes, and network states (chapter 19).

2.13.2 Filing data

Data on attractor basins, at various levels of detail (chapter 27) can be automatically saved. A file
of “exhaustive pairs”, made up of each state and its successor, can be created (section 29.7).

32 CHAPTER 2. SUMMARY OF DDLAB FUNCTIONS

Various data including mean entropy and entropy variance of space-time patterns can be au-
tomatically generated and saved (chapter 33), This allows sorted samples of CA rules to be cre-
ated, discriminating between order, complexity and chaos (chapter 33), and complex rules, those
featuring “gliders” or other large scale emergent structures, to be collected automatically; some
collections/samples of 1d and 2d CA rules are provided with DDLab (sections 32.6.1, 3.6.4).

2.14 Vector PostScript images

Vector PostScript files (chapter 36) can be generated for most DDLab graphics output: space-time
patterns or snapshots (1d, 2d and 3d), attractor basins, the wiring graphic, the network-graph, ibaf-
graph and the attractor jump-graph. Vector graphics is preferable for publication quality images.
The methods work in both Linux-like systems and DOS. Images saved as vector PostScript files
can be printed in GhostView, or converted to .pdf files and printed in Adobe (acroread).

Previous bitmap methods, below, are still available. Most of the figures in this manual where
produced as vector PostScript files, others as bitimage PostScript files.

2.15 Bitmap images

The screen image can saved and loaded using an efficient compressed format only applicable within
DDLab (section 5.5). Alternatively, in Linux-like systems, a program such as XView can be used
to grab the DDLab screen or part of it, and to save the image in many standard bitmap formats.

In DOS, to save/print the image in a standard format, use a “stay resident screen grabber”.
A number of specialist screen grabbers are available, and others are part of “paint” programs.
Alternatively run DDLab as a DOS application in Microsoft Windows and use their “paint” screen
grabber.

2.16 Printing the screen image

Bitmap methods are still available to print the screen image directly from DDLab. In Linux-like
systems, the screen can be printed within DDLab as a bitmap PostScript file to a laser printer
(section 5.6). Alternativly use XView to grab the bitmap image, in various formats.

2.17 Mutations

A wide variety of network “mutations”, as well as changes in presentation, can be be made, many
on-the-fly, while running forward for space-time patterns, or backward for attractor basins.

2.17.1 Running Forward

When running forward, key-press options allow changes to be made to the network and presentation
on-the-fly (chapter 32). This includes “mutations” to wiring, rules, current state, and size. A
number of 1d “complex” rules (with glider interactions) can be set for k= 5, 6 and 7 (section 32.6.1).

33

2.17.2 Running Backward

When running backward, and attractor basins are complete, a key press will regenerate the
attractor basin of a mutant network. Various mutation options can be pre-set (chapter 28)
including random bit-flips in rules and random rewiring of a given number of wires. Sets of
states can be specified and highlighted in the attractor basin to see how mutations affect their
distribution (chapter 34).

2.18 Quantitative, statistical and analytical measures

Some of the measures and data on network dynamics available in DDLab are listed below. In
most cases this information can be displayed graphically.

2.18.1 Behavior parameters

The following static parameters measured on rule look-up tables are available (section 16.19.1).

• The λ parameter (sections 14.1.2, 16.3.1) and equivalent P parameter.

• The Z-parameter [38, 44] (section 24.9).

• The (weighted) average λ and Z for a mixed rule network (section 17.9.2).

• The frequency of canalyzing “genes” and inputs — for a rulemix network (chapter 15), for
single rules (section 18.6).

• Post-function data (section 14.12).

λ, Z, and canalyzation can be set to any arbitrary level.

2.18.2 Network connectivity

The following measures on network connectivity, i.e. the wiring, are available,

• Average k (inputs), number of reciprocal links, and self links (section 17).

• Histograms of the frequency distribution of inputs, outputs, or both (all connections), in the
network (section 17.9.13).

• The recursive inputs/outputs to/from a network element, whether direct or indirect, showing
the “degrees of separation” between elements (sections 17.6.6, 17.6.7).

• The network-graph (section 20.5), where the wiring is analysed in two ways, as an adjacency-
matrix (section 20.19.1) showing links between nodes, and an interactive network-graph
(figure 20.18) a graph with (weighed) vertices and edges, which can be manipulated, rear-
ranged and unravelled, including dragging vertices and their and their connected fragments
or components to new positions with “elastic band” edges (analogous to the jump and ibaf
graphs in section 20.

34 CHAPTER 2. SUMMARY OF DDLAB FUNCTIONS

Figure 2.7: Order-chaos measures for a RBN v2k5, n=36×36.
C = the percentage of canalyzing inputs in the randomly biased

network. Top-Left: frozen elements that have stabilized for

20 time-steps are shown, 0s-green, 1s red, otherwise white, for

C=25% and 52%. Top-Right: the log-log “damage spread”

histogram for C=52%, sample size about 1000. Left: the Derrida

plot for C=0%, 25%, 52%, and 75%, for 1 time-step, Ht=0-0.3,

interval = 5, sample for each Ht=25.

2.18.3 Measures on local dynamics

The following measures on local dynamics, i.e. running the system forward from some initial state,
its space-time patterns or trajectories, are available,

• A rule-table lookup frequency histogram (IFH) (figures 2.8, 31.9, which can be toggled be-
tween 2d and 3d to include a time dimension (figure 32.31).

• The entropy of the lookup frequency over time (section 32.12.5).

• The variability of the entropy, mim-max or standard deviation (section 33.1), and the
entropy/density scatter plot where complex rules have their own distinctive signatures
(figure 32.36).

• A plot of mean entropy against entropy variability for large samples of CA rules, which allows
ordered, complex and chaotic rules to be classified automatically (chapter 33), also shown as
a 2d frequency histogram (figure 33.1).

• The pattern density in a moving window of time-steps (section 31.5.1).

• “Frozen” options allow visualizing the activity/stability of network elements (section 32.11)
— the fraction of “genes” unchanged for x generations (figure 2.7 Top-Left), or that fall into
preset “frequency bins” (firure 32.22).

• The damage spread, or pattern difference, between two networks differing by 1 bit or value
(section 31.6). A histogram of damage distribution can be generated for a sample of initial
state pairs (figures 2.7 Top-Right and 31.15).

• The Derrida plot, and Derrida coefficient, analogous to the Liapunov exponent in continuous
dynamical systems, measures how pairs of network trajectories diverge/converge in terms of
their Hamming distance. This indicates if a random Boolean network is in the ordered or
chaotic regime (chapter 22, figure 2.7 Left).

• A scatter plot of successive iterations in a 2d phase plane, the “return map by value”, showing
fractal structure, especially for chaotic rules (section 31.2.2.2).

35

• Scatter plots of successive iterations, the “entropy/density plot” (section 32.12.6), and the
“density return map” (section 32.12.7). This can be interesting when the densities follow
rhythmic oscillations, “pulsing” dynamics[54, 55], which occurs for a network with random
wiring but one complex glider rule.

Figure 2.8: Typical 1d CA space-time patterns (left) showing ordered, complex and chaotic dynamics,
n=150, v2k5 rcodes shown in hex. Alongside each space-time pattern (right) is the input-frequency
histogram (IFH) for a moving window of 10 time-steps, and (center) a plot of the IFH “input-entropy”,
where only complex dynamics exhibit high variability, caused by glider collisions.

2.18.4 Measures on global dynamics

Measures on global dynamics, i.e. attractor basins — the basin of attraction field, single basins
and subtrees, are available as follows,

• Data on attractor basins. The number of basins in the basin of attraction field, their size,
attractor period and branching structure of transient trees. Details of states belonging
to different basins, subtrees, their distance from attractors or the subtree root, and their
in-degree (chapter 27).

36 CHAPTER 2. SUMMARY OF DDLAB FUNCTIONS

• A histogram showing the frequency of arriving at different attractors from a sample of random
initial states (figure 31.19) provides statistical data on the basin of attraction field for large
networks. The number of basins, their relative size, period, and the average run-in length can
be measured statistically (section 31.7). A new feature analyses the transient data to record
the set of unique transients states to each attractor, without duplication (figure 31.21). An
attractor jump-graph can be constructed from this data (figure 31.7.8).

An analogous methods show the frequency of arriving at different partly frozen patterns,
fuzzy attractors called “skeletons” (section 31.8).

• Garden-of-Eden density plotted against network size (figure 24.13), and against the λ and Z
parameters (figure 24.14).

• A histogram of the in-degree frequency (section 24.6) in attractor basins (figure 24.5), in
subtrees (figures 2.9, 24.6).

• The state-space matrix (section 24.5), a scatter-plot of the left half against the right half of
each state bit/value string, using color to identify different basins, or attractor cycle states
(figure 24.3).

• The basin of attraction field: The ibaf-graph (section 20.6) gives insights on state-space
structure, and the attractor jump-graph (section 20.7) gives measures on the stability of
basins subject to perturbations. The information is presented in two ways, an adjacency
matrix (section 20.19), and an interactive graph (figures 20.1, 20.13) with (weighed) vertices
and edges which can be rearranged by dragging vertices and their connected fragments or
components to new positions with “elastic band” edges (analogous to the network-graph in
section 20.

2.19 Reverse algorithms

There are three different reverse algorithms for generating the pre-images of a network state, thus
generate attractor basins.

• An algorithm for local 1d wiring [38] — 1d CA but rules can be heterogeneous.

• A general algorithm [39] for RBN, DDN, 2d or 3d CA, which also works for the above.

• An exhaustive algorithm that works for any of the above by creating a list of “exhaustive
pairs” from forward dynamics. Alternatively, a random list of exhaustive pairs can be created
to implement attractor basin of a “random map” (section 2.20).

The first two reverse algorithms (section 29.6) generate the pre-images of a state directly; the
speed of computation decreases with both neighborhood size k, and network size. The speed of
the third exhaustive algorithm (section 29.7) is largely independent of k, but is especially sensitive
to network size.

The method used to generate pre-images will be chosen automatically, but can be overridden.
For example, a local 1d CA can be made to use either of the two other algorithms for benchmark
purposes and for a reality check that all methods agree. The time taken to generate attractor basins
is displayed in DDLab. For the basin of attraction field a progress bar indicates the proportion of
states in state-space used up so far.

37

Ordered dynamics. Rule 01dc3610, n=40, Z=0.5625, λratio=0.668.
Above: in-degree histogram (normal and log-log). Right: complete
subtree 7 levels deep, with 58153 nodes, G-density=0.931.

Complex dynamics. Rule 6c1e53a8, n=50, Z=0.727, λratio=0.938.
Above: in-degree histogram (normal and log-log). Right: subtree,
stopped after 12 levels, with 144876 nodes, G-density=0.692.

Chaotic dynamics. Rule 994a6a65, n=50, Z=0.938, λratio=0.938.
Above: in-degree histogram (normal and log-log). Right: subtree,
stopped after about 75 levels, with 9446 nodes, G-density=0.487.

Figure 2.9: Subtrees of ordered-complex-chaotic CA. The rules
and space-time patterns are shown in figure 2.8. The in-degree
histogram of a typical subtree showing that convergence (bushi-
ness of subtrees) is: ordered-high, complex-medium, chaotic-low.

2.19.1 1d CA wiring reverse algorithm

The CA reverse algorithm applies specifically for networks with 1d CA wiring (local wiring) and
homogeneous-k, such as 1d CA, though the rules may be heterogeneous — a “rulemix”. This is
the most efficient thus fastest algorithm, described in [38, 44]. Furthermore, compression of 1d CA
attractor basins by rotation symmetry (section 26.2) speeds up the process.

The inset CAW (cellular automata wiring) will appear in the data window in section 27.2.

38 CHAPTER 2. SUMMARY OF DDLAB FUNCTIONS

2.19.2 Nonlocal wiring algorithm

Any other network architecture, with nonlocal wiring, will be handled by a slower general reverse
algorithm described in [39, 44]. A histogram revealing the inner workings of this algorithm can
be displayed. Local 2d or 3d CA will also use this general reverse algorithm though in principle
more efficient algorithms that take advantage of 2d or 3d local wiring could be devised. However,
compression algorithms will come into play in 2d to take advantage of the many rotation symmetries
on the torus1.

The inset NLW (non-local wiring) will appear in the data window in section 27.2.

2.19.3 Exhaustive reverse algorithm

A third, brute force, reverse algorithm first creates a list of “exhaustive pairs” of each state in
state-space and its successor (section 29.7) from forward dynamics — this can be saved. The
pre-images of states are generated by reference to this list. The exhaustive algorithm is restricted
to small systems because the size of the mapping increases exponentially as vn, and scanning the
list for pre-images is slow compared to the direct reverse algorithms for CA and RBN. However,
the method is not sensitive to increasing neighborhood size k, and is useful for small networks with
large k. Exhaustive testing is also used for sequential updating (section 29.9).

The inset EXH (exhaustive algorithm) will appear in the data window in section 27.2.

2.20 Random map

The random mapping routine (section 29.8) also creates a list of “exhaustive pairs” as in
section 2.19.3 above, but this is done by assigning a successor state at random to each state in
state space, possibly with some bias — rules and wiring previously set are ignored. The attractor
basins of this “random map” (with out-degree one) are reconstructed by reference to this list using
the exhaustive testing algorithm (figure 29.8). The space of random maps for a given system size
corresponds to the space of all possible basin of attraction fields and is the super-set of all other
deterministic discrete dynamical systems.

The inset MAP (random map, using the exhaustive algorithm) will appear in the data
window in section 27.2.

2.21 Asynchronous and Sequential updating

By default, network updating is synchronous, in parallel. DDLab also allows asynchronous updat-
ing. For space-time patterns (section 31.4) the updating can be sequential, partial order, or noisy.
Attractor basins2 (section 29.9) can also be based on a sequential order. Sequential orders can be
forwards, backwards, a random order, or any specific order can be set, out of the n! possible orders
for a network of size n. The order can be saved/loaded.

1Compression does not apply for a local 2d CA with a hexagonal lattice, or for 3d CA, as the algorithms to take
account of these symmetries have not been resolved.

2Sequential orders do not apply for a range of sizes (section 8.1).

39

2.21.1 Neutral order components

An algorithm in DDLab computes the neutral order components (section 29.10). These are sets of
sequential orders with identical dynamics. DDLab treats these components as subtrees generated
from a root order, and can generate a single component subtree (figure 29.9.5), or the entire set of
components subtrees making up sequence space (the neutral field, figure 29.12) which are drawn
in an analogous way to attractor basins.

2.22 Sculpting attractor basins

Learning and forgetting algorithms (chapter 34) allow attaching and detaching sets of states as
predecessors of a given state by automatically mutating rules or wiring couplings. This allows
“sculpting” the attractor basin to approach a desired scheme of hierarchical categorization. Because
any such change, especially in a small network, usually has significant side effects, the methods
are not good at designing categories from scratch, but might be useful for fine tuning a network
which is already close to where its supposed to be.

When an attractor basin is complete, within the learning routine, a “target” state, together
with a number of “aspiring pre-images” (predecessors) can be selected. These states may be
just highlighted in successive mutant attractor basins, or the learning/forgetting algorithms will
attempt to attach/detach the aspiring pre-images to/from the target state, and can be set for
either rule-table bit-flips or wire moves. In fact the bit-flip method cannot fail. New attractors
can be created and subtrees transplanted. The result of learning/forgetting, including side effects,
will be apparent in the new attractor basins. The algorithms, and their implications are described
in [39].

More generally, a very preliminary method for reverse engineering a network, also known as
the “inverse problem” is included in DDLab, by reducing the connections in a fully connected
network to satisfy an exhaustive map (for network sizes n ≤ 13, section 18.7.4). The inverse
problem is — to find a minimal network that will satisfy a full or partial mapping (i.e. fragments
of attractor basins such as trajectories).

Chapter 3

Accessing and running DDLab

This chapter gives instructions for downloading, unpacking and running DDLab, and the various
supplementary files available. Information is also given about the DDLab website, manual, GPL
license, copyright, and registration. The Linux, Cygwin, Mac, Unix, and Irix versions will be
referred to as Linux-like, as opposed to the DOS version.

3.1 The DDLab website
For the latest compiled versions, source code, makefiles and readme files, and manual, check the
DDLab website located at one of the following,

http://www.ddlab.org

http://www.sussex.ac.uk/~andywu/ddlab.html

At the time of writing the latest release was ddlabz12 June 2024.

3.2 DDLab at SourceForge

DDLab compiled versions, source code and manual are also available at SourceForge.

http://sourceforge.net/projects/ddlab/files/

3.3 Unzipping and running — Linux-like versions

The relevant readme files, for Linux, Mac, Cygwin and DOS, give the most up-to-date instructions.
In general, place the .tar.gz file in its own directory, called say, ddlab. To unzip and unpack
follow the example below (substitute the relevant filename),

40

http://www.ddlab.org
http://www.sussex.ac.uk/~andywu/ddlab.html
http://sourceforge.net/projects/ddlab/files/

41

gunzip ddlabz12 linux64.tar.gz . . . to unzip the .gz file
tar -xvf ddlabz12 linux64.tar . . . to unpack the .tar file

This will give the GNU license and the executable file1 ddlabz12 — we will use this filename
although the executable may be named ddlabz12 macTiger64, ddlabz12 cygwin32.exe, etc.

To run the program enter

./ddlabz12 & (if dot is in your path ./ is not required)

The “&” retains control of the terminal window, where messages and data are sometimes shown.
The default background is black — start with white with the program parameter “-w”,

./ddlabz12 -w &

If working with DDLab file types for rules, seeds, networks etc. (chaper 35), its preferable
to run DDLab from a sub-directory (say ddlab/ddfiles) containing the ddextra.tar.gz files
(section 3.6) – in that case enter,

../ddlabz12 & (two dots before the slash)

This ensures that files created within DDLab stay within the ddfiles subdirectory, and do not
clutter up the ddlab directory.

3.3.1 Unix library files

DDLab for Linux-like versions is compiled with “static” set, so that missing library problems
should not occur. However, the libraries libx11 and libsunmath need to be in your system —
they usually are. If missing, they can be downloaded from the file unix libs.tar.gz, which will
unzip and unpack to give the following files, which should be installed in the same directory as
DDLab.

libX11.so.6.1

libsunmath.so.1

3.4 Unzipping and running - DOS
The latest DOS version of DDLab, ddlabz12 dos32.tar.gz can be unzipped with Winzip in
earlier versions of Windows. For Windows Vista, open source “7zip” works to uncompress, and
there are other tool available. The DOS version may have some drawbacks; for better results
install Cygwin/X, (a Linux environment inside Windows) and use the Cygwin version of DDLab,
or run the Linux version in VMware Player.

The DOS version will unzip to give the GNU license, two font files, and the following,

1If the executable permission is missing for some reason, it can be restored with the command
chmod +x ddlabz12.

42 CHAPTER 3. ACCESSING AND RUNNING DDLAB

ddlabz12 dos32.exe . . . the program (for example).
dos4gw.exe . . . the DOS extender, access to extended memory.

Keep all these files together in their own directory. For best results DDLab should be run in
pure DOS (available in Windows98 and before), otherwise, prior to Vista, DDLab can be run from
a DOS or “command line” window (some precautions will apply, section 5.2.

In Vista, Windows 7 and later, DOS from the command line is no longer supported, but the
DOS version can run, but slowly, in “DOSBox”, an open source MS-DOS emulator, intended for
old PC games.

In pure DOS you can also add the following program parameters for a different graphics setup
(this can also be changed later).

-w . . . for a white background.
-m . . . for 800×600 resolution.
-h . . . for 1024×768 resolution.

For example, for a white background and 1024x768 enter ddlabz12 dos32 -w -h.

3.5 The Quick Start Examples

Chapter 4 gives brief “quick start” examples for a number of typical routines. Its a good idea to
try these first to get the flavour of DDLab before reading the detailed manual.

3.6 Extra data files

The files in dd extra.tar.gz, common to all platforms, contain data used by DDLab, though
DDLab will run without the files. The files should be either in the same directory as the DDLab
executable, or in a sub-directory and DDLab run from that sub-directory by prefixing “../” before
the executable (section 3.3).

The lists below show some, but possibly not all, the files.

3.6.1 Glider rule collections

GRC files are collections of complex glider rules for various combinations of v, k and lattice dimen-
sions, which can be loaded on-the-fly when running space-time patterns (section 32.6.1). Enter
“g” for a random rule, or the next rule in the sequence, depending on the setup in section 31.2.9.

1d complex rule collections, based on rcode
g v2k5.r s, g v2k6.r s, g v2k7.r s . . . v2 complex rules, as in binary DDLab.
g v3k3.r s, g v4k2.r s, g v4k3.r s, g v5k2.r s . . . v ≥ 3 complex rules.

2d complex rule collections, based on kcode, hexagonal lattice except square for k=5
g v3k3.r v, g v3k4.r v, g v3k5.r v, g v3k6.r v, g v3k7.r v . . . v=3 complex/glider rules.

43

3.6.2 Selected 2d complex rules, v=3

Selected v=3 complex 2d rules based on kcode. These rules can be loaded individually while
running space-time patterns. For k=6 and k=7, the default lattice is hexagonal, otherwise the
default lattice is square. Some k=6 and k=7 rules also give interesting dynamics in 3d.

Figure 3.1: A 2-way glider-gun made by rule
v3k6n6.vco and seed v3k4gun.eed shooting glid-
ers in opposite directions, shown as a 2d diagonally
scrolling space-time pattern (100 × 100 hexagonal
lattice) in an isometric projection — the present mo-
ment is at the bottom right (see also 4.14). Once
the glider-gun has shot a glider in one direction,
it turns itself inside-out and shoots a glider in the
opposite direction. The period between firing suc-
cessive alternate gliders is 67 time-steps.

v3k4x1.vco . . . s4-way glider gun (seed v3k4gun.eed below).
v3k5x1.vco . . . gliders bounce off static structures.
v3k6x1.vco . . . the Beehive rule [47], hexagonal lattice.
v3k6x2.vco . . . spirals overcome gliders, hexagonal lattice.
v3k6B1.vco . . . burning-paper or predator-prey, hexagonal lattice.
v3k6n6.vco . . . 2-way glider-gun (figure 3.6.2), hexagonal lattice.
v3k7w1.vco . . . the spiral-rule [48], hexagonal lattice.

3.6.3 Selected seeds

Selected 1d, 2d and 3d seeds (initial states) which can be loaded while running space-time patterns
for interesting results for various rules.

pento.eed, Lgun v2.eed, Lguns v3.eed, Lguns v8.eed . . . game-of-Life seeds.
v3k4gun.eed . . . seed for 4-way glider-gun (2d or 3d) — v3k4x1.vco

v3k6n64.eed . . . initial state for 2-way glider-gun — v3k6n6.vco

seeds for the 2d and 3d Beehive-rule — v3k6x1.vco

Bcgun.eed, Bpuff.eed . . . seeds for the 2d 6-way glider-gun, and the amazing puffer-train.
B3d ggx.eed . . . seed for the 3d 4-way glider-gun.

44 CHAPTER 3. ACCESSING AND RUNNING DDLAB

seeds for the 2d and 3d Spiral-rule — v3k7w1.vco

ssg1.eed, sgg2.eed . . . seeds for two types of 2d 6-way spiral glider-guns.
sgun3d.eed, sgun3d1.eed . . . seeds for the 3d 4-way glider-guns.

3.6.4 Sorted rule samples

Samples of CA rule-space, sorted by input-entropy and its variability, classify rules between order,
complexity and chaos [44]. The samples can be loaded and displayed as scatter plots (section 33.6),
and rules can be selected on-the-fly (section 32.6.3) when running space-time patterns. The topic
is described in “Classifying rule-space” chapter 33. The following sample files are available,

1d rule samples, based on rcode
v2k5ss.sta, v2k6ss.sta, v2k7ss.sta . . . v=2, standard deviation.
v3k3ss.sta, v4k2ss.sta, v4k3ss.sta, v5k2ss.sta . . . v >2, standard deviation.

1d rule samples, based on tcode
v8k5tm.sta . . . max-minmax-entropy

2d rule samples, based on kcode
v3k4bs.sta, v3k5bs.sta, v3k6bs.sta, v4k4bs.sta v4k6bs.sta . . . standard deviation.
v3k7bs.sta, v8k3B50.sta, v2k5iso.sta, v4k72d52.sta . . . max-minmax-entropy.

2d rule samples, based on iso-rules
i29s01s.sta, i37s01s.sta . . . max-minmax-entropy.

3.6.5 Byl’s self reproducing loop

J.Byl’s self reproducing loop [9], is a v6k5 2d CA, a simplification of Langton’s loop.

v6k5 byl.rul . . . Byl’s self reproducing loop rule (rcode).
v6k5 byl.eed . . . a seed to initiate Byl’s loop.

Figure 3.2: Byl’s
self reproducing
loop — 148 time-
steps from this
seed:

45

3.7 Copyright, License and Registration

License
DDLab is free software: you can redistribute it and/or modify it under the terms of the GNU
General Public License (GPL) as published by the Free Software Foundation, either version 3 of
the License, or any later version (http://www.gnu.org/licenses/gpl.html), which includes a
Disclaimer as follows: This program is distributed in the hope that it will be useful, but without
any warranty; without even the implied warranty of merchantability or fitness for a particular
purpose.

Registration
By registering and paying a modest fee, the annoying UNREGISTERED banner (section 5.4) can
be easily removed — http://www.ddlab.org/ddinc.html provides details.

3.8 Source code, and compiling

The DDLab source code is written in c, and consists of about 63000 lines excluding blanks and
comments, contained in 21 *.c files and two *.h files — a description can be found on the DDLab
website, including Makefiles and notes on how to compile. The same code compiles for all platforms.

3.9 Previous versions of DDLab
Previous versions of DDLab released at intervals since 1995 are still available, as are previous
versions of the DDLab Manual — refer to http://www.ddlab.org.

http://www.gnu.org/licenses/gpl.html
http://www.ddlab.org/ddinc.html
http://www.ddlab.org

Chapter 4

Quick Start Examples

This chapter briefly describes the DDLab graphical user interface (more details in chapter 6), and
gives a number of examples of DDLab functions and routines. Try these examples first, to get the
flavor of DDLab, before tackling the detailed program reference — chapter 5 onwards.

4.1 The DDLab screen
In Linux-like systems, or Windows supporting DOS, DDLab starts in a window within the monitor
screen. In pure DOS the whole screen is occupied. For simplicity we will refer to the DDLab
“screen”, and various panels which appear within the screen as “windows” or “prompts” — their
location is usually indicated, for example “top-right”, “top-left”, “bottom-left”, etc.

If the executable filename is ddlabz06, to run DDLab, for DOS enter ddlabz06 at the DOS
or command prompt. For Linux-like systems enter ./ddlabz06 & (or ../ddlabz06 & from a
subdirectory such as ddfiles — see section 3.3); always add a final & to retain control of the
terminal window, where various data may be displayed.

When DDLab is run with no program parameters, the screen appears with a black
background. The program parameter -w gives a white background, i.e. ./ddlabz06 -w & for
Linux, ddlabz06 -w for DOS. Descriptions of colors assume a white background.

If an UNREGISTERED banner is displayed, enter return to continue1. A title bar is
displayed across the bottom of the screen. A series of prompts are presented to set up the network,
functions to be performed, and presentation. These prompts appear either in a main sequence for
the most common settings, or in various windows that automatically open up.

The mouse pointer is used to set bits or values in rule-tables and network states, for “drawing”
patterns, especially in 2d networks, for dragging nodes in the network-graph and jump-graph, and
for some other functions, but most user inputs are from the keyboard.

4.1.1 User Input

The flashing cursor (usually green) prompts for input. Enter appropriate input from the keyboard.
To revise the input, press q, backspace, or the right mouse button. To accept the input, and
move on to the next prompt or routine, press return or the left mouse button. If no input was
entered, or if the input was inappropriate, a default input is automatically selected.

1Another program parameter turns off the UNREGISTERED banner for registered users.

46

47

4.1.2 Backtrack

To backtrack to the preceding prompt, to revise, or interrupt a running routine such as space-time
patterns or attractor basins, press q, or the right mouse button. You can backtrack to any stage
in the prompt sequence with q (or right mouse button), eventually to exit the program.

4.1.3 Quitting DDLab

To quit DDLab immediately (except in DOS) enterCtlr-q at any prompt, followed by q. Otherwise
backtrack with q to the start of the program, then enter q to exit.

4.1.4 Skipping Forward

At some points in the prompt sequence, it’s possible to skip forward, to avoid a succession of
prompts for special settings. When the following top-center banner is visible,

accept defaults-d . . . enter d followed by return to skip forward.

4.1.5 The graphics setup

The screen will start with a black background if no program parameters were set, and with a
resolution automatically set to comfortably fit the monitor, but with an initial maximum of
925×694 pixels in Linux-like systems — resize by dragging the corners (or edges) in the usual
way. For DOS (section 5.2) the initial size is 640×480, which can be reset to higher resolution
— SVGA. To change the graphics setup after DDLab has started, at the first prompt select g for
graphics (section 6.3). A graphics setup screen will appear. Enter b to toggle the background
between black and white. Other options allow changing the resolution, font size, text line spacing
and cursor flash speed.

4.2 Basin of attraction fields

Figure 4.1: A basin of attraction field of a binary 1d Cellular Automaton, v2k3, n=10, decimal rule 9,
with copies of equivalent basins suppressed.

48 CHAPTER 4. QUICK START EXAMPLES

To generate a basin of attraction field similar to figure 4.1, do the following:

1. From the first prompt keep accepting defaults with return or left mouse button (about 13

presses), until the top-center basin parameters banner appears, and a top-right window

with a list of options starting with accept all basin defaults -d. Enter d to skip these
special options.

2. A final top-right prompt window appears, just before drawing basins. Enter return.

3. The basin of attraction field will be generated. Copies of equivalent basins are suppressed.
The initial default setup is for a 1d CA, network size n=10, value-range v=2, and neighbor-
hood size k=3. If these parameters were changed they become the new defaults. The rule
(chosen at random by default) appears in a window at bottom of the screen. A top-right
window shows brief data on the field once it is generated. A progress bar below this window
shows the proportion of state-space as it is used up. Vertical lines on this bar indicate the
states used to seed the basins.

4. A prompt window appears top-left. Enter return for a new basin of attraction field, a
one-bit “mutant” of the previous rule, with corresponding data. This process can continue
indefinitely (it can also be set on automatic).

5. Enter q to interrupt and backtrack up the prompt sequence.

4.2.1 Changing network/rule parameters

Try the previous routine again, changing v, n or k, which require backtracking to the main series
of prompts. For example, to create figure 4.2 procede as follows,

1. To revise v backtrack to the prompt Value range . . . : enter 3.

2. To revise n, at the prompt Network size . . . : enter 6.

3. To revise k, at the prompt Neighborhood size k: . . . enter 3.

4. At the prompt Select v3k3 rule . . . : enter h for the rule in hex, then enter 1886122584a655,
then return to accept (for a random rule just enter return or r).

5. Alternatively, for a binary discret dynamical network (DDN) at the at the prompt Neigh-
borhood size k: . . . enter m for a kmix which implies a rulemix.

Note that increasing v will reduce the maximum allowable k and n (sections 7.2, 7.3), and as
these values increase basins will take longer to generate.

4.2.2 Changing basin presentation parameters

The scale, layout, node display etc. can be fine-tuned with the special basin parameters

options, which can be accessed one by one, or by jumping directly to a category (chapter 24).

1. At the top-right revise from: options, enter l for the “layout” category for the scale and
layout of basins to reset the self-explanatory options (chapter 25).

2. For node display, at the top-right revise from: options, enter p for the “display” category
to reset for explanatory options (chapter 26).

3. For example, enter return until the prompt highlight attractor . . . : enter a for “all”
to show attractor states as 2d patterns. then d twice to accept further defaults and start
drawing basins.

4. Enter return for a mutant basin, or q to backtrack.

49

Figure 4.2: The basin of attraction field of multi-value v3k3 n=6 1d CA. The lookup table
is 120201201020211201022121111 (1886122584a655 in hex). Just the 8 nonequivalent basins are
shown from a total of 23, and attractor non-equivalent states are shown as 2d patterns. State-
space=vn=36=729. Note that the overlap can be fixed with layout options (chapter 25 or
section 20.14).

4.2.3 Interactive basin of attraction field — ibaf-graph

1016

1008

1005

979

976

973

963

951

941

928

912

897

894
892
890

888

884
882
874
868

848

845835

823

813

788
786

783

777

772

735734732730708 695694

685

643

641

624

589
579

578

576

544

533

529

528

526

519

518

514

507499491

480

467459

450

427

416

403

389

388

353

344

332
323

311310
305

304

300

280

272
271

270
269

264

260

258

256

252

248

244

232

228

223221217

212

197

193

183177

156

144

136

132

130

128

120

104

97

86

83

76

75

70

68

66

65

64

63

61

58

57

53

39

36

34

33

32

30 26

24

19

17

16

9

8

4

2

Figure 4.3: An ibaf-graph of a binary 1d CA, v2k3, n=10, rule 9 with 7 basins, The basin of attrac-
tion field as in figure 4.1, but uncompressed, was transformed to its ibaf-graph, initially with scaled
nodes/links. Nodes were relabelled in basins 4 (decimal) and 5 (2d patterns). The 3rd basin was
dragged lower, expanded, and some fragments were dragged and relabelled in decimal, 1d, and 2d.
Note the sequence of decimal nodes starting at 888 (top right) which follow output arrows leading to
the attractor.

The ibaf-graph (chapter 20, section 20.6) allows rearranging an uncompressed basin of attraction

50 CHAPTER 4. QUICK START EXAMPLES

field computed with the exhaustive algorithm. Nodes and their attached “fragments” or whole
components (basins) can be dragged, rescaled and relabelled according to “inputs/outputs/either”
and a time-step distance, where “nolimit” combined with “either” captures a whole basin. Node
labels within a fragment can be toggled between discs/decimal/hex/1d/2d/none.

To produce and rearrange an ibaf-graph like figure 4.3, proceed as follows,

1. From the first prompt keep accepting defaults with return or the left mouse button (about
9 presses), until the Select v2k3 rcode appears. then enter d.

2. At the next decimal equivalent prompt enter 9 to select the CA rule.

3. Enter return (about 3 presses) until the top-center basin parameters banner appears, and
a top-right window with a list of options starting with accept all basin defaults. Enter g
to select graphs.

4. At the next top-right graphs prompt enter i for the ibaf-graph, then return at the
compression OFF reminder.

5. Then enter return (about 3 presses) until a basin field top-right prompt appears (just
before drawing basins).Enter e for the exhaustive algorithm (section 29.7) which is required
for the ibaf-graph.

6. At the next exhaustive pairs prompt enter return — the usual basin of attraction field
will be drawn with the default layout, or with any changes made in section 4.2.2.

7. When drawing is complete, ibaf-i appears below the green progress bar, enter i — the
ibaf-graph will be computed and drawn with the same layout above.

8. Once complete, the top-right initial options reminder appears — these apply to all
nodes/links in ibaf-graph simultaneously — for decode see section 20.9.

IBAF-graph: drag-(def) PScript-P net-# ant-a unscram-u win-w rank0-k
settings-S rot-x/X flip-h/v nodes-(/)/= links-{/} both-[/]
Unreach-U matrix-t/T nodes-n/N links-l Labels-+ arrows-A/</>
layout: file-f graph-g circle/spiral-o/O 1d/2d(tog)/3d-1/2/3 rnd-r/R quit-q:

9. Click the left mouse button (or enter return) for the drag-options, then click the center
of a node (a right click may also be required initially) to lock-on/activate — so its number
appears in the drag reminder — then drag the active node and its connected fragment with
the mouse pointer (button depressed) to another position, then release. The drag options
apply to fragments and components (basins) rooted on the active node. (see section 20.4),

node 0, either, step=nolimit: drag-leftb PScript-P elstc/snap-d gap-g
not active?-rightb first, rot-x/X flip-h/v nodes-(/)= links-{/} both-[/] just-j
Lnk0:cut/restore-c/r Lnks0-0:cut/add/restore-C/A/R net-#
step-(1-9) nolimit-0 single-s in/out/either-i/o/e all-a exit-q:

The drag-option reminder is context dependent (explained in depth in sections 20.4, 20.10) —
options mostly work immediately by keyhits — try the following to rearrange the ibaf-graph as in
figure 4.3,

i/o/e . . . for “inputs”, “outputs” or “either”, which defines the direction of links in the
fragment — “e” for “either” is the starting default.

nolimit-0 . . . enter “0” (zero — the starting default) for “nolimit” to the distance of connected
time-steps from the active node. When combined with “either” above, the frag-
ment will capture the whole basin.

step-(1-9) . . . enter 1 or a number up to 9 to limit the distance in time-steps, the reach of the
fragment from the active node — for dragging, relabelling, and to contract/expand
nodes/links.

51

nodes-(/)= . . . use round brackets — (to contract,) to expand, the size of nodes,
enter the equal sign “=” to toggle nodes display between discs/decimal/hex/1d/2d/none.

links-{/} . . . use curly brackets — “{” to contract, “}” to expand, the length of links — the
distance between nodes.

both-[/] . . . use square brackets — “[” to contract, “]” to expand, the size of nodes and links
at the same time.

single-s . . . enter “s” to restrict changes to the active node only — some options in the drag
reminder will change.

just-j . . . enter “j” to isolate the basin with the active node, hiding other basins. Enter “j”
again to restore.

elstc/snap-d . . . enter “d” to toggle “drag” between elastic/snap. Elastic drag is the default, but
snap, where just the active node is dragged, then its fragment snaps into place,
is nore efficient for a larger ibaf-graph.

exit-q . . . to return to the initial options. The revised layout is kept but “graph-g2 restores
the original.

4.3 Backwards space-time patterns, and state-space matrix

Figure 4.4: Backwards
space-time patterns re-
lating to the basin of
attraction field of the
v=2 CA in figure 4.1.
Space across, time top
down. The red and
white bit patterns are
the predecessors of black
and white bit patterns.

Figure 4.5: The state-apace matrix
represents state-space, plotting the
left half of each state bitstring
against the right half. Colors repre-
sent different basins of attraction in
figure 4.1.

While the attractor basins are generating, various display settings, indicated in the bottom title
bar, can be changed on-the-fly. However, basins may generate too fast to intervene on-the-fly. In
this case, at the pause when a basin is complete, enter s for speed in a top-left window, and follow
self-explanatory prompts to slow down. Alternatively, backtrack to slightly increase n, v or k.

1. Enter s to toggle the “backwards” space-time pattern on-off, and see predecessors (pre-
images) being generated on the left of the screen (figure 4.4). Initially the attractor states

52 CHAPTER 4. QUICK START EXAMPLES

will be displayed, then each state and its set of pre-images. Expand or contract the scale of
the backwards space-time pattern with e and c. Toggle scrolling on/off with #.

2. Enter m to toggle the display of the state-space matrix in the lower right corner (figure 4.5).
This reveals interesting symmetries. Different colors represent states in different basins.

3. Enter < to incrementally slow down, or > to restore maximum speed.

4. Enter q to interrupt and backtrack up the prompt sequence.

4.4 Basin of attraction fields for a range of network sizes

5.

6.

7.

8.

9.

10.

11.

12.

Figure 4.6: Basin of attraction fields for a range of network size n=5-12. v2k3, rule(dec)=30

To produce output similar to pages in the “Atlas of Basin of Attraction Fields”, Appendix 2 of
the book “The global dynamics of Cellular Automata” [38], proceed as follows,

1. Backtrack with q (or right mouse button) to the start of the program.

2. At the third prompt, range of network size-r: enter r.

3. Enter return until the top-center basin parameters banner appears, then a to restore

53

all defaults, then d to skip further special options, then enter return to start the range of
CA basin of attraction fields (with the same rule), for increasing sizes from 5 to 12.

4. When complete, enter return for the next “mutant” CA rule.

5. Toggle the display of the “backwards” space-time patterns with s and the state-space matrix
with m as described in 4.3.

6. To slow down the generation of basins (probably required to intervene on-the-fly) enter s for
speed at a pause in the top-left window, and follow self-explanatory prompts.

7. Enter q to interrupt and backtrack up the prompt sequence.

You may need to readjust the size of basins for everything to fit. To do this, backtrack to

basin parameters and enter l for layout, then adust the size and spacing of basins with various

self-explanatory prompts (chapter 25).

4.5 A single basin of attraction

Backtrack with q (or right mouse button) to the start of the program.

1. At the very first prompt enter s.

2. At the Neighborhood size k: . . . prompt, enter 4.

3. Enter return until the top-center basin parameters banner, then a to restore all defaults,

then d to skip further special options, then return in response to further prompts, to generate
a singe basin for a CA, size 14.

4. Enter return for the next mutant.

5. Toggle the display of the “backwards” space-time patterns with s and the state-space matrix
with m as described in 4.3.

6. Enter q to interrupt and backtrack up the prompt sequence.

4.6 A subtree

Backtrack with q (or right mouse button) to the start of the program.

1. At the very first prompt enter s.

2. Enter return in response to further prompts until the prompt Network size . . . : select 27.

3. At the prompt Neighborhood size k: . . . select 5.

4. Enter return in response to further prompts until the Select SEED . . . : prompt. Enter
r for a “random seed” then a to set all cells at random.

5. Enter return until the top-center basin parameters banner, then a to restore all defaults,

then d to skip further special options.

6. At the prompt backward for subtree-b, forward for basin-(def): select b.

7. At the next prompt, forwards before backwards?
how many steps (default 0): select 3.

This runs the CA forward by 3 time-steps (from the “seed”), before running backward from
the state reached. The original randomly selected seed is likely to be a “garden-of Eden”
state with no predecessors, so not much use as the root of a subtree.

54 CHAPTER 4. QUICK START EXAMPLES

states 4333, period 140, rcode(hex) 76b5 states 15541, point attractor, rcode(hex) ac88

Figure 4.7: Examples of single basins of attraction: v2k4, n=14, decimal seed=3187.

Figure 4.8: A subtree with 11324 states generated from the bit pattern at the center. 1d CA, v2k5,
n=27 shown as 9×3, hex rcode 5afbb1ae, hex seed 055addaf.

55

8. Enter return in response to further prompts to generate the subtree. For a deeper sub-
tree, enter a greater number of forward time-steps at the previous prompt. This might
reach an attractor state, in which case the whole basin will be generated with the message
subtree=basin in the top-right data window.

9. Enter return for the next mutant.

10. Enter q to interrupt and backtrack up the prompt sequence.

To highlight the “root” state as a bit pattern, backtrack to basin parameters , enter p for

display, then return until the prompt highlight attractor (or subtree root . . . : enter 1.
There are various ways of displaying states or nodes in basins, described in section 26.3.

4.7 Space-time patterns — SEED-mode or TFO-mode

Space-time patterns can be run in either SEED-mode (based on rcode) which also allows
single basins, or alternatively TFO-mode, where basin functions (and prompts) are disabled,
so space-time patterns become the only possibility, and rules are restricted to totalistic rules
expressed as tcode or kcode, with shorter rule-tables than rcode, allowing larger [v, k]. This is
decided at the very first prompt (section 6.2.1), where initially FIELD-mode is active,

Exit-q, graphics setup-g, randseed-r, TFO:totalistic/forward only-t
SEED:forward only/single basin/subtree-s (FIELD-def):

Enter s for SEED-mode — the main sequence prompts continue, or enter t for TFO-mode —
the first prompt changes to,

EXIT-q graphics setup-g randseed-r, disable TFO allow basins-b
TFO:totalistic rules and forward only (def:) (this line in red)

Enter return to accept TFO-mode and continue, or b to revert to FIELD-mode.
SEED-mode allows either single basins (the default) or space-time patterns. The choice is

made after the main prompt sequence, at the basin parameters banner, and the prompt

. . . space-time pattern only-s.

Entering s changes the banner to space-time parameters and presents the space-time

pattern options (section 31.1),

accept all space-time defaults-d
revise from: start/misc-ret updating-u
revise from: entropy-e damage-m attractors-a skeletons-s: (skeletons for v=2 only)

In TFO-mode, these prompts are presented directly, after the main prompt sequence.

4.8 1d space-time patterns

Backtrack with q (or right mouse button) to the very first prompt.

1. At the very first prompt, enter s for SEED-mode.

56 CHAPTER 4. QUICK START EXAMPLES

Figure 4.9: A space-time pattern of a 1d v2k5 complex CA, rcode(hex) e9f6a815, n=150. About 360
time-steps, including some analysis shown by default. Left: the space-time pattern colored according
to neighborhood, and progressively “filtered” at three times with key f, suppressing the background
domain to show up “gliders” more clearly. Center: the input-entropy/time plot. Right: the lookup
frequency histogram for the last time step shown.

2. At the prompt Network size . . . : select 150.

3. At the prompt Neighborhood size k: . . . select 5.

4. Enter return until the top-center basin parameters banner appears, then enter s for

space-time pattern only — the top-center banner changes to space-time parameters
.

5. At the next prompt, accept all space-time pattern defaults-d, enter d to skip special
options. The 1d space-time pattern is generated, scrolling upwards, on the left of the screen.
To the right is a histogram of the lookup frequency for each neighborhood relating to a
window of 10 time-steps, and a plot of the entropy of this histogram, the “input-entropy”.
The on-the-fly key index on the right of the screen gives a complete list of immediate
changes that can be made with a keyhit (section 32.1). Some of these options are repeated
on the right of the bottom title bar. Try the following (or any other) to see what happens:

g . . . to change the rule to a “complex” rule, chosen at random from a database of complex
rules in the file g v2k5.r s, available in the “ddextra” download.

3 . . . to toggle cell color according to the lookup neighborhood or the value.

57

u . . . to toggle the input-entropy - density plot.
4 . . . for a new random initial state.
f . . . to progressively “filter” the space-time pattern, and a to restore the unfiltered pattern.
1 . . . for a random “bit-flip” (mutate one output in the rule-table), and 2 to flip back.

If “bits” are flipped successively with key1, key 2 will flip them back in reverse order.
e/c . . . enter e or cto expand or contract the scale of the space-time pattern.

6. Enter q to pause, a top-right prompt appears with further options 32.16. For example, to
select or revise a particular rule enter v. A bottom-right prompt appears, enter return, then
h for the new rule in hex, and enter the hex characters e9f6a815 for the rcode in figure 4.9,
then enter return until the space-time pattern continues from where it left off, but with the
new rule.

7. Enter q to backtrack further.

4.8.1 1d ring of cells, and scrolling the ring

A 1d CA has periodic boundaries, effectively a ring or circle of cells. Space-time patterns can be
displayed as a movie of the changing patterns on this ring (section 32.19, figure 32.42), and the
ring itself can be scrolled, making a scrolling tube (figure 4.10).

To display the ring alongside the normal space-time pattern (figure 4.9) proceed as follows,

1. Set up the normal space-time pattern as in section 4.8.

2. Enter q for the interrupt prompts, then g to show the network as a graph, then return. A
circle of cells will appear.

3. Enter q to exit the graph and continue. On-the-fly changes work on the circle as well as the
normal space-time pattern.

4.8.2 Scrolling the ring

To display the ring and make it scroll, proceed as follows,

1. Set up the normal space-time pattern as above in section 4.8.

2. Enter T on-the-fly to toggle the display from 1d space-time pattern to 2d.

3. Enter q for the interrupt prompts (section 32.16), then g to show the network as a graph,
then return. A circle of cells will appear. The appearance/position of the ring can be altered
(chapter 20) but the default setting will be fine.

4. Enter q to exit the net-graph prompts and continue. Space-time patterns will play out as a
movie on the ring.

5. Enter # to toggle scrolling the ring on/off.

6. Enter J to toggle hiding the scrolling 2d space-time pattern which may be also superimposed
on the ring.

Initially the ring will move diagonally towards the bottom-right, then scroll diagonally upward,
so that the present moment is the ring at the bottom-right.

Most on-the-fly options work as usual with the ring. Try the following keyhits,

3 . . . to toggle to cell color; according to the lookup neighborhood or the value.
@ . . . to toggle the cell outline.

58 CHAPTER 4. QUICK START EXAMPLES

Figure 4.10: A 1d space-time pattern shown as a ring of cells scrolling diagonally upward — a scrolling
tube. The present moment is the ring at the bottom-right — the closest ring. The space-time pattern is
colored according to neighborhood, and has been filtered. 1d CA, v2k5, rcode (hex) e9f6a815, n=150.

c . . . to contract (or e expand) the spacing between successive rings (time-steps).
4 . . . for a new random initial state.
f . . . to progressively filter, a to totally unfilter.
4 . . . for a new random initial state.
<. . . (repeatably) to slow down, > to restore full speed.

4.8.3 Multi-value 1d space-time patterns in TFO-mode

Set TFO-mode at the first prompt as described in section 4.7, then procede as follows,

1. At the second prompt, value-range . . . : select 8, the current maximum in DDLab.

2. At the prompt Network size . . . : select 150.

3. At the prompt Neighborhood size k: . . . , select 7.

4. Enter return until a top-center space-time parameters banner appears, together with

the top-right prompt accept all space-time pattern defaults-d — enter d to skip special
options.

A space-time pattern is generated, scrolling upwards on the left of the screen, as in section 4.8.
Because of high [v, k], the randomly selected rule will appear extremely disordered, with high

59

Figure 4.11: A 1d CA with a filtered Altenberg rule, kcode v8k7, n=150, where the probability of a
rule-table output depends on the fraction of colors in its neighborhood. On the right the color density
is plotted for each of the 8 colors, relative to a moving window of 10 time-steps.

entropy. To set a rule with a much more ordered pattern, as in figure 4.11 Try the following
on-the-fly keyhits,

A . . . for an totalistic “Altenberg” rule, where the output of each neighborhood relates to
the fraction of colors in the neighborhood (section 16.9).

s . . . to toggle between input-entropy and the density plot, the fraction of colors relating
to a moving window of 10 time-steps.

r . . . for a random rule, followed by A for another Altenberg rule, and 4 for a random
initial state.

f . . . to filter the space-time pattern repeatedly as required (unfilter with a). This highlights
domain boundaries (figure 4.11). Filtering applies only if the input-entropy plot is
active.

5 or 6 . . . for a singleton seed, one random non-0 cell against a uniform background of 0s (5),
or a random singleton seed against a random but different uniform value or color (6).
Note that the pattern symmetry is conserved however many times the totalistic rule
is changed (try with r) because totalistic rules are isotropic.

4.8.4 Noisy space-time patterns

Its possible to introduce noise for any space-time pattern updating, in the 1d examples above, and
the 2d and 3d examples to follow. To do this:

While space-time patterns are running, enter one of the curly brackets on-the-fly, { for update
probability, } for output probability, which toggles between correct updating and 95% of cells
updating at each time-step, or 95% correct and 5% updating randomly, where 95% is the initial
default setting for both types of noise, which can be combined. Try this with “complex” rules
(on-the-fly g, section 4.8), and with the “Altenberg” rules (on-the-fly A, section 4.8.3).

Changing the default settings is described in section (section 31.4).

60 CHAPTER 4. QUICK START EXAMPLES

4.9 2d Space-time patterns

The 2d lattice is defined in the first top-right wiring prompts that appear after Neighborhood . . .
during the main prompt sequence, starting with,

WIRING: special-s load-l random-r
local: 3d-3, 2d-2(hex+x square+s), 1d-def:

Subsequent top-right prompts reset the network size n and neighborhood size k — previous
main sequence settings are superseded.

normal presentation by value

colors by neighborhood look-up

Figure 4.12: Space-time patterns of the 2d game-of-Life, (k=9, n=66×66) with time-steps stacked
below each other in a isometric projection scrolling upwards. Left: starting from the “r-pentomino”
seed. Center: re-scaled to the smallest scale, with new seeds set on-the-fly at intervals.
Upper Right: The state at time-step 230. Lower Right: the same state colored according to the
neighborhood look-up instead of the value.

61

f1 — frozen purple, rest by value f2 — frozen 1s red, 0s green bin — frequency bin colors

Figure 4.13: Space-time snapshots of the game-of-Life (k=9, n=66×66), time-step 230 as in
figure 4.12, but showing three alternative “frozen” presentations set on-the-fly (section 32.11.1). This
produces a time-trail behind gliders.

4.9.1 2d space-time patterns — game-of-Life

Backtrack with q (or right mouse button) to the start of the program.

1. At the very first prompt, enter s for SEED-mode.

2. At the second prompt Value range . . . : enter 2.

3. Enter return until the top-right WIRING: prompt window appears, and enter 2s for a
hexagonal lattice.

4. At the next top-right prompt, 2d, enter width (def-40): enter 66, which is followed by
depth (def 66): enter return, for a 66× 66 square lattice.

5. At the next top-right prompt,
Neighborhood size k: kmix-m, or enter 1-13 (def 3): enter 9.

6. Enter return until the main sequence prompt for rule selection appears,
Select v2k9 rcode (S=512): . . . select life-L for the “game-of-Life”. The lookup-table of
the rule will be displayed as a bit pattern.

7. Enter return until the prompt Select SEED (v2 2d ij=66,66) . . . : enter return for
a random block. Alternatively select empty-e to “empty” all cells to zero, then load-l to
load a seed, then enter the filename “pento” at the LOAD SEED. . . prompt. This is the

“r-pentomino” pattern that guarantees gliders. Alternatively, enter bits2d-b to draw the
seed (section 21.4).

8. Enter return until the top-center basin parameters banner appears, then enter s for

space-time pattern only.

9. The top-center banner changes to space-time parameters with the top-right prompt,

accept all space-time pattern defaults-d, enter d to skip special options.

The 2d space-time pattern is generated in the top-left corner of the screen. The on-the-fly
key index appears on the right of the screen. Try the following on-the-fly keyhits (among others)
to see what happens.

62 CHAPTER 4. QUICK START EXAMPLES

Figure 4.14: Space-time patterns of the game-of-Life (k=9, n=66×66) consisting of time-steps stacked
in front of each other in a isometric projection scrolling diagonally upwards, with new seeds set at
intervals, and alternate time-steps skipped.

3 . . . to toggle cell color — according to the lookup neighborhood or the value.
h . . . to toggle three ways of displaying “frozen” regions — the stability of the pattern

(figure 4.13).
o . . . to restore the original seed.
t . . . to toggle between the 2d display and an isometric projection scrolling vertically upwards.

. . . to toggle between the 2d display and an isometric projection scrolling diagonally upwards.
P . . . to toggle skipping alternate time-steps.
k . . . for a new random central block. 4 for a fully random seed.

e/c . . . to expand/contract the scale of the space-time pattern.

Enter q to interrupt and backtrack up the prompt sequence.

63

(a) v2k7 majority rule
tcode=11110000.

(b) v2k7 modified majority rule
tcode=11101000.

Figure 4.15: 2d space-time patterns of a v2k7 CA on a hexagonal grid (240x240), from a random
initial state showing aggregating behavior.

4.9.2 2d Space-time patterns — binary totalistic rules

Backtrack with q (or right mouse button) and follow steps 1 and 2 as for the game-of-Life
(section 4.9.1).

1. Enter return until the top-right WIRING: prompt window appears, and enter 2x for a
hexagonal lattice. Any previous network and neighborhood size settings will be superseded.

2. At the next top-right prompt, 2d, enter width (def-40): enter 240, which is followed by
depth (def 240): enter return, for a 240× 240 hexagonal lattice.

3. At the next top-right prompt,
Neighborhood size k: kmix-m, or enter 1-13 (def 9): enter 7.
This results in a hexagonal 2d lattice, where each cell has 6 nearest neighbors.

4. Enter return until the main sequence prompt totalistic: tcode-t...: enter t.

5. At the prompt Select v2k7 rule (S=128) . . . : select select maj-m. The lookup-table of
the majority rule will be displayed as a bit pattern with a flashing cursor on the left bit.
Enter return to accept the majority rule 11110000 for figure 4.15(a), or first modify the bit
pattern to 11101000 (enter 1 or 0, arrow keys to move) for figure 4.15(b).

6. Enter return until the prompt Select SEED (v2 2d ij=66,66)...: enter rnd-r for a random
seed, then all-a for “all” of the lattice, as opposed to a central block.

7. Enter return until the top-center basin parameters banner appears, then enter s for

space-time pattern only.

8. The top-center banner changes to space-time parameters with the top-right prompt,

accept all space-time pattern defaults-d, enter d to skip special options.

The 2d space-time pattern is generated in the top-left corner of the screen. The on-the-fly
key index appears on the right of the screen. Try the previously mentioned keyhits, or any others
listed.

64 CHAPTER 4. QUICK START EXAMPLES

(a) v3k6 kcode(hex)=0a0282815a0154 giving
spiral structures, from a random initial state.

(b) v3k6 kcode(hex)=a0468298295220 (set at
random) from a singleton seed.

Figure 4.16: 2d space-time patterns, v3k6 k-totalistic 2d CA on a hex lattice (240x240).

4.9.3 Multi-value 2d space-time patterns in TFO-mode

Backtrack with q (or right mouse button) to the start of the program.

1. At the very first prompt, enter t for TFO-mode, if not already active.

2. At the second prompt Value range . . . : enter 3.

3. Enter return until a top-right WIRING prompt window appears,
WIRING: special-s load-l random-r
local: 3d-3, 2d-2(hex+x), 1d-def: enter 2x for hexagonal 2d wiring.
Any previous network and neighborhood size settings will be superseded.

4. Enter return until the top-right prompt, 2d, enter width (def-40): enter 240, then at
the continuation prompt depth (def 240): enter return, for a 240× 240 lattice.

5. At the next top-right prompt,
Neighborhood size k: kmix-m, or enter 1-25 (def 3): enter 6.
This results in a hexagonal 2d array, where each cell has 6 nearest neighbors.

6. Enter return until the main sequence prompt
totalistic only: outertot-o/+o, tcode-t, (def-kcode): enter return for kcode.

7. At the prompt Select v3k6 rule . . . : enter h to specify the kcode in hex. Then enter
0a0282815a0154 for the kcode in figure 4.16(a). To correct an entry use backspace or the
arrow keys.

8. Enter return until the prompt Select SEED (v3 2d ij=240,240), . . . : enter return for
a random central block.

9. Enter return until the top-center space-time parameters banner appears, with the top-

right prompt, accept all space-time pattern defaults-d, enter d to skip special options.
To activate input-entropy, the default for 1d as figure 4.9, first enter e twice.

The 2d space-time pattern is generated in the top-left of the screen. The on-the-fly key index
appears on the right of the screen. Try the previously mentioned keyhits, or any others listed.

Enter q to interrupt and backtrack up the prompt sequence.

65

(a) 3d CA 20×20×20,
random v2k7 from a singleton seed

(b) 3d CA 40×40×40,
v2k7 tcode=11101000

Figure 4.17: Examples of a 3d v2k7 CA, with a neighborhood arranged as a 3d cross. The projection
is isometric seen from below, as if looking up at the inside of a cage. Cells are shown colored according
to neighborhood lookup for a clearer picture (instead of by value: 0,1).
(a) a snapshot (20×20×20) with a randomly selected rule from a singleton seed.
(b) a snapshot (40×40×40) — the maximum size DDLab supports, from an initial state set at random,
but with a bias of 45% 1s. The rule is the same as in figure 4.15(b) showing aggregating behavior.

4.10 3d Space-time patterns

The 3d lattice is defined in the first top-right wiring prompts that appear after Neighborhood . . .
during the main prompt sequence, starting with,

WIRING: special-s load-l random-r
local: 3d-3, 2d-2(hex+x square+s), 1d-def:

Subsequent top-right prompts reset the network size n and neighborhood size k — previous
main sequence settings are superseded.

4.10.1 3d Space-time patterns — examples

Backtrack with q (or right mouse button) to the start of the program.

1. At the very first prompt, enter s, enter s for SEED-mode, or t for TFO-mode.

2. Enter return until the top-right WIRING: prompt window appears, and enter 3 for a 3d
hexagonal lattice.

3. At the next top-right prompt, enter the width, depth and height.

3d, enter width (def-9): depth (def 9): height (def 9):

The maximum cube would be 40× 40× 40. The lattice has 3-torus boundary conditions.

66 CHAPTER 4. QUICK START EXAMPLES

4. At the next top-right prompt,

Neighborhood size k: kmix-m, or enter 1-13 (def 6): enter 7.

The neighborhood is arranged as a 3d cross.

5. Enter return to accept further defaults, including the rule and seed, until the top-center
output parameters banner appears (for SEED-mode), then enter s for space-time

pattern only. For TFO-mode this step is omitted.

6. The top-center banner changes to space-time parameters with the top-right prompt,

accept all space-time pattern defaults-d, enter d to skip special options.

The 3d space-time pattern is generated in the top-left of the screen. The on-the-fly key index
appears on the right of the screen. Try the previously mentioned keyhits, or any others listed.

Enter q to interrupt and backtrack up the prompt sequence.

4.11 “Screen-saver” demo

Figure 4.18: Screen-saver demo for Cellular Automata, v=3, k=3, n=10. Single basins with rules and
initial states chosen at random are generated at random positions in the DDLab screen. Keys E/C
expand/contract the scale on-the-fly.

67

The “screen-saver” demo2 provides a continuous show of single basins of attraction or subtrees
popping up on the screen, generated at random positions, from random seeds, and according to
the network architecture selected. For each successive basin (or subtree) the rules or wiring are
mutated as specified in chapter 28 — the default is a random rule. For larger systems its unlikely
that the same basin would ever repeat.

For a screen-saver demo of a CA similar to figure 4.18, backtrack with q (or right mouse
button) to the start of the program.

1. At the very first prompt, enter s for SEED-mode.

2. At the second prompt Value-range v (def 2, max 8): select 3.

3. At the Network size . . . prompt, select 10.

4. At the Neighborhood size k: . . . prompt, select 3.

5. Enter return until the top-center basin parameters banner appears, then enter all-a to

restore all defaults, then return until the savescreen demo -s prompt; enter s to accept
the option.

6. Then enter d to accept all further defaults, then return twice — the demo will start. The
rule picked at random will be shown in the bottom rule-window.

On-the-fly changes can be made while the savescreen demo is in progress (section 30.3). Keys
E/C expand/contract the basin scale Keym toggles the state-space matrix (section 4.3) – toggling
this off also gives a clean slate subsequent basins. Key s toggles the display of the “backwards”
space-time patterns (section 4.3). Enter q to interrupt and backtrack up the prompt sequence.
Try the savescreen demo with other setting of v, n, anf k.

4.12 RBN and DDN
Until now, the Quick Start Examples have dealt with cellular automata, which have a homo-
geneous local wiring template and a single rule throughout the network. A random Boolean
network (RBN), or the more general Discrete Dynamical Network (DDN, where v ≥ 3), departs
from CA network architecture by allowing each cell in the network to have different nonlocal
wiring, a different rule, and a different number of inputs, k, or any combination of the above.
However, the value-range v must be homogeneous. The network can be assigned a wiring scheme,
rule scheme and k-mix in a variety of ways, including randomly (with or without biases).

• just a wiring scheme may be set, the rule and k remain homogeneous, as in CA, by default.

• just a rule scheme may be set, the local wiring template and k remain homogeneous, as in
CA, by default.

• both a wiring scheme and rule scheme may be set, k remains homogeneous by default.
If v=2, this is what is usually understood as a random Boolean network (RBN).

• a k-mix may be set, which implies both a wiring scheme and a rule scheme, but the wiring
scheme remains local by default.

• a network with a k-mix, a nonlocal wiring scheme and a rule scheme may be set.

2See also section 24.8

68 CHAPTER 4. QUICK START EXAMPLES

To generate attractor basins and space-time patterns for DDN, for any combination of
parameters listed above, the preceding examples in sections 4.2—4.11 can be adapted as described
below. Note that running backwards for networks with non-1d-CA wiring employs a different
algorithm, with a greater computational load than for 1d CA wiring (section 1.6.1), so when
generating attractor basins for non-1d-CA wiring, v, k, and especially n, should be kept small,
and 2d or 3d networks should be tackled with caution.

1. For random wiring (chapter 12), at the first top-right wiring prompt,

WIRING: special-s load-l random-r
local: 3d-3, 2d-2(hex+x square+s), 1d-def:

2. select r for 1d random wiring — no further setting required.

3. select s for special wiring, which includes 2d or 3d random wiring, then follow further top-
right prompts as follows:

(a) 3d-3, 2d-2 (hex+x square+s), 1d-def: enter 2 for 2d.

(b) hand wire-h,
local 2d-2 (hex+x square+s), 1d-1, random-def:
enter return for random wiring.

(c) 2d: square edges, safe<255 max=2896 incr with causion!
enter i (def 40): j (def 40): enter return, or set the size.

(d) Neighborhood size k: kmix-m . . . select k (try 5), or enter m for mixed-k, in which
case there will be a series of further prompts to set the k-mix (section 9.3), but just
enter return for a random k-mix.

(e) bias random wiring:. . . these further options (section 12.5) can be skipped with d.

(f) Note: any new entries here for n and k will supersede earlier entries.

4. Whatever wiring is defined, local or random, in any dimension, the next top-right prompt
(similar to below) allows the wiring to be examined in detail, and amended (section 17.1),

2d network (122x122), review/revise, wiring only - rules not set
graph-g, matrix: revise-m view-M prtx-Mp
graphic:1d+timestep-1 circle-c 2d-2:

5. After totalistic:. . . in the main sequence of prompts, a top-right window appears with
options for a single rule or a rulemix (chapter 14),

RULES: single rcode (def), load rcodemix-l, list Post-P, nhood-matrix-a
mix: no limit-n, or set limit up to 200:

Enter n for a rulemix, or return for a single rule.

6. If a random k-mix is required, stepping back with q to the main prompt sequence prompt,

Neighborhood size k: kmix-m, or enter 1-13 (def 3): enter m.

Various further options to set and bias the k-mix are presented (chapter 9). If in doubt enter
return. For a random k-mix for a 2d or 3d network, first select the random wiring in 2d or
3d as above.

7. Once rules have been set in the main prompt sequence, top-right options are presented to
examine and amend the resulting network in detail, wiring and rules, similar to this (also
applicable to CA),

69

1d network (n=150), review/revise/learn, wiring and rcode
graph-g, matrix: revise-m view-M prtx-Mp
graphic: 1d+timestep-1 circle-c 2d-2:

• Enter return to skip and continue, q to backtrack.

• Enter 1, c, 2 (or 3 for 3d) to review the network as a wiring graphic, using the arrow
keys and mouse clicks to examine the wiring and rules of chosen elements (chapter 17).

• Enter m or M to review the network as a wiring matrix (section 17.2)

• Enter g to review the network as a graph, which can be rearranged by dragging nodes
with the mouse (chapter 20).

• The options above have their own follow-up options described in the section listed.

Having set up the RBN or DDN, follow the guidelines in previous sections in this chapter to
generate attractor basins (for example figures 2.5, 2.6, 8.7), and space-time patterns (for example
figures 2.7, 16.12, 32.23).

Chapter 5

Starting DDLab

This and the following chapters provide the detailed program reference, listing and explaining all
the various options and prompts with examples of DDLab’s behavior. Before tackling this part
of the manual, its a good idea to try some of the “Quick Start Examples” in chapter 4 to get a
feeling and flavour of DDLab. This chapter includes starting DDLab, the initial DDLab “screen”,
and some permanently available options to save, load and print the DDLab screen image.

In Linux-like systems run DDLab from a terminal (xterm) window rather than directly from an
icon on the desktop, because messages and data are often shown in the terminal. Before starting
DDLab, make sure you are in the directory containing the DDLab executable files, or in the
appropriate sub-directory (section 5.1). The executable files downloaded from the DDLab website
will be similar to the following,

ddlabz12 . . . for Linux-like operating systems
ddlabz12 dos32.exe . . . for DOS. dos4gw.exe and *.fon files must be in the same directory.

The files in dd extra.tar.gz are not essential for DDLab to run, but are required for some
functions. They can be placed in the DDLab directory, or in a subdirectory which can be changed
into within DDLab, or DDLab can be started from this subdirectory as shown in section 5.1 below.
In either case the subdirectory becomes the default directory for filing (chapter 35).

The latest instructions are provided in “readme” files such as dd linux readme z12.txt,
dd cygwin readme z12.txt, dd mac readme z12.txt, and dd dos readme z12.txt.

5.1 Running in Linux-like operating systems

For Linux-like systems (Unix, Linux, MacOSX, Irix, and Cygwin) enter,

ddlabz12 & . . . if “dot” is in your path.
./ddlabz12 & . . . if “dot” is not in your path.
../ddlabz12 & . . . from a subdirectory of the DDLab directory (containing the files in

dd extra.tar.gz).

i.e. the name of the executable followed by “&”, to retain control of the terminal (or xterm)
window, where information is often printed.

70

71

Figure 5.1: Typical graphical user interface when starting DDLab, with the command line argument
“-w” for a white screen.

On startup, the DDLab screen/window will appears, similar to figure 5.1. Information will
also appear in the terminal window showing if the system is a 32 or 64 bit, the resolution of the
computer monitor1, and the size of the DDLab screen within it, which is automatically set to a
reasonable size for any screen resolution.

Here are some examples of startup messages in terminal window,

64 bit system

Display=1366x678 DDLabScreen=925x694 ...for a ThinkPad

64 bit system

Display=1440x690 DDLabScreen=975x732 ...for a Mac PowerBook

32 bit system

Display=3200x1800 DDLabScreen=2165x1624 ...for a Dell XPS13

Finally, “Using backing store” indicates that the DDLab screen will be restored in the usual
way when covered by other windows or moved off the screen2.

5.1.1 Linux within Windows — Cygwin

Compiled versions of DDLab are provided for Cygwin (CygwinX), a freely available Linux-like
environment for Windows. For notes on running DDLab in Cygwin see the Cygwin readme file.

1The latest version, ddlabz12, is compiled in Ubuntu 18.04.6 LTS on a Dell Latitude E7270 laptop with a
resolution of 1920x1080 pixels.

2However, if DDLab is iconized, resized, or if the “desktop” (or “workspace”) is changed, the immediate current
contents in the screen may blank out, but the contents will reappear as DDLab continues.

72 CHAPTER 5. STARTING DDLAB

5.1.2 Linux within Windows — VMware Player

VMware Player allows Linux Ubuntu (and other Linux distributions) to be setup as a “Virtual
Machine” within Windows. Within this, the compiled DDLab Linux versions provided will run in
the usual way, or the source code can be recompiled if necessary.

5.2 DOS within Windows

DDLab code up to version ddlabz08 can be compiled for old fashioned DOS (MS-DOS)
in the Watcom compiler, now open source and freely available as Open Watcom 1.9
(http://www.openwatcom.org). DOS operation differs according to the chronology of Windows
versions, roughly as follows,

• In Windows 98 or prior, DDLab can run in pure DOS. There is an option “Restart the
computer in MS-DOS mode” where DOS takes over the whole screen. The resolution might
need to be changed to correspond to the monitor and graphics driver, otherwise fonts might
appear distorted (sections 5.7, 6.3.2).

• In later editions of Windows but prior to Vista and Windows7, DDLab can run from a DOS
“command line” window in low resolution, but this window can expand to full screen —
Alt+Enter toggles between the two.The initial resolution will be 640×480. Do not use the
program parameter -m or -h unless in full screen. In full screen the resolution should
be changed to correspond to the monitor and graphics driver (otherwise fonts may appear
distorted). However, before toggling back from a full screen to a DOS window, the resolution
must be changed back to “low” to avoid Windows warnings and unforeseen consequences. In
higher resolutions than 640×480 the mouse pointer will probably not be visible.

• In Vista, Windows7 and later, DOS no longer exists at the command line. However, DDLab
will run (slowly) in DOSBox, an open source MS-DOS emulator, intended for antique PC
games. For notes on running DDLab in DOSBox see the DOS readme file.

Enter ddlabz08 or the name of the DOS executable without the .exe extension. Alternatively,
from a subdirectory (ddfiles— containing the files in dd extra.tar.gz)3 of the DDLab directory,
enter ..\ddlabz06. This will keep files generated by DDLab in the ddfiles subdirectory.

Note that the Linux-like versions perform better, and are better supported, than the DOS
version, so Linux within Windows, either Cygwin (section 5.1.1) or VMware (section 5.1.2), are
better options than DOS.

5.3 Command line arguments

Command line arguments for various settings can entered after the executable name — first a
space, then a dash (-), then the arguments, without spaces, in any order, for example,

./ddlabz12 -wt & . . . for Linux-like systems, where & is the final entry.

3It may be necessary to copy the *.fon files into the ddfiles subdirectory.

http://www.openwatcom.org

73

The following command line arguments are available,

w . . . white screen
b . . . black screen (the default)
t . . . TFO-mode, totalistic rules and space-time patterns only - basins disabled

Additional commands for DOS only,

l . . . low resolution (VGA) 640×480
m . . . medium resolution 800×600
h . . . high resolution (SVGA) 1024×768

These setting can also be reset once DDLab starts.

5.4 The UNREGISTERED banner

On start-up (and also before exiting) an unregistered version of DDLab will first display the
following “UNREGISTERED” banner in the center of the screen. Press return to continue.
By registering (section 3.7) this annoying banner can be easily disabled.

UNREGISTERED, see www.ddlab.org, continue-ret:

5.5 Title bar

On start-up of a registered version (or if return is entered at the “UNREGISTERED” banner)
DDLab’s graphical user interface appears as described in figure 5.1. A title bar is displayed across
the foot of the screen, including a copyright reminder, the current mode if set (TFO, SEED, or
FIELD), and some reminders of key presses which can be activated whenever the prompt cursor
is flashing.

DDLab c©1993-2024 advance-ret back/interrupt-q screen:print/save/load-@/>/<

key press reminder . . . what it means — permanently displayed
advance-ret . . . enter return (or click the left mouse button) to register entries

to prompts (or accept defaults) and advance through the prompt
sequence.

back/interrupt-q . . . enter q (or click the right mouse button) to backtrack through
prompt sequence or to interrupt a run.

key press reminder . . . what it means — displayed while the prompt cursor is flashing
screen:print-@ . . . enter @ to print the DDLab screen image, described in section 5.6.2.

screen:save/load >/< . . . enter > to save, or < to load the screen image as a .nat file,
in DDLab’s own format, described in section 5.6.1.

The title bar displays other on-the-fly options while generating attractor basins (section 30.3),
or space-time patterns (section 32.2).

74 CHAPTER 5. STARTING DDLAB

5.6 Saving, Loading and Printing the DDLab screen

The screen image can be saved and loaded within DDLab itself using its own file format.
Alternatively the screen image can be saved and printed as a PostScript file for Linux-like systems.
These options are permanently available while the prompt cursor is flashing.

5.6.1 Saving and Loading the screen in DDLab’s own format

DDLab has its own file format *.nat for saving and loading the DDLab screen image, which works
for both Linux-like and DOS versions. If > or < is entered at any time when the prompt cursor
is flashing, the following top-right prompt is presented,

SAVE SCREEN-filename(no ext) .nat will be added (if > is entered)

or
LOAD SCREEN-filename(no ext) .nat will be added (if < is entered)

then
change dir-d, now: /home/andy/sussex/ddlabz08: (for example)

list-?, quit-q, default myimage:

Filenames within DDLab (for all systems) follow the old DOS conventions: eight characters
plus a three character extension. Enter the filename without the extension (.nat) which is added
automatically, or accept the default filename myimage. There are further details on these filing
options, changing directory and listing files, in chapter 35.

When loading a texttt*.nat file there is a further option,

filename=myimage.nat REVISE-q keepscreen-k cont-ret: (for example)

Enter return to overwrite the existing screen with textttmyimage.nat, or k to add it on top.
Note that a DDLab screen image loaded as above can subsequently be saved and printed as
described in section 5.6.2 below for Linux-like systems.

5.6.2 Saving and Printing the screen in Linux-like systems

If @ is entered at any time when the prompt cursor is flashing, the DDLab screen can be printed
to the default printer, or saved as a bitmap PostScript *.ps file4. In the DOS version, although
this option to print (but not to save) still exists, it only works for some ancient printers, so is not
recommended.

In Linux-like versions of DDLab, the following prompt is presented,

save/print: without frame -s/p, with frame -S/P, no greyscale +n
then click mouse button in window, quit-q:

Enter s or S to just save, or p or P to save and print, were lowercase selects the DDLab screen
without its frame. Add n (i.e. sn) to save or print in black only, i.e. suppress greyscale or colors
- some lighter colors will not be printed.

On pressing return the cursor becomes a cross-hair,+ or×. Make sure this cursor is within
DDLab and click the left mouse button. The DDLab screen image will be saved as a bitmap

4A PostScript file can be viewed with GhostView, in a terminal enter textttgv filename.ps.

75

Figure 5.2: The main sequence of prompts, for the most commonly applicable 1d CA parameters, are
presented down the left side of the screen, other prompts occur in various pop-up windows, for example
in the top right hand corner.

PostScript file called temp window file.ps (size about 285k) in the current directory. If printing
was selected, the file will be sent to the default printer. While this is happening the message wait
will appear in a top right window, followed by,

done - press any key to continue:

This reverts the program to the place before printing was selected. Note that the PostScript
file temp window file.ps remains current until overwritten with another print instruction5.

The following messages might show up in the terminal window,

pnmtops: writing color PostScript...

xwdtopnm: writing PPM file

pnmtops: warning, image too large for page, rescaling to 0.7 (for example)

The last indicates that the size of the DDLab screen was too large for the printer paper size, so
was automatically rescaled to fit. If the following error message is shown in the top-right window,

could not print --- xwdtopnm not found

or the following appears in the terminal window,

5To convert the PostScript to a PDF file, enter ps2pdf filename.ps in the terminal. The command to print a
postscript file from the terminal is (for example) lpr -Pprintername filename.ps.

76 CHAPTER 5. STARTING DDLAB

You need to set the environment variable ""XWDTOPNM PATH""

to the full path of your xwdtopnm to print in greyscale

. . . consult your systems manager.
A more versatile way to save/print the DDLab screen, or a selected parts, is with XV6, or

another screen grabber. XV can grab, save, scale and print the image in one of the many file
formats, including GIF and bitmap PostScript. available.

5.6.3 Printing the screen in DOS

In DOS, the option to enter @ to print the DDLab screen is retained, but is largely redundant
because it only works for some ancient printers (Epson MX-82 dot matrix, Cannon BJC 4000
bubble jet). The alternative is to use a DOS or Windows compatible screen grabber.

5.7 DDLab version and graphics info

On startup a DDLab screen appears similar to figure 5.1, with information in a top-right similar
to this,

Linux-like systems
ddlabz12 64bit Aug2024 res=1229x975 pt=14 randseed=3149538066
mouse buttons: left=ret right=’q’=backtrack

DOS — screen resolution is 640×480, 800×600 or 1024×768
ddlabz08 32bit Aug2024 res=640x480, randseed=24081
mouse found: buttons: left=ret right=’q’=backtrack (if a mouse is detected)

or mouse not found: . . . (probably because of a missing DOS mouse driver)

This shows the following,

ddlabz12 . . . the version of DDLab — check the latest at http://www.ddlab.org
64bit . . . 32bit CPU, or 64bit CPU. 32bit works on a 64bit CPU but not vice-versa.

Aug2024 . . . the release date.
res=1229x975 . . . DDLab screen resolution, which can be reset.

pt=14 . . . the current text point size, which can be reset (also it weight).
randseed=3149538066 . . . the random number “seed”, 32bit CPU unsigned short int, 64bit CPU

unsigned long int. The random number seed changes each time DDLab is
run, and can be reset to exactly repeat default parameters.

mouse buttons . . . a reminder that the left mouse button is equivalent to return, and the
right mouse button is equivalent to q for backtracking through prompts.

In Linux-like systems the default DDLab screen resolution is automatically set to fit comfortably
within the computer monitor, but can be resized by dragging with the mouse in the usual way, or
set to an exact size (section 6.3.1). In either case the text size will attempt to resize according to
the screen width but can be reset manually

In DOS the default screen resolution is 640×480 pixels (VGA), but can be set higher within
DDLab (section 6.3), or with a command line argument (section 5.3). In DOS, the resolution
should be reset to higher (or lower) only when DDLab in full screen mode.

6http://www.trilon.com/xv/ (enter xv & in the terminal)

http://www.ddlab.org
http://www.trilon.com/xv/

77

5.8 The mouse pointer in DOS

In DOS and Windows the mouse pointer behaves as it should in VGA resolution (640×480),
and also in higher resolutions (SVGA) in Windows95 and prior. However, in Windows98 and
above, at higher resolution only, the mouse is recognised and present (its position can be tracked),
but it is not visible. This remains an unresolved problem.

5.9 Memory (DOS only)

DDLab allocates and frees memory as required. In DOS the RAM available is monitored, mainly
for diagnostic purposes. A top-center “memory window” shows the amount of RAM available
in bytes (including extended memory), for example mem=349049312 which is frequently
updated. Other information is also displayed in this window from time to time.

5.9.1 Virtual Memory
skip this section unless your computer is antique

You may create a swap file on disk to augment RAM, using Watcom’s “Virtual Memory Manager”
(VMM), and use more memory than your computer actually has. When RAM is not sufficient,
part of the program is swapped to the disc file until needed. The combination of the swap file and
available RAM is the virtual memory.

To specify virtual memory, set the DOS environment variable, dos4gvm by entering the following
at the DOS prompt,

set dos4gvm=[option[#value]] [option[#value]]...

or
set dos4gvm=1 to accept all defaults

the VMM options and default values are listed below,

minmem . . . the minimum amount of RAM managed by VMM, default 512KB.
maxmem . . . the maximum amount of RAM managed by VMM, default 4MB.

swapname . . . the swap filename, default dos4gvm.swp in the root directory.
virtualsize . . . the size of the virtual memory space, default 16MB.

For example, typing

set dos4gvm=maxmem#8192 virtualsize#32768 swapname#c:\ddlab\ddlab.swp

. . . at the DOS prompt before running DDLab gives 32MB of virtual memory in a swap file called
ddlab.swp in the ddlab directory. The virtual memory available will be displayed in the memory
window (section 5.9).

78 CHAPTER 5. STARTING DDLAB

5.10 DDLab prompts, and backtrack

On startup, the first of a series of prompts is displayed, described in chapter 6.2. A flashing cursor
(usually green) prompts for input. Just enter return if in doubt, or the appropriate input from the
keyboard. Press q, backspace (or the right mouse button) to revise, return (or the left mouse
button) to accept and move on to the next prompt or routine. Just return (or left mouse button)
automatically selects a default.

To backtrack to the preceding prompt, or up the prompt sequence, or to interrupt a running
process such as space-time patterns or attractor basins, enter q (or right mouse button).

5.10.1 Prompts: main sequence and pop-up windows

Prompts occur in a main sequence for the most common 1d CA parameters, and also in various
pop-up windows for RBN/DDN, 2d and 3d networks, network architecture graphics, analytical
measures, data collection, presentation settings, and other special settings. Note that for 2d and
3d CA, and RBN/DDN, the main sequence prompts for the network “wiring” and neighborhood
size are superseded in the first pop-up window, labelled “WIRING”.

5.11 Exit DDLab

To exit DDLab immediately in Linux-like systems, enter Ctlr-q at any prompt. Otherwise
continue backtracking with q (required for DOS) beyond the start of the program. The following
central prompt will appear,

EXIT DDLab-q, Restart-ret:

Enter q to exit (or return to restart). On exiting, the following message should appear in the
terminal, or at the DOS or command line prompt: DDLab clean exit. If not, a bug report would
be appreciated.

Chapter 6

The first prompt in DDLab

Prompts in DDLab are presented in a main sequence down the left side of the screen for the most
commonly applicable parameters including 1d CA. Other prompts are presented in various pop-up
windows (figure 5.2).

This chapter describes the very first main sequence prompt (figure 5.1) which makes basic
choices that set the stage for all subsequent DDLab operations: TFO-mode, SEED-mode, and
FIELD-mode (the default), and a new “exLimits” option (section 6.2.4) for extra limits which
allows greater (but risky) neighborhood size k, and network size n (sections 7.2 and 7.3). The first
prompt also provides pop-up windows to amend the graphics, and the random number seed.

6.1 TFO-mode, SEED-mode, FIELD-mode

• TFO-mode: constrains DDLab to run “forwards-only” for space-time patterns, at the same
time limiting the rules to various types of totalistic, outer-totalistic and reaction diffusion
rules. Totalistic rule-tables (tcode and kcode) are much smaller than full rule-tables (rcode).
All attractor functions, which depend on rcode (and their prompts) are disabled in TFO
mode. These constraints reduce memory load, allowing larger neighborhoods (section 7.2).
Selecting and deselecting TFO-mode can only be made at this first prompt. TFO-mode
requires an initial state or seed, in the same way as SEED-mode (below).

• If DDLab is not constrained in TFO-mode (above), there is a further choice,

– FIELD-mode: to show the basin of attraction field, which does not require an initial
state (the seed).

– SEED-mode: show anything else (other than TFO-mode) which does require an initial
state or seed: running forward for space-time patterns, or generating a single basin of
attraction, or a subtree.

The FIELD/SEED-mode setting can also be swapped when attractor basins are complete
(section 30.4). Note that totalistic rules, kcode and tcode, can also be selected in FIELD
and SEED-modes, but in this case the equivalent rcode will be applied.

79

80 CHAPTER 6. THE FIRST PROMPT IN DDLAB

6.2 The first prompt

The first (main sequence) prompt in DDLab is as follows,

EXIT-q graphics-g randseed-r, TFO:totalistic/forwards onty-t
SEED:forward/single basin/subtree-s (FIELD-def) exLimits+L:

At the same time, a top right DDLab information window appears as described in section 5.7.

6.2.1 TFO-mode: totalistic forwards-only

Enter t to select TFO-mode. The first prompt changes:

EXIT-q graphics setup-g randseed-r, disable TFO allow basins-b
TFO:totalistic rules and forward only (def:) exLimits+L:

Enter return to continue in TFO-mode. Enter b to deselect TFO-mode, and restore the
original prompt in section 6.2.

6.2.2 FIELD, or a run requiring a SEED

If TFO-mode is not selected (section 6.2.1 above), a choice needs to be made between SEED and
FIELD-modes.

Enter return at the first prompt in section 6.2 for FIELD-mode (the default) to generate a
“basin of attraction field”, which does not require a seed because successive basins are seeded
automatically, starting with the null state (all 0’s).

Enter s at the first prompt in section 6.2 for SEED-mode, to generate any of the following,
which do require a predefined seed,

• forward space-time patterns, starting from a seed.

• single basin of attraction, containing a seed.

• subtree running backwards from a seed, or from a state downstream from the seed by a
predefined number of time-steps.

The seed will be set at later stages in the prompt sequence (chapter 21). Its easy to change
between forward, single basin and subtree at later stages.

6.2.3 Notice of the current mode

A reminder of the current mode set (TFO, SEED, or FIELD) will appear in the bottom title bar
(section 5.5), for example,

DDLab c©1993-2024 FIELD advance-ret back/interrupt-q screen:print/save/load–@/>/<

81

6.2.4 The exLimits option

To activate the “exLimits” (extended limits) option and allow greater (but risky) maximum sizes
of both the network nLim and the neighborhood kLim, enter L, or sL for SEED-mode, at the
first prompt (section 6). The resulting maximum sizes depend on your CPU and DDLab version1,
32-bit or 64-bit. The value-range v to be selected in section 7.1 also affects kLim (section 7.2), and
nLim for FIELD-mode (section 7.3). For SEED-mode and TFO-mode nLim is independent of v
(section 8.3). The following top-right notice (and prompt) is presented,

for SEED-mode, TFO-mode, or a 32-bit DDLab and CPU

caution! exLimits selected high values of k or n might exceed memory

for FIELD-mode and a 64-bit DDLab and CPU

caution! exLimits selected high values of k or n might exceed memory
enter total RAM+SWAP (def 4.00 GiB): (for a 32-bit CPU 0.5 GB)

With exLimits active, higher limits for the neighborhood size kLim will be offered in
section 7.1.1.

For FIELD-mode with a 64-bit CPU, nLim (section 7.3) can be increased from the basic limit
of 31 depending on available memory — random access memory (RAM) plus swap-space (SWAP).
The default RAM+SWAP avaliable is assumed to be 4.0 gigabytes. Enter return to accept the
default, or enter a different measure of gigabytes for your computer2. The available memory and
the value-range v will set nLim. For example, for 4.0 gigabytes and v=2, nLim=35. To increase
nLim by one usually requiers doubling available memory.

6.3 Graphics setup

Enter g in section 6.2 or 6.2.1 to change the window size, background color, font size and line
spacing (section 6.4), or flashing cursor speed (section 6.5). A new graphics screen shows the
current font and color palette. A top-right window gives prompts as below3. When the graphics
changes are complete the program will revert to the first prompt in section 6.2.

Unix/Linux
window size=925x694 resize/restore-w/W
character width=9 height=15 pointsize=10 revise/restore-s/S (for example)

colors: toggle background-b showold-o showall-a
flashing cursor speed-f quit-q cont-ret:

DOS
screen=640x480 change:1024x768-h 800x600-m (where h=high m=medium l=low)

colors: tog background-b
fontsize-s linespace-v
flashing cursor speed-f, quit-q cont-ret:

132-bit DDLab runs on a 64-bit CPU with 32-bit maximum sizes. 64-bit DDLab will not run on a 32-bit CPU.
2Memory information for Linux or Mac can usually be found by entering “cat /proc/meminfo” in a terminal.

One gigabyte (GB) = 10243 bytes, also known as a gibibyte (GiB).
3The same graphics setup prompt is available when running attractor basins (section 30.4) or space-time patterns

(section 32.17).

82 CHAPTER 6. THE FIRST PROMPT IN DDLAB

Figure 6.1: The smallest DDLab
screen in Linux, 300×250 pixels, that
can be set from the graphics setup
prompts. It is really too small to con-
tain prompts and data. This example
has the default black background.

In Linux-like systems, the initial resolution of the DDLab screen is set at 925×694, but can be
resized with the mouse in the usual way, or a particular size can be set from these prompts. In
DOS there are three alternative resolutions, given an appropriate monitor and graphics driver.

6.3.1 The DDLab screen resolution, Linux-like systems

Enter w in section 6.3 to resize the DDLab screen to a particular size in pixels, or W to restore
the start size 925×694. The following top-right prompt is presented,

new window size (start=925x694, min 300x250, max=1366x768)
width (default 925): (for example)

height (default 694):

The smallest size allowed by this method is 300×250 shown in figure 6.1 and the maximum
is the monitor size. The window can also be resized by maximising, or dragging a corner with
the mouse in the usual way. Note that when the window is resized the font size is automatically
changed to an appropriate size, but can be revised (section 6.4).

6.3.2 The DDLab screen resolution in DOS

Section 5.2 describes the DDLab screen in pure DOS, and in a DOS or command line window
in various versions of Windows, which can be toggled to full screen with Alt+Enter. Once in
full screen enter l, m or h in section 6.3 above to change the resolution, where l=low:6404×480,
m=medium:800×600 and h=high:1024×768. Take care to reset low resolution before toggling
back to the DOS or command line window, to avoid bad things!

In pure DOS, the program parameters -m or -h can be entered, i.e. enter ddlabm06 -h to start
in high resolution.

83

6.3.3 White or black background

Select b in section 6.3 to toggle between a black and white background. In both cases the new
color palette will be shown. A black background may look more elegant but is expensive in ink
when printing. References to colors in this manual are based on a white background. Colors on a
black background may be different. In DOS, toggling the background works in full screen, not in
a DOS window.

6.3.4 The color palette

The graphics screen shows a color palette of 16 colors (including black and white). In DOS just
these colors are used. In UNIX these are the main colors, but more colors are also used, and can be
seen by entering a (showall-a) in section 6.3, reverting to the 16 main colors with o (showold-o).
This feature is intended mainly for program development.

6.4 Changing the font size and line spacing

The default font size and spacing between lines of text can both be changed. The methods differ
between Linux-like systems and DOS.

6.4.1 Font size and line spacing, Linux-like systems

If s is entered in section 6.3, the following top-right prompts are presented in turn,

set new font size (min 7 max 35, now 10): weight, bold-2 medium-1
set new linespacing (now 15): (values shown are examples)

Enter the new font size, followed by weight, followed by new linespacing, or enter return
to accept defaults. The new settings will take effect immediately and appear in the Graphics setup
prompts (section 6.3) where they can be readjusted. Enter S to restore all the original defaults.

6.4.2 Font size, DOS

If s is entered in section 6.3, a new screen appears showing some text in numbered fonts of various
sizes, including a line segment font, and the following prompt,

font 5, to change enter font no: (values shown are examples)

Enter the font number corresponding to the new font.

6.4.3 Line spacing, DOS

If v is entered in section 6.3, the following top-right prompt is presented,

set new linespace (now 20): (values shown are examples)

Enter the new line spacing.

84 CHAPTER 6. THE FIRST PROMPT IN DDLAB

6.5 Changing the flashing cursor speed

The default cursor flash speed is set automatically at about 0.5 seconds independent of your CPU
speed. However this is not always reliable — to adjust the flash rate enter f in section 6.3. The
following top-right prompt is presented,

change flashing cursor speed(1.0): restore-r(1.0) or enter factor:

Enter a factor to slow down or speed up the current flash rate. For example to make it twice as
fast as the current speed enter .5. For twice as fast enter 2. To restore the default setting enter r.

6.6 Random number seed
A new random number seed is generated by the computer’s “timer” whenever DDLab is started.
To change the random number seed, enter r at the first prompt in section 6.2. A specific random
number seed can be set, or a random random number seed. The following prompt appears in a
top-right window,

enter random number seed 0-4294967295 (rnd-def):

Using the same random number seed results in the same sequence of pseudo random numbers
being produced by the random number generator. This allows identical multiple runs using
default random settings of network parameters such as wiring, neighborhood mix, rules and initial
state. Alternatively these setting can be loaded from previously saved files.

Chapter 7

Value-range v, and n,k limits

Figure 7.1: The cell value color key
top-left window appears when the
value-range is selected, and also at
other times, with the colors indexed
from v-1 to 0.
Right: The color key windows for
value-range v= 2 to 8, on a white
background.
Below: Colors are different on a black
background (section 6.3.3) — the
v=8 black background color key.

The “value-range”, v, available to a cell or network element, can be set from 2 to 8, which can
be thought of as the number of its potential internal states, colors, or the size of its “alphabet”.
Greater v limits the maximum neighborhood size kLim (section 7.2), and also, for basin of attrac-
tion fields, the maximum network size, nLim (section 7.3) — this chaper describes the basic and
extended limits. Note that for SEED-mode and TFO-mode, nLim is independent of v (section 8.3).

7.1 The value-range prompt

The value-range prompt, the second prompt in the main sequence, is as follows,

Value-range v (def 2, max 8): (v=2 on startup — then defaults to the last v that was set)

Enter a new value-range (which becomes the new default) or enter return to accept the default.
The selection of the value-range can only be made at this early stage in the program.

85

86 CHAPTER 7. VALUE-RANGE V , AND N ,K LIMITS

7.1.1 extending kLim with exLimits

If “exLimits” was activated in section 6.2.4, after the value-range prompt in section 7.1 above, the
following top-right prompt is presented to set an extended maximum neighborhood size, kLim,

change -/+ max neighborhood (kLimit): increase with caution!
enter new kLimit (def 13, max 27): (for basic v=2, FIELD mode, and 64bit CPU)

The maximum kLim (and the default) depends on the value-range v, the current mode —
FIELD, SEED or TFO, and your CPU and DDLab version, 32-bit or 64-bit, as set out in table 7.1.

For FIELD-mode and high walues of kLim, a top-right notice will monitor the progress of
setting up the rcode k-matrix (sections 13.3 and 13.5), for example,

setting up k matrix: abort-q: 32%

For higher values of kLim this can take some time1 — enter q to abort and revert to the
“extending limits” above.

7.2 Limits on neighborhood size, kLim

The upper limit of neighborhood size (kLim)2 decreases with increasing value-range v because
rule-tables become too large. The size, S, of a full rule-table (rcode) is given by S=vk, which is
larger than a k-totalistic rule-table (kcode) where S=(v+ k− 1)!/(k!(v− 1)!), so kLim is bigger in
TFO-mode (section 13.2.1).

Other factors affecting kLim are “exLimits” (extended limits), the option that allows high values
of k and n which may be risky (set in sections 6.2 and 7.1.1), and whether DDLab and your CPU
are 32-bit or 64-bit. All possibilities of kLim are set out in table 7.1 for v= 2 to 8, including the size
of the corresponding rule-tables, S, and this information is included in the prompts. There is a
distinction in kLim between “basic” limits — relatively safe sizes, and extended limits “exLimits”.

Note that kLim does not exceed 27 because this is the maximum k in predefined neighborhood
templates, described in chapter 10.1.

7.2.1 TFO-mode with high v, k

High values of v, k (values-range combined with neighborhood) as in table 7.1(b), can result in a
longish delay while constructing the v, k kcode tree, required in TFO-mode irrespective of whether
kcode or tcode is later selected.

While the kcode tree is being constructed (with no abort option) a top center panel monitors
progress as a percentage.

setting up kcode 95% (for example)

If this delay occurs, it will be after the “WIRING” prompt in section 11.1.

1About 20min for the highest kLim values with “exLimits” active, on my ThinkPad laptop running ubuntu 11.10.
2Note that kLim is different from kmax which is a deliberate selection of the maximum k in a k-mix, a network

with mixed neighborhood sizes, kmax ≤ kLim.

87

applies to 32bit and 64bit

basic — safe
FIELD/SEED TFO kcode

v kLim S kLim S
2 13 8162 27 28
3 9 19683 27 406
4 7 16484 26 33654
5 6 15629 25 23751
6 5 16807 17 26334
7 5 16807 13 27132
8 4 4096 11 31824

(a)

exLimits — risky > safe(a)
TFO kcode

v kLim S
2 27 28
3 27 406
4 27 4060
5 27 31465
6 27 201376
7 25 593775
8 20 888030

(b)

32-bit
exLimits — risky
FIELD/SEED

v kLim S
2 23 8388607
3 14 4782968
4 11 4194303
5 9 1953124
6 8 1679615
7 8 5764800
8 7 2097151

(c)

64-bit
exLimits — risky
FIELD/SEED

v kLim S
2 27 134217727
3 19 1162261466
4 15 1073741823
5 13 1220703124
6 11 362797055
7 11 1977326742
8 10 1073741823

(d)

Table 7.1: The upper limits of k (kLim) and the sizes S of rule-tables for different value-ranges v.
FIELD/SEED-modes (rcode) are capable of computing basins of attraction or subtrees. TFO-mode
(kcode or tcode) have smaller rule-tables so kLim can be larger. Other factors allowing greater but
risky kLim are “exLimits” and whether DDLab and your CPU are 32-bit or 64-bit.

basic — 32-bit and 64-bit — safe
v nLim vn≈billions memory≈GB
2 31 2.15 0.25
3 20 3.49 0.41
4 15 1.07 0.13
5 13 1.22 0.15
6 12 2.18 0.26
7 11 1.98 0.24
8 10 1.07 0.13

exLimits — 64-bit — 4.0 GB risky
v nLim vn≈billions memory≈GB
2 35 34.36 4.00
3 22 31.38 3.66
4 17 17.18 2.00
5 15 30.52 3.56
6 13 13.06 1.53
7 12 13.84 1.62
8 11 8.59 1.00

Table 7.2: For a basin of attraction field (FIELD-mode) the tables show the maximum network size,
nLim, for different value-ranges v, the corresponding maximum state-space vn in approximate billions,
and the memory required in gigabytes (GB). Left: basic nLim. Right: increased nLim with exLimit set
and default available memory of 4.0 GB — usually doubling memory increases nLim by one.
These limits also apply to the maximum number of most significant bits/values for the state-space
matrix (section 31.2.2.1).

88 CHAPTER 7. VALUE-RANGE V , AND N ,K LIMITS

7.3 Limits on network size for FIELD-mode, nLim

For basin of attraction fields (FIELD-mode) the upper limits3 of network size nLim decrease with
the increasing value-range v, as set out in table 7.2, and these limits are included in the prompts.
In practice much smaller sizes are advisable because of probable time/memory constraints. To
increase nLim beyond the basic settings (64-bit only), select “exLimits” in section 6.2, and set the
available memory (RAM+SWAP) as described in section 6.2.4 — the default is 4.0 GB.

7.4 exLimits risks and insufficient memory

Extending kLim or nLim to high values with “exLimits” can be risky because it can test your
available memory or your patience — attractor basins for large networks can take a long time.
Various progress reports and warnings are provided, but if RAM+SWAP is exceeded for any
reason DDLab usually exits gracefully with a top-left notice similar to the following,

insufficient memory for tickoff-FIELD (for example)

image: print/save-p/s, options-o
return to Exit:

If this fails for any reason, in Linux-like systems use “top” to “kill” the DDLab process.

7.5 Limits on network size — exhaustive algorithm, nexhL

The exhaustive reverse algorithm (section 29.7) relies on computing the sucessor of every sate in
state-space — a list of vn “exhaustive pairs”, so is highly sensitive to increasing network size n
but independent of neighborhood size k, though the kLim in table 7.1 still applies. The network
size limits nexhL for the exhaustive algorithm for both FIELD-mode and SEED-mode (single
basins and subtrees), are shown in table 29.1 and do not depend on “exLimits” (section 7.1.1).
The exhaustive algorithm applies to random maps (section 29.8) and sequential/asynchronous up-
dating (section 29.9), as well as providing an alternative reverse algorithm for CA, RBN and DDN.

3These limits are required so that the size of state-space vn is within the maximum value of an unsigned long
integer, 232-1 for a 32-bit CPU and 264-1 for a 64-bit CPU. This number is used to index bits in a char array that
identifies “used” states, and this array must also fit within available memory: RAM+SWAP.

Chapter 8

1d network size n, or range-n

This chapter describes setting the 1d network size n, or a range of sizes. Setting the size of 2d or
3d networks, as well as other special options, is done at a later stage (section 11.6) in which case
any 1d size will be superseded and can be ignored by entering return.

1d n is set here in the main sequence of prompts (as is k in section 9) to simplify setting up
CA attractor basins, which are usually 1d, and to run 1d CA forward for space-time patterns.

The chapter also looks at the upper limits of n in DDLab, and the practical computational and
speed limitations of combinations of v, k and n for attractor basins, with examples.

8.1 Setting range of sizes, 1d

In FIELD-mode, it is possible to generate a series of basin of attraction fields for a range of 1d
network sizes (figure 8.1), with the network size printed on the left of the screen. The presentation
is similar to the “Atlas” in “The Global Dynamics of Cellular Automata” [38]. In SEED-mode,
single basins or subtrees for a range of network sizes may also be generated. If not in TFO-mode,
the following main sequence prompt is presented,

range of network size-r:

If r is selected, top-right prompts are presented to set the start and end size of the network,

FIELD-mode range n: safe<=20 exceed with caution! nLimit=31
range size n: start (def 6): end (def 15): (for v=2)

SEED-mode range n: safe<=27 exceed with caution! nLimit=131071
range size n: start (def 13): end (def 18): (independent of v)

For FIELD-mode defaults depend on the value-range v, in SEED-mode they are independent
of v. Enter the start and end sizes, or enter return to accept the defaults, taking care to avoid
excessively large sizes (section 8.3 below). Maximum network sizes in FIELD-mode are shown
in table 7.2. In SEED-mode, large sizes1 are only practical for “chain rule” subtrees (see 16.11)
because of time/memory constraints.

1For 64-bit systems and exLimits set, nLimit=67108863 in SEED-mode

89

90 CHAPTER 8. 1D NETWORK SIZE N , OR RANGE-N

5.

6.

7.

8.

9.

10.

11.

12.

Figure 8.1: Basin of attraction fields for a range of network size 5-12. v2k4 rcode(hex)=61a4.

8.2 Setting the size of one network, 1d

If a range of sizes was not selected in section 8.1, the size of a single 1d network is set with the
next main sequence prompt — one of the following is presented, depending on the current mode
— FIELD, SEED, or TFO (selected at the first prompt, section 6.2),

for FIELD-mode

Network size n, max 31, default 10: (for v=2, max n depends on v, section 7.3)

for SEED-mode

Network size n, 1d (other: see WIRING), def 14:

for TFO-mode

Network size n, 1d (other: see WIRING), def 150:

Enter the required 1d network size, n. The 1d network size can also be set later as part of
the wiring options (chapters 11 to 12), where 2d or 3d network sizes are set, in which case these
prompts in sections 8.1 – 8.2 are superseded and may be ignored with return.

91

Figure 8.2: Single basins for a range of network sizes containing the state all 0s, n= 1 to 15, v4k2
rcode(hex)=a7857c0d.

Figure 8.3: Subtrees for a range of network sizes from a root state containing the string 3210, which
is highlighted, n=4 to 15, v4k3 rcode(hex)=1c49a5b05dbcdd148377635fb0b60d84.

At the same time that the network size main sequence prompts are presented, a top-right
warning is displayed as follows,

for FIELD-mode

FIELD-mode: network size n: safe<=20, nLimit=31
exceed with caution! (for v=2, for limits in general see section 7.3)

for SEED/TFO-modes — SEED-mode shown

SEED-mode: network size n: safe<=65535, nLimit=8388607 (or 4294967295)

exceed with caution! can be reset in WIRING for 1/2/3d, rnd/special

The network size n cannot be greater than nLim, described in section 8.3 below. If a larger n
is selected, the default n is applied with a message similar to the following,

. . . :33 too big! n=10 (for FIELD-mode, nLim is listed in table 7.2)

. . . :8400000 too big! limit=8388607! n=14 (for SEED/TFO-mode)

92 CHAPTER 8. 1D NETWORK SIZE N , OR RANGE-N

8.3 Network size limits

Network size limits are also discussed in sections 1.6.1 and for FIELD-mode they are listed in
section 7.3 for values-range v. For SEED/TFO-modes nLim is independent of v. To summarize,
the upper limit of network size, nLim, supported by DDLab is as follows,

for FIELD-mode

Basin of attraction fields: nLim is set out in table 7.2, and varies according to value-
range v (from 2 to 8), and if “exLimits” is set in a 64-bit CPU (section 6.2.4). For
v=2 and basic limits, nLim=31 (figure 8.6) and for v=8 nLim=10. In practice
n should be well below these maximum limits.

for SEED-mode running backwards

Single basins and subtrees: nLim=8388607, or 4294967295 if “exLimits” is set in a
64-bit CPU (section 6.2.4). In practice n should be very much below these
maximum limits. For a single basin try n=18, for a subtree n ≤ 50 — but for a
practical size try n=25. However, the subtrees of “chain rules” (section 16.11)
can be run backwards for extremely large n, as in figure 8.4.

for SEED-mode running forwards, and TFO-mode

Space-time patterns (1d, 2d or 3d): nLim=8388607, or 4294967295 if “exLimits” is
set in a 64-bit CPU (section 6.2.4). For 2d i, j or 3d i, j, h any sub-multiples
of n apply: giving a square with sides 2896 (or 65535), a cube with sides 203
(or 1625). For reasons of speed and memory, much smaller sizes are appropriate.
For 1d networks shown in 1d, a preferable size is n=150 to 200, to fit the screen
and for a clear view of analytical graphic windows, but to see these windows for
larger 1d networks, they can be shown in 2d or 3d.

8.4 Computational and speed limitations for attractor
basins

In general, large networks (size n) may be run “forwards” to generate space-time patterns, and
also find attractors for rules with a low Z-parameter [44], but only networks with modest n can
be run “backwards” to generate attractor basins. Of these, a subtree allows the largest networks,
and basin of attraction fields the smallest. If in doubt, small sizes should be tried first. Larger
sizes might exhaust computer memory or take an excessive length of time to compute, especially
for networks other than local 1d CA.

It is not only n that effects the computational and speed limitations for attractor basins.
The complexity, thus speed, of computation for running backwards to find predecessors, and gen-
erate basin of attraction fields, single basins or subtrees, depends on a combination of v, k and n.
It also depends on the reverse algorithm, which is different and slower for random (nonlocal) wiring;
if wiring is local 1d, the faster algorithm is applied, even if rules are mixed.

The speed also depends on the quality of the rule itself — how “branchy” are the resulting
subtrees, the “in-degree”. Typical in-degrees (number of predecessors of states) are predicted by
a rule’s Z parameter [44] which varies between 0 and 1, or the average Z across the network for

93

Figure 8.4: A subtree for a 1d CA chain-rule for a large network. n=1600 shown as 40×40, v8k4. The
root state of the subtree is located left of center.

RBN and DDN. A rule with low Z will have high “in-degree” (characteristic of “order”), thus
short transients; excessive in-degree can overwhelm computer resources. On the other hand, a rule
with high Z will have low in-degree (characteristic of disorder or “chaos”), allowing subtrees for
large n to be computed, but transients and attractor periods tend to be extremely long, making
basins of attraction difficult to reconstruct. The subset of “chain-rules” (section 16.11) have the
lowest in-degree, usually just one, which does not increase with n; 1d CA chain rules can therefore
be run backwards for extremely large n, as in figure 8.4.

Finally, the speed will of course depend on the computer itself and what other programs are
running.

8.4.1 Times for basin of attraction fields

The elapsed times to generate basin of attraction fields for a range of v, k and n, for CA, RBN
and DDN, on a 1.66GHz Laptop running Linux/Ubuntu 6.062 are shown in tables 8.1- 8.4. below.
These times are displayed as part of the data in a top-right window when the field is complete
(section 27.2).

The system size n that is appropriate for generating attractor basins in a reasonable time for
combinations of v and k can be inferred from these examples. Large sizes may be tried, but may
impose unacceptable time, memory and display constraints. Single basins, and especially subtrees,
may be generated for relatively much larger systems, especially for chain-rules (section 16.11),
or close mutants of chain-rules, which have low in-degree.

2Lenovo 3000 N100 Laptop, Duo processor T2300e 1.66GHz, 1024 Mb RAM, running Linux Ubuntu 6.06.

94 CHAPTER 8. 1D NETWORK SIZE N , OR RANGE-N

Figure 8.5: Basin of attraction fields for a range of network sizes, v2k5, n=18 to 24, to assemble part
of the data for table 8.1 below.

Figure 8.6: The basin of attraction field of v2k3 rcode (dec)110, for n=31, which is the usual nLim for
v=2, elapsed times to generate 7.5 hours. The field is shown on the DDLab screen, with compression
on (section 26.2), equivalent trees and subtrees suppressed (section 26.2.3), and nodes suppressed.
(section 26.3).

95

Figure 8.7: Basin of attraction fields for a range of network sizes, RBN, v2k3, n=14 to 20, to assemble
part of the data for table 8.3 below.

8.4.2 Examples for 1d CA

Examples of the time needed to generate the basin of attraction field of some 1d CA rules for a
range of v, k and n, are shown in tables 8.1 and 8.2. The rules are specified in hex for v=2, and as
the rule filenames for v ≥ 3.

n 18 19 20 21 22 23 24 k and rule (hex)
2.2s 4.6s 9.4s 19.4s 40.2s 1m 23s 2m 52s k=3 rule c1 (dec) 193

time 3.8s 6.8s 13.9s 28.8s 58.0s 1m 59s 4m 10s k=4 rule e924
9s 10s 20.9s 41.8s 1m 26s 2m 55s 6m 0s k=5 rule b755d3d9

Table 8.1: Times for increasing k and n for v=2, basin of attraction fields, 1d CA.

n 12 13 14 15 16 17 18 v and rule file

time
7.2s 18.5s 59s 3m 0s 84m 54s 27m 55s 100m v=3 s v3k3.rul

6m 56s 20m 37s 109m v=4 s v4k3.rul

132m 34ss v=5 s v5k3.rul

Table 8.2: Times for increasing v and n for k=3, basin of attraction fields, 1d CA.

96 CHAPTER 8. 1D NETWORK SIZE N , OR RANGE-N

8.4.3 Examples for RBN and DDN

A similar exercise for RBN and DDN gave the timings shown in tables 8.3 and 8.4.
The same rules were used as for the CA in section 8.4.2, shown in hex for v=2, and as rule

files for v ≥ 3. However, the random wiring was not recorded. Note that it is the random wiring
that requires a different and slower reverse algorithm, not the inhomogeneity of rules, so having
one rule still provides a good indication of the speed, and allows a meaningful comparison between
the various examples.

n 14 15 16 17 18 19 20 k and rule (hex)
0.81s 4.4s 8.4s 24.6s 39.2s 1m50s 4m54ss k=3 rule c1 (dec: 193)

time 10.7s 25.7s 1m53s 4m19s 12m31s 26m46s 64m40s k=4 rule e924
32.3s 2m50s 9m15s 15m24s 75m28s 143m 195m k=5 rule b755d3d9

Table 8.3: Times for increasing k and n for v=2, basin of attraction fields, RBN.

n 10 11 12 13 14 v and rule file

time
8.0s 2m5s 9m20s 28m7s 152m v=3 s v3k3.rul

9m2s 59m43s 268m v=4 s v4k3.rul

223m v=5 s v5k3.rul

Table 8.4: Times for increasing v and n for k=3, basin of attraction fields, DDN.

Chapter 9

Neighborhood, k, or mixed-k

This chapter describes setting a homogeneous 1d CA neighborhood k with local wiring (nearest
neighbor, next nearest etc.), or a k-mix (a mix of k sizes) with the exact k-mix to be specified in a
top-right window. Randomizing this wiring (making it nonlocal), setting 1d, 2d or 3d wiring, and
other special wiring options come at a later stage (chapters 11, 12) — in that any 1d k entries in
this chapter will be superseded, and can be ignored by entering return.

1d k is set here in the main sequence of prompts (as is n in section 8) to simplify setting up
CA attractor basins, which are usually 1d, and to run 1d CA forward for space-time patterns.

9.1 Selecting k, or a k-mix, for 1d networks

To set the neighborhood size k, or a k-mix for 1d networks, the following main line prompt
is presented, where the default k and kLim depend on TFO-mode (section 6.1), value-range v
(section 7.1), and “exLimit” (sections 6.2.4 and 7.1.1) as previously set,

Neighborhood size k: kmix-m, or enter 1-13 (def 3): (for example)

Enter the required value of k (or m for a k-mix). A valid k set here becomes the new default.
If the k entered is larger than kLim (section 7.2) the default k is applied with the following

message,

. . . :33 too big! k=3 (for example)

If m is entered for a k-mix, the actual mix will be set in section 9.3 below.
At the same time that k is set at the prompt above, a top-right notice is displayed as follows,

k and kmix can be reset in WIRING for 1/2/3d, rnd/special

This is a reminder that k, the k-mix, the network wiring for 1d, 2d, and 3d, and other special
features can be reset in subsequent wiring options (chapters 11, 12), so the main sequence prompt
could be ignored by entering return.

Once the network’s rule or rules have been set (chapters 13 to 16), the network’s k or k-mix may
be “neutrally” modified, both by increasing k or reducing to effective k (sections 18.7.1—18.7.3),
for the network as a whole or for a particular cell.

97

98 CHAPTER 9. NEIGHBORHOOD, K, OR MIXED-K

9.1.1 kLim and minimum k

The maximum number of input wires to a cell, kLim, is constrained by increasing value-range
v (section 7.2) because rule-tables get longer, bearing in mind that rcode (FIELD/SEED-mode)
has longer rule-tables than kcode (TFO-mode). All possibilities of kLim are set out in table 7.1
and depend also on your CPU and DDLab version, 32-bit or 64-bit, and if “exLimit” is active
(section 6.2.4) and if so whether kLim was extended (section 7.1.1). For example, for basic rcode
kLim=13 for v=2 and kLim=4 for v=8, but for 64-bits and exLimit applied kLim=27 for v=2 and
kLim=10 for v=8, though these higher limits can test your available memory or your patience
(section 7.4). For basic kcode kLim=27 for v=2 and kLim=10 for v=8. Note that kLim is different
from kmax which is a deliberate selection of the maximum k in a k-mix, kmax ≤ kLim.

9.2 Effective k=0

Setting k=0 directly is illegal in DDLab. For effective k=0 you need single self-wiring and a neutral
rule that conserves a cell’s value. Set k=1 with the cell wired to itself (local wiring in 1d, 2d or
3d), and set its rule-table as follows,

v rule-table hex dec
2 10 02 2
3 210 24 21
4 3210 e4 228
5 43210 4688 2930
6 543210 02c688 44790
7 6543210 1ac688 800667
8 76543210 fac688 16434824

Table 9.1: Effective k=0 neutral rules — the
same for all rule types. v=2 to 8, for single self-
wiring, where k=1 is wired to itself. The rules
can be entered in three alternative ways — as
a bit/value rule-table, as the equivalent in hex-
adecimal (hex), and in decimal (dec).

Because k=1 these rule-tables are exactly the same for all rule types, rcode, kcode and tcode.
Setting a neutral rule to a self-wired cell ensures that the cell is not receiving any inputs from
other cells, and that it will conserve its current value. However, other cells may receive inputs
from the effective k=0 cell. DDLab can identify any self-wired k=1 cells in a mixed-k network,
and gives an option to set the rule at these cells to make them effectively k=0 automatically
(section 14.3), or this can be done by hand — the easiest way is to “kill a cell” from the 1d wiring
graphic (section 17.9.9). Setting effective k=0 is useful for providing a fixed input signal to a
network, or potentially for an arbitrary external input.

9.3 Specifying the k-mix

If m is selected in section 9.1 above, the following prompt appears in a top-right window,

set k-mix: load-l hand-h norm-n power/specify-s rnd-(def):
(norm-n only if n ≥ kLim — i.e. not for very small networks)

The k-mix can be set in a variety of ways described below. Note that settings for particular
cells in a k-mix can be changed later in the “wiring graphic” options (chapter 17).

99

9.4 Loading a k-mix file

Enter l in section 9.3 above to load the k-mix as a .mix file (section 35.3). The file would have
been saved in sections 19.5 or 9.11.3. If the file is for a bigger network, as much k-mix data
as will fit into the current network will be loaded, starting from cell index 0. If on the other
hand the file is for a smaller network, all the data will be loaded from cell index 0, the ex-
cess cell indexes will be allocated a uniform background k-mix with the following top-right prompt,

k-mix loaded (10) less than net size (150) (values shown are examples)

enter background k-mix 1-13, (default 5):

The k-mix encoding is described in section 19.3.1. The k-mix can be also be save/loaded in
Network filing options — section 19.1 (see also section 17.9.12).

9.5 Setting the k-mix by hand

If h is selected in section 9.3, a series of prompts allow the k at each cell index (starting from 0)
to be set.

set neighborhood size (1-13) at cell 0 (back-b restrnd-r):

Enter the required k, or return for a random k value between 1 and kLim. b allows backtracking
to the previous cell index. Enter r to assign k at random for all remaining cells.

9.6 Setting a normal distribution

Enter n to set a normal (Poisson) distribution of the frequencies of different k. This option does
not apply for very small networks, when n < kLim. The distribution is achieved by assigning
potential links at random to the network, up to a preset limit. However, every cell will be assigned
at least one link. The following top-right prompts are presented in sequence,

set k upper bounds (def 13, limit 13):
set average k (def 2.60, max 8.67): (values depend on k upper bounds)

Enter the upper bounds of k for the distribution, followed by the target average k in the
network. An example of a normal distribution is shown in figure 9.1 generated in section 9.11.

Figure 9.1: An example of a normal
(Poisson) distribution of the frequen-
cies of different k. n=40×40, the range
of k=13 and the average k=6.5

100 CHAPTER 9. NEIGHBORHOOD, K, OR MIXED-K

9.7 Specify each k, or power-law distribution

Enter s in section 9.3, to specify the distribution of different k, or to select a power distribution.
The following top-right prompt is presented,

power-law-p, specify-(def):

These options are explained in sections 9.7.1 to 9.7.3 below.

9.7.1 Specify the percentage of different k

If return is entered in section 9.7 above, the percentage of cells with different k can be specified, and
within those constraints the k-mix is assigned at random (i.e. shuffled). Alternatively, the k-mix
need not be shuffled in which case it is assigned to the network in continuous blocks.

The following series of prompts are presented for each k starting with k=1 (shown with
example settings),

enter % k=1 (100.0% left):22 (for 22% k=1)

enter % k=2 (78.0% left) back-b:25 (78.0% of the network remains)

enter % k=3 (53.0% left) back-b:33 (53.0% of the network remains)

...etc.

The prompts continue until none of the network remains, or until k = kLim. Return assigns
zero of that particular k. An assignment that is too large for the network still remaining will be
truncated. If on completion some of the network remains, this will be set with the last k that was
assigned. If none of the k’s are assigned, the prompt reverts to section 9.3. At any stage from k=2
onwards it is possible to backtrack and revise with b.

9.7.2 Setting a power-law distribution of k

Enter p at the prompt in section 9.7 to set a power-law distribution of the frequencies of different
k. However, every cell will be assigned at least one input. The following top-right prompts are
presented in sequence,

set k upper bounds (def 13, limit 13): (if klimi=13)

enter power-law exponent 1 to 3 (def 2.0):

Enter the upper bounds kmax ≤ kLim for the distribution, followed by the target power-law
exponent. An example of a power-law distribution is shown in figure 9.2. The output distribution
can also be set to approximate a power-law (section 17.9.5, figure 17.22).

If both the inputs, k, and the outputs, follow a power-law, the network is said to be “scale-
free”, and characteristic of many natural and artificial networks, from metabolic networks [4] to
the world-wide-web. The graph of a “scale-free” network is shown in figure 20.1.

101

Figure 9.2: An example of a
power-law distribution of the fre-
quencies of different k. In this
case n=40×40, the range of
k=13, the power-law exponent is
2, and the average k=2.05.

9.7.3 Showing the distribution

When the k-distribution has been assigned, either by specifying the percentage of different k
in section 9.7.1, or by setting a power-law in section 9.7.2, data on the distribution, and the
following prompt, are presented in a top-right window (for example, for a 2d 40×40 network, and
a power-law),

k1=63.2%=1011 k2=15.6%=245 k3=7.15%=114 k4=4.0%=64 k5=2.6%=41
k6=1.8%=29 k7=1.4%=22 k8=1.1%=17 k9=0.8%=13 k10=0.7%=11
k11=0.6%=9 k12=0.5%=8 k13=0.4%=7
shuffle: no-n yes-(def):

This shows the percentage and number of different k’s in the network. The k’s are initially
assigned in continuous blocks starting from the network cell 0. Enter return to randomly shuffle
the assignment, or n not to shuffle and retain the blocks.

The distribution can be displayed as a histogram as in figures 9.1 and 9.2 generated in
section 9.11 (and later in section 17.9.13).

9.8 Setting the k-mix at random

If return was entered in section 9.3, the default, a random k-mix is selected. A further prompt
allows the k-mix be confined within upper and lower bounds before the random mix is assigned.
In this example, kLim=13 (section 7.2),

set k bounds 1-13: lower (def 1): upper (def 9, limit 13): (for example)

The upper bound is referred to as kmax. The different k’s will be assigned with equal probability.

9.9 Setting a k-mix with uniform k

Its sometimes useful to set up a k-mix network with homogeneous-k, for example for a local 1d,
2d or 3d CA into which a DDN can be inserted (section 19.4), for example to provide a source of
noise in the local network.

102 CHAPTER 9. NEIGHBORHOOD, K, OR MIXED-K

A k-mix with homogeneous-k is easily created in section 9.7.1, by setting the percentage of
the required k at 100%, or in section 9.8 by setting equal values for the lower and upper bounds
in a “random” k-mix. The homogeneous-k network is treated as a k-mix network, and as such
is also treated as a having nonlocal wiring and mixed rules even if the wiring is set as local 1d
(section 12.4.1), and there is just one rule (section 14.4.3). These issues relate to how memory is
allocated to different types of network.

9.10 Increasing kmax

Options for changing k for individual cells (or blocks of cells) occur at later stages in DDLab
(sections 17.9.8, 18.7.1).

The default kmax is the upper bound set previously, for example in section 9.8. However kmax

can be set to a higher value, up to the upper kLim listed in section 7.2. The following top-right
prompt is presented,

set greater max-k (max 25, def 9): (if kLim=25 and kmax=9)

This enables the k values in the network to be subsequently increased up the new kmax. For
example, if 100% k=5 is set in section 9.7.1 (a k-mix with uniform k), and kmax is set to say 9,
cells in the uniform k network may later be reset to any value ≤ 9.

9.11 Reviewing the k-mix

Finally, the k-mix is displayed in a top-right window, or a succession of windows for large networks.
For example, figure 9.3 shows a randomly assigned k-mix between 1 and 25 for a network size 200 (in
TFO-mode), for each cell 199 to 0. To distinguish each (decimal) number, colors alternate between
black and red. The percentage and number of different k’s in the network is also displayed.

Options are presented at the foot of the k-mix review window,
. . .
mix shown from cell index 244-0 (values shown are examples)

hist-h reset-r save-s jump-j cont-ret:

Figure 9.3: An example k-mix ran-
domly assigned for k=1–25, n=200
(TBO-mode). To distinguish each
(decimal) number, colors alternate
between black and red.

Enter h to show the k distribution histogram in a lower left window, as in figures 9.1 and 9.2.
Enter r to revert to section 9.3 and reset the k-mix. Enter s to save the k-mix in a .mix file
(section 35.3) which can be loaded as in section 9.4. Enter return to accept the k-mix. The other
options are explained below.

103

9.11.1 Reviewing the k-mix in large networks

Large networks may require several windows to display the k-mix. In this case the prompt above
(section 9.11) includes an option more-m to see successive windows (for example),

. . .
mix shown from cell index 7011-4221 (values shown are examples)

hist-h reset-r save-s more-m jump-j cont-ret:

9.11.2 Jumping to a new cell index

Alternatively, enter j in section 9.11.1 to jump to any cell index in the network, which becomes
the first index in the new window. The following prompt is displayed,

...
jump to index (9800-0): (this example for a 2d network, 99×99)

9.11.3 Saving the k-mix file

Enter s in section 9.11 to save the k-mix. A filing prompt box will allow saving a .mix file — the
default filename is mymix.mix (section 35.3). The k-mix can also be saved in section 19.5, but can
only be loaded in section 9.4. However, the k-mix in mixed-k networks is implicit in the .w s, .r s

and .wrs files (section 19.2), so does not usually need to be saved separately.

9.12 Reviewing the k-mix within “network architecture”

The k-mix may also be reviewed in Reviewing network architecture as described (chapter 17), where
options allow changing k (including “neutral” k changes) up to kmax set in section 9.10, which
may be greater than the maximum k found in the network. This can be done for single cells, for
predefined blocks, or for the whole network.

t0

t1

|
cell 29

|
cell 0

Figure 9.4: The 1d wiring
graphic for a k-mix, showing
the wiring between succes-
sive time-steps, n=30. Each
cell’s “outwires” are repre-
sented by the heights at
time-step t1.

Chapter 10

The local neighborhood, and
network geometry

This chapter defines the CA neighborhood-template (n-template), the pseudo-neighborhood for
RBN or DDN, the network geometry, and how these are indexed in DDLab.

10.1 The CA neighborhood

For CA, a cell updates according to the values of its local neighborhood, which usually includes the
cell itself and its nearest neighbors. The relative position of the neighborhood cells in relation to
the “target” cell is referred to as the “neighborhood template”, the “n-template”, or just “neigh-
borhood” though this term usually includes the values in the n-template. For CA the n-template
is homogeneous throughout the network, and thus requires periodic boundary conditions where
each lattice edge wraps around to its opposite edge resulting in a ring of cells in 1d, the surface of
a torus in 2d, and a 3-torus in 3d. For 1d, 2d and 3d the n-templates are defined in DDLab for
k= 1 to 27 (k ≥ 24 best in TFO-mode).

The following sections describe the predefined n-templates and how they are indexed. Note
that in 2d the n-templates can be square or hexagonal (sometimes either) to run on a square or
hexagonal lattice, as shown in figure 10.2. Its also possible to construct any arbitrary n-template
and assign it uniformly throughout the network (section 12.5.11).

10.1.1 The pseudo-neighborhood, RBN and DDN
For networks with nonlocal (random) wiring, RBN and DDN, DDLab provides methods
(chapter 12) to specify how each “target” cell is connected to other cells with respect to its
“pseudo-neighborhood”, identical to the n-template in 1d, 2d and 3d CA. The set of cells that
influence a given cell (its actual “neighborhood” to use the term loosely) may be scattered
arbitrarily throughout the network. Each scattered cell is wired to one position in the target
cell’s pseudo-neighborhood. This allows a CA rule to be applied equally to CA, RBN and DDN
(chapter 13).

104

105

the target cell
↓

0 k=1

1 0 k=2

2 1 0 k=3

3 2 1 0 k=4

4 3 2 1 0 k=5

5 4 3 2 1 0 k=6

6 5 4 3 2 1 0 k=7

7 6 5 4 3 2 1 0 k=8

8 7 6 5 4 3 2 1 0 k=9

9 8 7 6 5 4 3 2 1 0 k=10

10 9 8 7 6 5 4 3 2 1 0 k=11

11 10 9 8 7 6 5 4 3 2 1 0 k=12

12 11 10 9 8 7 6 5 4 3 2 1 0 k=13

odd-k
1 to 13

even-k
2 to 12

skewed right

Figure 10.1: 1d n-templatesas defined in DDLab, shown from k=1 to 13. Top: showing indexing.
Bottom: graphically as in section 17.6. The same principle applies for k= 14 to 27. Note that for even
k the n-template is asymmetric, skewed to the right. For effective k=0 see section 9.2.

10.1.2 1d neighborhood

The 1d n-templates for k= 1 to 27 are defined and indexed according to figure 10.1. Cells in the
n-templates are indexed in reverse order, k-1,k-2,...,0. For odd k the target cell is centered, for even
k the n-template is asymmetric with an extra cell on the right, but space-time patterns symmetry
can be restored with the on-the-fly “slant” option (section 32.9.1).

10.1.3 2d neighborhood

The 2d n-templates for k= 2 to 27 are shown in figure 10.2 (k=1 is self evident). Each k has an
n-template based on either a square or hexagonal lattice, sometimes both apply, designed for best
symmetry. If both, those shown in a frame need to be selected (section 11.1 or 12.1). Where a
square n-template is missing in the definitions, a distorted hex n-template will apply in a square
layout, and vice-versa. The layout can be toggled between square and hex in the 2d wiring graphic
(section 17.7) and on-the-fly (section 32.9.2) but this does not change the underlying n-templates
as originally defined. To achieve maximum symmetry and for outer-totalistic rules (section 14.2)
the target cell itself is sometimes not included in the n-template. Cells in the n-template are
indexed starting with 0 then from right to left in ascending rows, as in the example for k=9 in the
bottom-right corner of figure 10.2. Note that for a hexagonal lattice to work properly, the height
of the network, j, should be even.

With a square layout and n-template, k=5 is known as the von Neuman neighborhood, and
k=9 is the Moore neighborhood — applied in the “game-of-Life” (section 16.10.7). With a hex
layout and n-template, k=6 applies to the “beehive rule” [47] and k=7 to the “spiral rule” [48].

106 CHAPTER 10. THE LOCAL NEIGHBORHOOD, AND NETWORK GEOMETRY

k 2 3 4 5 6 7 8 9 10

square

hex

k 11 12 13 14 15 16 17

square

hex

k 18 19 20 21 22 23

square

hex

k 24 25 26 27 9

square
8 7 6

5 4 3

2 1 0

hex

8

7 6

5 4

3 2 1 0

Figure 10.2: 2d n-templates as defined in DDLab, for k=2 to 27, square, hex or both, designed for
best symmetry. If both, those shown in a frame need to be selected (section 11.1 or 12.1). The target
cell may be excluded and is otherwise shown red.
Bottom-Right: n-templates are indexed starting with 0 then from right to left in ascending rows, as in
these examples for k=9 for square and hexagonal n-templates. The index numbering is toggled on/off
with index-i (section 17.4).

107

10.1.4 3d neighborhood

3d n-templates for k= 2 to 27 are defined in figure 10.3 for a cubic grid on the 3-torus. For even k the
target cell itself is not included in the n-template.

even
k

1
0

3

2

1

0

5

4

3 2

1

0

7

6

5

4 3

2

1

0
9

8

7

6

5 4

3

2

1

0
11 10

9 8

7

6 5

4

3 2

1 0

k=2 k=4 k=6 k=8 k=10 k=12

odd
k

2
1

0
4

3

2

1

0

6

5

4 3 2

1

0

8

7

6

5 4 3

2

1

0
10

9

8

7

6 5 4

3

2

1

0
12 11

10 9

8

7 6 5

4

3 2

1 0

k=3 k=5 k=7 k=9 k=11 k=13

even
k

13

12 11

10

9 8

7 6

5 4

3

2 1

0
15

14 13

12

11 10 9

8 7

6 5 4

3

2 1

0
17

16 15 14

13

12 11 10

9 8

7 6 5

4

3 2 1

0
19 18

17 16 15

14

13 12 11

10 9

8 7 6

5

4 3 2

1 0
21 20

19 18 17

16 15

14 13 12

11 10

9 8 7

6 5

4 3 2

1 0
23 22 21

20 19 18

17 16

15 14 13

12 11

10 9 8

7 6

5 4 3

2 1 0

k=14 k=16 k=18 k=20 k=22 k=24

odd
k

14

13 12

11

10 9

8 7 6

5 4

3

2 1

0
16

15 14

13

12 11 10

9 8 7

6 5 4

3

2 1

0
18

17 16 15

14

13 12 11

10 9 8

7 6 5

4

3 2 1

0
20 19

18 17 16

15

14 13 12

11 10 9

8 7 6

5

4 3 2

1 0
22 21

20 19 18

17 16

15 14 13

12 11 10

9 8 7

6 5

4 3 2

1 0
24 23 22

21 20 19

18 17

16 15 14

13 12 11

10 9 8

7 6

5 4 3

2 1 0

k=15 k=17 k=19 k=21 k=23 k=25

even
k

25 24 23

22 21 20

19 18 17

16 15 14

13 12

11 10 9

8 7 6

5 4 3

2 1 0

k=26

odd
k

26 25 24

23 22 21

20 19 18

17 16 15

14 13 12

11 10 9

8 7 6

5 4 3

2 1 0

k=27

Figure 10.3: 3d n-templates and indexing as defined in DDLab, for k=2 to
27. k=1 is self evident. For even k the target cell itself is not included
in the n-template. The view is isometric as if looking up into a cage. All
the 3d n-templates are now contained within a 3×3×3 cube, and have been
extended to k=27 and somewhat modified since the 2011 EDD edition. For
k≤26 the placement of the n-template within the cube is chosen to achieve
maximum symmetry, though there would be alternative choices which could
be reprogrammed. The 3d n-template within the network is simultaneously
displayed in 2d as in figure 10.4 (see also section 17.8). The index numbering
is toggled on/off with index-i (section 17.4).

108 CHAPTER 10. THE LOCAL NEIGHBORHOOD, AND NETWORK GEOMETRY

even
k

2

0

1

0

2

0

3

2

1

0

2

0

5

4

3 2

1

0

2

0

7

6

5

4 3

2

1

0

2

0

9

8

7

6

5 4

3

2

1

0

2

0

11 10

9 8

7

6 5

4

3 2

1 0

2

0

13

12 11

10

9 8

7 6

5 4

3

2 1

0

2

0

15

14 13

12

11 10 9

8 7

6 5 4

3

2 1

0

2

0

17

16 15 14

13

12 11 10

9 8

7 6 5

4

3 2 1

0

2

0

19 18

17 16 15

14

13 12 11

10 9

8 7 6

5

4 3 2

1 0

2

0

21 20

19 18 17

16 15

14 13 12

11 10

9 8 7

6 5

4 3 2

1 0

2

0

23 22 21

20 19 18

17 16

15 14 13

12 11

10 9 8

7 6

5 4 3

2 1 0

2

0

25 24 23

22 21 20

19 18 17

16 15 14

13 12

11 10 9

8 7 6

5 4 3

2 1 0

k=2 k=4 k=6 k=8 k=10 k=12 k=14 k=16 k=18 k=20 k=22 k=24 k=26

odd
k

2

0

2

1

0

2

0

4

3

2

1

0

2

0

6

5

4 3 2

1

0

2

0

8

7

6

5 4 3

2

1

0

2

0

10

9

8

7

6 5 4

3

2

1

0

2

0

12 11

10 9

8

7 6 5

4

3 2

1 0

2

0

14

13 12

11

10 9

8 7 6

5 4

3

2 1

0

2

0

16

15 14

13

12 11 10

9 8 7

6 5 4

3

2 1

0

2

0

18

17 16 15

14

13 12 11

10 9 8

7 6 5

4

3 2 1

0

2

0

20 19

18 17 16

15

14 13 12

11 10 9

8 7 6

5

4 3 2

1 0

2

0

22 21

20 19 18

17 16

15 14 13

12 11 10

9 8 7

6 5

4 3 2

1 0

2

0

24 23 22

21 20 19

18 17

16 15 14

13 12 11

10 9 8

7 6

5 4 3

2 1 0

2

0

26 25 24

23 22 21

20 19 18

17 16 15

14 13 12

11 10 9

8 7 6

5 4 3

2 1 0

k=3 k=5 k=7 k=9 k=11 k=13 k=15 k=17 k=19 k=21 k=23 k=25 k=27

Figure 10.4: 3d n-templates are simultaneously displayed in 2d as well as 3d (section 17.8). These 2d
graphics for k= 2 to 27 show the 3 levels of each 3×3×3 cube, one below the other, representing the
n-templates in figure 10.3. The index numbers start with 0 then from right to left in ascending rows.
The index numbering is toggled on/off with index-i (section 17.4) .

10.2 Network geometry

The cells in a network, size n, are indexed and arranged in a regular 1d, 2d or 3d space or lattice,
with axial dimensions i for 1d, i, j for 2d and i, j, h for 3d, as shown in figures 10.5, 10.6 and 10.7 —
examples made with the network-graph functions in chapter 20. This network “geometry” has real
meaning for CA, or RBN/DDN where each cell’s random inputs are confined close to the target
cell itself. For networks with fully random wiring the geometry simply allows convenient indexing
and representation. The cells are indexed n-1,. . . ,0, or according to their I,J,H coordinates.

CA usually have periodic boundary conditions, where opposite edges join, so CA (local) wiring
in 1d creates a ring of cells, in 2d a regular square or hexagonal lattice on the torus, in 3d a 3-torus.
By default, the n-templates of CA, RBN and DDN operate within these periodic boundaries, but
this can be changed to Null boundaries (section 2.7) — for attractor basins in section 26.1 — for
space-time patterns in section 31.3 or on-the-fly in section 32.7.4. Space-time patterns can also be
set with fixed borders in section 32.16.6.

109

10.2.1 1d network indexing

1d networks, size n, are indexed n-1,. . . ,0, where i = n, and are usually laid out horizontally
following figure 10.5 Left.

13 12 11 10 9 8 7 6 5 4 3 2 1 0

n-1
i-1 0

Figure 10.5: A 1d CA, n=14 k=3, indexed 13,. . . ,0, shown
as a 1d network-graph (chapter 20). Left: horizontal layout,
and Right: circle layout.

13

12

11
109

8

7

6

5

4

3 2
1

0

n-1

10.2.2 2d network indexing

2d networks, size n, are indexed n-1,. . . ,0, with either square or hex layout as in figure 10.6. i is
the width (columns), j is the depth (rows). Note that the cell indexes shown, x, are 1d indexes.

For a 2d network, size i, j, to convert the coordinates of a cell, I, J , to a 1d index, x = iJ + I.
Conversely, I = x mod i, J = ⌊x

i
⌋.

35 34 33 32 31 30

29 28 27 26 25 24

23 22 21 20 19 18

17 16 15 14 13 12

11 10 9 8 7 6

5 4 3 2 1 0

col
i-1

col
0

row j-1

row 0

35 34 33 32 31 30

29 28 27 26 25 24

23 22 21 20 19 18

17 16 15 14 13 12

11 10 9 8 7 6

5 4 3 2 1 0

col
i-1

col
0

row j-1

row 0

Figure 10.6: A 2d CA, n=36, where i × j = 6 × 6, indexed 35,. . . ,0, shown as a 2d network-graph
(chapter 20). Left: square layout (k=4). Right: hex layout (k=6). In the network-graph prompt
(section 20.5.3) key 2d(tog)-2 toggles between square and hex layout.

110 CHAPTER 10. THE LOCAL NEIGHBORHOOD, AND NETWORK GEOMETRY

10.2.3 3d network indexing

3d networks size n are indexed n-1,. . . ,0, as in figure 10.7. i is the width (columns), j is the depth
(rows), and h is the height (levels). Note that cell indexes shown, x, are 1d indexes, For a 3d
network, size i, j, h, to convert the coordinates of a cell, I, J,H, to a 1d index, x = ijH + iJ + I.

Conversely, I = x mod i, J = ⌊x mod ij
i
⌋, H = ⌊ x

ij
⌋.

63 62 61 60

59 58 57 56

55 54 53 52

51 50 49 48

47 46 45 44

43 42 41 40

39 38 37 36

35 34 33 32

31 30 29 28

27 26 25 24

23 22 21 20

19 18 17 16

15 14 13 12

11 10 9 8

7 6 5 4

3 2 1 0

le
ve

l H
=h-1

, c
ol

 I=
i-1

level H=h-1, row J=j-1
co

l I
=0,

 le
ve

l H
=0

row J=0, level H=0

I

J

H

Figure 10.7: A 3d CA, n=64, [i, j, h]=[4,4,4], k=6, indexed 63,. . . ,0, shown as a 3d network-graph,
(chapter 20). The graph should be viewed as if looking up from below into a cage, were the bottom
layer of cells are numbered 0-15.

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

level H=h-1

level J=0
row H=0

row J=j-1

I = 1

15 14 13 12

11 10 9 8

7 6 5 4

3 2 1 0

col
I-1

col
0

level H=h-1

level H=0

J = 1

15 14 13 12

11 10 9 8

7 6 5 4

3 2 1 0

co
l I

=i-i

co
l I

=0

row J=0

row J=j-1

H = 1

Figure 10.8: To clarify 3d network indexing, the network-graphs above show three examples where
the width (columns) i, depth (rows) j, and height (levels) h, are made to equal 1 in turn, so from left
to right [i, j, h]=[1,4,4],[4,1,4],[4,4,1]. k=6, cells numbered 0-15.

Chapter 11

Setting the wiring, quick settings

The main wiring prompts are displayed in context dependent top-right windows. The first wiring
prompt gives options for quick wiring settings for CA in 1d, 2d (hexagonal or square) or 3d, random
wiring for just 1d, or loading a wiring file. Alternatively, special wiring allows more flexible wiring
requiring further wiring prompts, described in chapter 12.

11.1 The first wiring prompt

The first wiring prompt is as follows,

WIRING: special-s load-l random-r
regular 3d-3, 2d-2(hex+x square+s), 1d-def:

11.2 Local 1d wiring

Enter return (the default) in section 11.1 above to set wiring as local 1d with periodic boundary
conditions1 and skip remaining wiring options. The network may be a CA, or may have mixed k
as previously selected in chapter 9. The 1d network size would have been set in the main sequence
prompt section 8.2.

11.3 Special wiring

If s is selected in section 11.1 above, prompts are presented for various special wiring options,
including setting random wiring for 1d, 2d and 3d networks (with various biases), described in
chapter 12.

1Periodic boundary conditions can be reset to null boundary conditions (NBC, section 2.7) at later stages
(sections 26.1, 31.3, 32.7.4.

111

112 CHAPTER 11. SETTING THE WIRING, QUICK SETTINGS

11.4 Loading the wiring scheme

If l is selected in section 11.1, filing prompts (section 35.3) will allow a wiring scheme (.w s) file
to be loaded, provided the file is compatible with the base network, in that file-n ≤ base-n, and
file kmax ≤ base kmax (section 19.4.1).

11.5 Random 1d wiring

If r is selected in section 11.1, a wiring scheme will be assigned at random according to the
previously selected neighborhood k or k-mix settings. The next prompt allows a graphic
representation to be displayed, where the wiring can be reviewed and altered (see chapter 17).

11.6 2d or 3d wiring

If 2 or 3 is selected in section 11.1, the wiring will be set as local 2d or 3d CA wiring according
to the default neighborhoods in sections 10.1.3 and 10.1.4. These options also apply for random
2d and 3d wiring set in section 12.3.1. In each case boundary conditions are periodic, where the
2d array can be imagined as drawn on the surface of a torus, and the 3d array on a 3-torus,
though this can be overridden with null boundary conditions (NBC, 2.7). The network can also
have a k-mix with CA wiring for each (different size) neighborhood. Entering 2x or 2s will force
the neighborhood, and the initial presentation of the lattice, to be hex or square (orthogonal),
overriding the defaults in section 10.1.3. Just the hex/square presentation can be toggled later in
the program.

As well as setting local wiring, further prompts below will set 2d or 3d network size, and k or
a k-mix. Previous n and k settings from the main sequence of prompts (sections 8.2 and 9.1) will
be superseded.

11.6.1 Setting 2d and 3d network size — SEED/TFO-mode

For SEED-mode or TFO-mode, the following options set the i×j (width×depth) dimensions of 2d
networks, and the i×j×h (width×depth×height) dimensions of 3d networks,

basic 2d networks
2d: square edges, safe<=255, max=2896 incr with caution!
enter i (def 40): j (def 40): (for exLimits, max=65535)

basic 3d networks
3d: cube edges, safe<=40, max=203 incr with caution!
enter i (def 9): j (def 9): h (def 9) (for exLimits, max 1625)

Enter the width i, depth j (and height h) — the prompts are presented in turn — subsequent
defaults may depend on initial sizes, keeping in mind the network size limits nLim (section 8.3);
safe and max show the safe and maximum edges of a square or cube, but the edges can be any
length making up a rectangle or cuboid, as long as i×j or i×j×h is less than nLim=8388607, or
4294967295 if “exLimits” is set in a 64-bit CPU (section 6.2.4) — in this case the max square
edge=65535, and the max cube edge=1625.

113

If the dimensions selected for a 2d or 3d network exceed nLim a message such as the following
is displayed within the top-right window,

2896x3000 too big! max size=8388607 cont-ret: (for basic 2d)

or for 3d
203x203x300 too big! max size=8388607 cont-ret: (for basic 3d)

File encoding for 2d and 3d networks treats the axes or edge dimensions differently for a “small”
network n≤ 65534 and a “big” network n≥ 65535 (sections 19.3 and 21.9). For “small” n edges
must not exceed 255. For “big” n the edge limit is 65535, though this would only be relevant in
the extreme case where the other edges sizes were 1. Whether the network is “small” or “big”
depends on the edge sizes selected. For example, i×j of 255×256 would not be allowed with the
warning below, whereas 255×255 (“small” n) or 256×256 (“big” n) are acceptable. The following
warnings might be displayed,

255x256 & n≤65534 file conflict! change i,j cont-ret: (for a “small” network)

1x65536 2d edge max 65535 exceeded! change i,j cont-ret: (for a “big” network)

or for 3d
1x1x256 & n≤65534 file conflict! change i,j,h cont-ret: (for a “small” 3d network)

Pressing return restores the network size prompt.

11.6.2 Setting 2d and 3d network size — FIELD-mode

For FIELD-mode the prompts to set the size of 2d and 3d networks are similar to SEED/TFO-
mode (section 11.6.1) except that the network size limits (section 8.3) are very much smaller and
depend on the value-range v, as described in section 7.3.

The following options set the i×j (width×depth) dimensions of 2d networks, and the i×j×h
(width×depth×height) dimensions of 3d networks,

2d networks
2d: safe square edges<=5, nLimit=31 inc with caution!
enter i (def 4): j (def 4): (v=2, basic)

3d networks
3d: safe cube edges<=3, nLimit=35 incr with caution!
enter i (def 3): j (def 3): h (def 3) (v=2, exLimits)

Enter the width i, depth j (and height h) — the prompts are presented in turn — subsequent
defaults may depend on initial sizes. safe. . . shows the safe edges of a square or cube, but the
edges can be any length making up a rectangle or cuboid as long as the network size i×j or i×j×h
is less than nLim. For v=2 nLim=31, or 35 if “exLimits” is set in a 64-bit CPU (section 6.2.4).
If the dimensions selected for a 2d or 3d network exceed nLim a message such as the following is
displayed within the top-right window,

5x7 too big! max size=31 cont-ret: (v=2, 2d, basic)

or
3x3x4 too big! max size=35 cont-ret: (v=2, 3d, exLimits)

Pressing return restores the network size prompt.

114 CHAPTER 11. SETTING THE WIRING, QUICK SETTINGS

11.7 Set k, or k-mix

If 2d or 3d was selected in section 11.1, the next top-right prompt resets k, or the k-mix, as
described in chapter 9.

Neighborhood size k: kmix-m, or enter 1-27 (def 5): (for example)

The upper bound, kLim, depends on the context, described in section 7.2 and set out in table 7.1.
Enter a new value to reset k, or return to accept the default. Enter m for a k-mix and follow
further instructions in chapter 9.

11.8 Reviewing wiring, after quick settings

After quick wiring settings are complete, options allow the wiring to be reset, reviewed and
amended from a wiring graphic or wiring matrix (enter return to skip). These options are the
same as described in sections 12.7 and 17.

Chapter 12

Setting special wiring

Selecting special wiring (enter s in section 11.1) allows a greater range of methods for wiring up
the network (the wiring scheme) than quick settings in chapter 11. Special wiring is necessary to
set random wiring for 2d or 3d networks. The network can be assigned local or random wiring in
1d, 2d (square or hex), 3d, or hypercube wiring, and the wiring can be “hand wired” and biased
in a variety of ways.

Special wiring also allows the following functions, some of which may be restricted to predefined
parts of the network (see also chapter 17).

• Confining random wiring within a set zone, from which some wires may be released.

• Suppressing periodic boundary conditions, selectively for the various axes in 2d and 3d.

• Forcing or disallowing self-wiring.

• Forcing distinct wiring i.e. no duplication,

• Setting the same random wiring template for every cell in the network.

• There are additional functions for 3d networks.

– Suppress links to particular layers of the network.

– Force direct links to specific layers.

– Apportion fractions of available random links between specified layers.

Once the special wiring is set, it can be amended by many flexible methods from the
“wiring graphic” described in chapter 17.

12.1 Setting up the network geometry

Entering s in section 11.1 gives the first special wiring option, which allows the network geometry
to be set as 1d, 2d (square or hex), 3d, and also as a hypercube for appropriate n and k.

hypercube-h, 3d-3, 2d-2 (hex+x square+s), 1d-def
(hypercube-h only if k = log2n or log2n+ 1, for example k=3, n=8 or 9)

Sections below examine each option in detail.

115

116 CHAPTER 12. SETTING SPECIAL WIRING

12.2 Hypercube wiring

Enter h for a hypercube in section 12.1. In a fully connected n-dimensional hypercube, each state
receives input from its log2n one-Hamming distance “neighbors”, and may also receive input from
itself. If n=8 and k = log2n = 3, the hypercube is a simple cube with network states at the
vertices and bi-directional links at the edges. The hypercube wiring option is only active if the
network size n is a power of 2, (2, 4, 8, 16,. . .), and k = log2n, or k = log2n + 1 where vertices
also receive one additional input from themselves. The following values of n and k are valid for
the hypercube option to appear,

n 8 16 32 64 128 256 . . . and so on
k 3 or 4 4 or 5 5 or 6 6 or 7 7 or 8 8 or 9 . . . and so on

For example, a simple cube, n=8, k must equal 3 or 4. Figures 12.1 and 12.2 give examples in
various network-graph layouts (section 20.5).

12.2.1 degrading the hypercube

A further option allows degrading the hypercube “wiring”, i.e. pruning uni-directional connections,
according to some probability

set % prob (def 100):66 (for example)

For example, for a hypercube where n=8 and k=4, if 66 is entered, wires are set with a
probability of 66%. A further prompt is presented,

part hcube:%wire-prob=66 act=66.8 bi=6/12=50.0%
nhood mix=44124322 (values shown are examples)

reset-r save-s cont-ret:

7 6

5 4

3 2

1 0

7 6

5 4

3 2

1 0

15 14

13 12

11 10

9 8

7 6

5 4

3 2

1 0

Figure 12.1: Hypercube wiring shown as a network-graph (section 20.5). Left: n=8 k=4 hyprecube,
which includes self-links. Center: a degraded version of the n=8 hypercube with some links missing.
Right: n=16 k=5 hyprecube. The 3d-3 network-graph option was used for the figures, and the graph
was rearranged by dragging nodes (section 20.10). The figures should be viewed as if looking up from
below. Output directed links are the same color as the source node. To regenerate these layouts
automatically, enter file-f in section 20.7.3 for the filing prompt (section 35.3) and load the *.grh

layout file, hyp8 or hyp16 (.grh is added automatically).

117

31

30

29

28

27

26
25

242322
21

20

19

18

17

16

15

14

13

12

11

10
9

8 7 6
5

4

3

2

1

0

n=32, k=5 n=64, k=6 n=128, k=7

Figure 12.2: Hypercubes for n ≥ 32 are difficult to visualize in 3d. These examples show hypercubes
as a network-graph with circle layout (section 20.5).

This indicates the actual fraction of remaining wires and the number of and percentage of
bi-directional links. Enter r to reset the wiring probability, s to save the k-mix (see chapter 19),
and return to accept. The resulting k-mix is given for the network as in section 9.11.

12.3 1d, 2d and 3d special wiring

If return, 2 or 3 was entered in section 12.1, a 1d, 2d or 3d network will be selected to receive
either local or random wiring, or “hand wiring” in a wiring matrix “spread sheet”. A prompt as
follows will be presented,

hand wire-h, (appears in each case below)

local 1d-1, random-def: (if 1d was set in 12.1)

or
local 2d-2 (hex+x square+s), 1d-1, random-def: (if 2d was set in 12.1)

or
local 3d-3, 2d-2 (hex+x square+s), 1d-1, random-def: (if 3d was set in 12.1)

options . . . what they mean

hand wire-h . . . for wiring by hand (section12.6).

local-3,2,1 . . . for local CA wiring (section 12.4). The wiring would usually be set to
match the network geometry set in section 12.1, but its also possible to
assign local 1d wiring to a 2d network, and local 1d or 2d wiring to a 3d
network.

return . . . for random wiring with geometry set in section 12.1 — if this is 2d or
3d the size will be set (section 12.3.1). Further refinements are made in
section 12.5).

12.3.1 Random 2d and 3d

For 2d or 3d network geometry set in section 12.1, if random is selected in section 12.3, further
prompts are presented to set the network size, i×j (×h for 3d), as described in section 11.6, and

118 CHAPTER 12. SETTING SPECIAL WIRING

neighborhood k, or the k-mix, as described in chapter 9. Note that these settings override those
previously set for n and k in the main sequence prompts in chapters 8 and 9.

Once the network wiring has been set, the wiring of individual cells may be reviewed and altered
in a “wiring matrix” or ‘wiring graphic” (chapter 17).

12.4 Special wiring, local

Enter 1, 2, 2x, 2s or 3 in section 12.3 for local 1d, 2d or 3d (CA) wiring. 2x or 2s forces
hexagonal or square wiring and overides the defaul, which depends on k (section 10.1.3). Note
that for local 1d wiring in a 1d network, the n, k parameters set previously in chapters 8 and 9
remain valid. For local 2d and 3d wiring new prompts will be presented to reset these parameters.

12.4.1 Local 1d treated as random

For a 1d network, if 1 for local 1d wiring was selected in section 12.3, a subsequent option allows
the local wiring to be treated as if it were “random” or nonlocal (always the case for 2d and 3d
networks), allowing the local wiring to be altered in various ways, and also for wire moves to be
allowed in “learning” (chapter 34). However, the “compression” of attractor basins (section 26.2)
may be applied as long as the network retains local 1d wiring. The following prompt is presented,

treat local 1d as random wiring-1, and compress-2:

12.4.2 Local 2d and 3d

If 2d or 3d local (CA) wiring was selected in section 12.3, further prompts are presented to set
the size and neighborhood as for random wiring in section 12.3.1. In fact local 2d and 3d wiring
is treated as if it were “random” or nonlocal, allowing it to be altered in any way. This is not the
case by default for local 1d wiring (section 12.4.1 above).

12.5 Special wiring, random

If random wiring (the default) is selected in section 12.3, (for 1d, 2d or 3d), and n, k, or the
k-mix, have been set, a series of context dependent prompts are presented in sequence to allow a
variety of biases to the random wiring (values shown are examples),

bias random wiring: confine to local zone (max=14 def=14): CA-c:
release some wires from zone (def 0, max 3): (depending on k)

suppress periodic boundary-s: i: j: h: (i: j: for 2d, i: j: h: for 3d)

exclude all selfwiring-2, selfwire center wire-1:
distinct wiring (no duplication)-n:
suppress links to layers (0-8), range1 low: high: range2 low: high: (3d only)

force direct link to a layer, enter (0-8): (depending on h, 3d only)

force random links to specific layers-y: (3d only)

same wiring everywhere-e:

119

DDLab will do its best to reconcile any contradictory settings. A small top-center window
accept defaults-d is a reminder that at any time further prompts in this sequence can be skipped
by entering d. Enter q to backtrack. The options are explained below.

12.5.1 Applying wiring biases to parts of the network

At this early stage in DDLab’s prompts the biases apply to the whole network, but it is important
to note that the biases may be applied to just single cells or predefined parts of the network,
as well as to the whole network, when these same options are accessed from the wiring graphic
(section 17.3). In this case the biases only take effect when r (for random wiring) is selected in
section 17.4 (see also 17.9.5).

To design particular wiring schemes, especially if the wiring needs to be tailored in specific
ways between different parts of the network, its usually easier to set up a dummy wiring scheme
at this stage, them revise it in chapter 17.

12.5.2 Confining random wiring to a set zone

The wiring may be confined within a periodic zone of a given diameter relative to each target cell.
This diameter relates to the network geometry. Enter the local zone diameter at the prompt

confine to local zone:

in section 12.5. 1d, 2d and 3d examples are shown in figures 12.3, 12.4 and 12.4. which illustrate
how network wiring is represented, explained more fully in chapter 17.

12.5.3 Setting local wiring as random

Enter c at the prompt CA-c: in section 12.5 to set local (CA) wiring as “random wiring”. CA
wiring in 1d, 2d or 3d will be set depending on the native dimension of the network. This allows
subsequent changes to be made to the CA wiring, for example, releasing some wires described
below.
| |

(a) random, zone=7

| |

(b) random, zone=7

| |

(c) random

| |

(d) CA wiring

Figure 12.3: Confining 1d k=5 random wiring within a local zone of a set diameter. n=15. (a) and
(b) show random wiring within a 7 cell local zone, where (b) illustrates periodic boundary conditions.
(c) shows fully random wiring, and (d) local, CA type, wiring for comparison. Wiring from the pseudo-
neighborhood is shown connected to the previous time-step (see chapter 17.)

120 CHAPTER 12. SETTING SPECIAL WIRING

(b) a) random, zone=5 (b) fully random

Figure 12.4: Confining 2d random wiring within a 5
cell local zone. n=15×15. (a) random wiring con-
fined within a 5 cell zone. (c) fully random wiring.

5

4

Figure 12.5: Confining 3d k=9
random wiring within 3 cell local
zone. n=9×9×9. Left: 2d showing
successive layers. Right: 3d isometric.

12.5.4 Release wires from zone

Some wire can be released from the local zone set in section 12.5.2 and from the CA wiring set in
section 12.5.3. Enter the number of wires to be released at the prompt . . .

release some wires from zone (def 0, max 7): (values shown are examples)

. . . in section 12.5. The number of wires specified will be chosen and reassigned at random to any
position in the network, unless this is restricted by further biases.

12.5.5 Suppress periodic boundary conditions

For a 1d network, enter s at the prompt . . .

suppress periodic boundary-s:

. . . in section 12.5 to suppress periodic boundary conditions.

For 2d and 3d networks further prompts appear,

i:, j: (and h: for 3d).

Periodic boundary conditions can be suppressed independently for each axis, i, j and h. To do
so, enter s in response to the prompts.

12.5.6 Self-wiring

Enter 2 or 1 at the prompt . . .

exclude all selfwiring-2, selfwire center wire-1:

. . . in section 12.5 to exclude self-wiring, or to force target cells to wire to themselves. Self-wiring
means that the cell will provide an input to its own pseudo-neighborhood, at the central position
if available, or to a nearby position if not. chapter 10 describes the pseudo-neighborhoods.

121

12.5.7 Distinct wiring

Wiring may be made distinct to prevent two or more positions in the pseudo-neighborhood to be
wired to the same cell. Enter n at the prompt . . .

distinct wiring (no duplication)-n:

. . . in section 12.5 for distinct wiring. DDLab will do its best to achieve distinct wiring, but this
may conflict with a small “wiring zone” set in section 12.5.2 and with other wiring bias settings.

12.5.8 Suppress links to 3d layers

Links to horizontal layers in a 3d network can be suppressed. Two ranges of layers can be des-
ignated. Prompts are presented in sequence. Enter the levels to be suppressed starting with the
lowest level. For example, the following entries would suppress links to layers 0,1,2,3 and 6,

suppress links to layers (0-8), range1 low:0 high:3 range2 low:6 high:6

12.5.9 Force a direct link to a 3d layer

Direct links can be “forced” to each cell in a designated 3d layer. A direct link means that cells
at position i, j link one wire to position i, j in the designated layer. The wire originates from the
pseudo-neighborhood index 0 (chapter 10).

For example, for a 9 layer 3d network, enter the required layer index at the prompt . . .

force direct link to a layer, enter (0-8):

. . . to which direct links will be forced. By default, if a layer is specified, all cells make a direct
link, but this can be restricted to a specific cell, range of cells, or to a specific layer or range of
layers from the wiring graphic (see chapter 17).

This option may be used to provide a constant input pattern to a 3d network, for example to
model inputs from a “retina”.

12.5.10 Force random links to specific 3d layers

Fractions of the available random links can be assigned to designated 3d layers. Previous biases to
confine wiring to a set zone will be respected for the horizontal plane, but the vertical constraints
will be overridden.

If y is entered at the prompt . . .

force random links to specific layers-y:

. . . in section 12.5, the following series of options are presented in a top-right window, for example
in an 9 layer, k=7, 3d network,

k=7, enter n links to layer 8 (7 available):3 (3 entered, 4 remain)

k=7, enter n links to layer 7 (4 available):1 (1 entered, 3 remain)

. . .
k=7, enter n links to layer 0 (3 available):3 (none remain)

The prompts continue until layer 0, or until all links have been assigned and none remain.
To miss a layer enter return or 0. If links remain at the end, they will be assigned at random,
but still according to the biases specified in section 12.5.

122 CHAPTER 12. SETTING SPECIAL WIRING

12.5.11 Same random wiring everywhere

The same random wiring “template” can be applied to every cell in the network to create a
quasi-CA with periodic boundary conditions. To do this enter e at the prompt . . .

same wiring everywhere-e:

. . . in section 12.5. Biases previously specified in section 12.5 and other options will be respected
as much as possible. This can be restricted to just part of the network from the wiring graphic
(chapter 17).

12.6 Wiring by hand

If h is selected in section 12.3, a blank wiring scheme is presented in the form of a matrix or
“spread sheet”, which may be filled in with the wiring positions for each cell’s pseudo-neighborhood
index. A completed wiring matrix can be amended in the same way (section 17.2.2).

Columns give the cell’s pseudo-neighborhood index, K (k-1,. . . ,0), Rows give the cell network
position, N (n-1,. . . ,0). The 0–0 grid, or the 0-minimum n grid if the whole matrix does not
fit within one window, is in the lower right hand corner. Each grid records the position in the
network x, (n-1,. . . ,0), to which the K’th wire of the N ’th cell is connected.

Note that positions N and x are 1d indexes, even if the network is 2d or 3d. Sections 10.2.2
and 10.2.3 explain how to convert between 1d and 2d or 3d coordinates.

Move around the matrix with the left/right/up/down arrow keys. Enter the new position at
the flashing green cursor and complete the entry by moving to another grid with an arrow key or
return. On a blank grid, or on zero, just return gives a random position. An entry outside the
network limits will be ignored. Enter q to complete. Any undefined grids will be set to position
0. While the wiring matrix is being set, the following reminder is displayed in a top-right window,

(a) k=5, n=14 (b) mixed-k= 3 to 11, n=14

Figure 12.6: Setting wiring by hand on the blank wiring matrix, shown partly filled. Columns are
indexed k-1,. . . ,0, rows n-1,. . . ,0. (a) shows an example matrix for a k=5, n=14 network. (b) shows
an example matrix for a mixed-k network, k=3 to 10, n=14.

123

hand wire/revise: jump-j (values shown are examples)

enter wiring positions 0-144 (return on blank/0=random)
move-arrows more/complete-m layout-l font-f quit-q

Enter l or f to alter the presentation of data and the amount visible in the matrix window. f is
a 3-way toggle for the font size between normal, medium and small. l changes the matrix window
width. The following top-right prompt is presented,

change window width (922-231 now=462): (values shown are examples)

Enter the new width in pixels within the limits indicated.
Large networks may require several successive windows to display the matrix. Enter m to see

the next window. Moving beyond the top or bottom row in the current window, with the arrow
keys or return, also brings up the preceding or next window. Enter j to jump to a new cell index,
the following prompt is presented,

jump to index (1599-0): (for a 2d network, 40×40)

Enter the new cell index, which will become the first entry in the top row.
Enter q to accept the wiring (or return on the very last (bottom-right) entry) to conclude

matrix entries, and go to the prompt in section 12.7 below. Any blank entries are assigned to
position zero.

The wiring scheme can be reviewed and revised in the same wiring matrix format, or as a
wiring graphic in 1d, 2d or 3d, as described in chapter 17.

12.7 Reviewing wiring

After the special wiring has been set as described in this chapter, various options allow the wiring
to be reset, reviewed and amended from a wiring graphic or wiring matrix. A prompt similar to
the following is presented,

for a 1d network

1d network (n=150), review/revise, wiring only - rules not set
graph-g, matrix: revise-m view-M prx-Mp
graphic: 1d:timesteps-1 circle-c 2d-2:

for a 2d network

2d network (40x40), review/revise, wiring only - rules not set
graph-g, matrix: revise-m view-M prxt-Mp
graphic: 1d:timesteps-1 circle-c 2d-2:

for a 3d network

3d network (9x9x9), review/revise, wiring only - rules not set
graph-g, matrix: revise-m view-M prxt-Mp
graphic: 1d:timesteps-1 circle-c 2d+3d-3:

These options are described in chapter 17. They provide very flexible methods to review and
amend the wiring, and also the rules once set. It may be preferable to set up a suitable dummy
network initially, then tailor it with these options. The options also appear after quick wiring in
chapter 11, and after the rules have been set (chapters 13 to 16).

Chapter 13

Rule types

Rules in DDLab can be set according to different primary types (possibly overlapping): the
full rule-table (rcode) which can be transformed to an iso-rule[56] (section 16.10), k-totalistic1

(kcode), t-totalistic (tcode), and outer totalistic, so before a rule is actually selected in chapter 16,
options are presented to select the primary type, and if a rulemix is required. These options are
described, and the chapter goes on to explain the rule types in detail, including reaction-diffusion
dynamics (section 13.8). Further prompts in chapters 14 and 16 describe the rulemix options and
the wide variety of rule sub-types, such as survival/birth, within the chosen type.

13.1 Selecting the rule type

After the network wiring has been set or defaults accepted in chapters 11 and 12, the next prompt
in the main sequence selects the type of rule. The prompt differs between rules based on full
rule-tables (SEED-mode or FIELD-mode) which may be rcode, kcode or tcode, and just totalistic
rules (TFO-mode) based on only the shorter kcode and tcode rule-table.

13.1.1 Select full rule-tables, rcode

In SEED-mode or FIELD-mode, all rule types rely on full rule-tables — rcode. Totalistic rules
(kcode and tcode) and reaction-diffusion rules will be automatically transformed into rcode. Any
rcode for 1d, or for 2d and 3d neighborhood templates (n-templates) as shown in figure 16.17, can
then be transformed to an iso-rule (section 16.10). The following prompt is presented,

totalistic: tcode-t kcode-k (def-rcode):

options . . . what they mean

def-rcode . . . enter return for rcode, the full lookup table, which can be reduced to
an iso-rule.

kcode-k . . . for kcode, a k-totalistic rule, intrinsically isotropic, but which allows
promotion to an iso-rule from its rcode expression.

tcode-t . . . for tcode, a t-totalistic rule, intrinsically isotropic, but which allows pro-
motion to an iso-rule from its rcode expression.

1Suggested by Antonio Lafusa [5].

124

125

13.1.2 Select kcode or tcode in TFO-mode

In TFO-mode for kcode or tcode rule-tables (not valid for iso-rules), the following prompt is
presented,

totalistic only: outertot-o/+o, tcode-t, (def-kcode):
(outertot-o/+o does not apply for a k-mix, set in sections 9.1 or 11.7)

options . . . what they mean

def-kcode . . . enter return for kcode, a k-totalistic rule.

tcode-t . . . for tcode, a t-totalistic rule.

outertot-o . . . for outer-kcode (section 14.2) which also allows the outer-kcode method
of reaction-diffusion (sections 13.8.1, 14.2.1).

-to . . . enter t followed by o for an outer tcode (section 14.2).

Note that for v=2, tcode and kcode lookup-tables and the resulting dynamics are identical.

13.1.3 options for density-bias, Post functions, neighborhood matrix

After selecting a rule type in sections 13.1.1 or 13.1.2, a top-right prompt appears to select a single
rule or a rulemix, and other options (section 14.1), which are also relevant for selecting a single
rule. A density-bias option (section 14.1.2) appears for both rcode and TFO-mode. For rcode
only, there are further options to list Post functions (section 14.12), and to amend or save the
neighborhood matrix graphic (section 14.11). From within these options backtrack to the initial
top-right prompt window with q — or to skip the window and continue enter return.

The next prompt will allow setting a single rule (section 16.1) or setting rules “by hand” for a
rulemix (section 14.6).

13.2 Rule types and combinations

The rest of this chapter explains the various types of rules, or systems of logic, that act on
the neighborhood, or pseudo-neighborhood, to determine a cell’s output, and the conventions
in DDLab for constructing and ordering rule-tables. Within each primary rule-type there are
numerous subtypes described in chapter 16.

The rules described first are Boolean functions as in older versions of DDLab, where the value-
range v=2 consists of just [0,1]. Then the rules are generalized for multi-value logic, where the
value-range (the number of colors) may be anything from v=2 to 8.

The primary rule types, expressed as rule-tables (lookup-tables) in DDLab, are as follows:

• full rule-tables: (not in TFO-mode) referred to as “rcode” listing the outputs of all possible
neighborhood patterns.

• k-totalistic rules: referred to as “kcode” — rule-tables listing the outputs for all possible
combinations of totals (or frequencies) of the values in the neighborhood. Kcode can be
selected in TFO-mode, or in SEED-mode or FIELD-mode where the kcode is also expressed
as rcode.

126 CHAPTER 13. RULE TYPES

• t-totslistic rules: referred to as “tcode” — rule-tables listing the outputs of all possible
totals, where the values in the neighborhood are simply added. Tcode can be selected in
TFO-mode, or in SEED-mode or FIELD-mode where the tcode is also expressed as rcode.
For v=2, kcode and tcode are identical.

• iso-rules: (not in TFO-mode, rcode only) Any rcode for 1d, or for 2d and 3d n-templates
shown in figure 16.17, can be transformed to an iso-rule (section 16.10). All rota-
tions/reflections of a prototype n-template comprise each iso-group which has just one
common output in the iso-rule lookup-table, so iso-rules are considerably shorter than rcode,
but are longer than kcode or tcode.

In addition DDLab offers combinations of rules as follows:

• rulemix: where each cell in the network can have a different rule, or where a restricted set
of rules is distributed throughout the network, described in detail in chapter 14. A network
with mixed-k must have a rulemix.

• outer-totalistic rules: (TFO-mode only, and not for mixed-k) A number, v, of totalistic
rules (tcode or kcode) can be employed to create outer-totalistic rules, where a different rule
applies according to the value of the center cell (section 13.7). For v=2 the game-of-Life can
be set in this way (section 14.2.2), though it can also be set as rcode in section 16.10.7.

• reaction-diffusion rules: or excitable-media [18]. Cells may be either resting, excited,
or refractory, and change according to thresholds and values (section 13.8). The resulting
dynamics produces waves, spirals and related patterns that can resemble the BZ reaction and
other types of excitable media. A reaction-diffusion rule can be set from rcode (section 13.8.2)
or from outer-kcode (section 14.2.1). Note that outer-kcode allows a greater range of [v, k]
than rcode, but the latter allows a rulemix that can include more than one reaction-diffusion
rule in the network.

13.2.1 Rule-table size implications

The lengths of rule-tables, S, depend on v and k, where rcode > iso-rule > kcode > tcode,

rcode . . . S = vk

iso-rule . . . see table 16.3, S also depends on the n-template (figure 16.17) so there is no
general analytical expression.

kcode . . . S = (v + k − 1)!/(k!× (v − 1)!)
tcode . . . S = k(v − 1) + 1

This has implications on the kLim (section 7.2). In SEED-mode or FIELD-mode, kcodes
and tcodes will be implemented as the equivalent full rcode (the longest rule-table), whereas in
TFO-mode the shorter kcode and tcode allow a greater kLim for a given value-range v (see also
section 6.1).

Various subcategories of rcode and kcode can also be selected in chapter 16 and at a later stages
in DDLab, including majority, Altenberg, chain, and isotropic. The same rule may apply to all
cells in the network as for CA, or the network may have a mix of different rules.

127

13.3 Binary full rule-table — rcode

A full rule-table (rcode) for binary systems (v=2) has S = 2k entries. Table 13.1 shows how the
size of the rule-table increases exponentially with k.

k 1 2 3 4 5 6 7 8 9 10 11 12 13
size of lookup-table 2k 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

Table 13.1: The size of rule-tables k =1 to 13

The convention in DDLab is to list neighborhood configurations from left to right in reverse
binary value order2 following Wolfram [35], so that the all 1’s neighborhood is on the left, as
set out below. Each neighborhood is assigned an output [0,1], and the resulting bitstring defines

one of the 22
k

possible rcodes. The most significant bit in the bitstring corresponds to the all
1’s neighborhood. The rules may also be expressed in decimal (if applicable — section 16.6) or
in hexadecimal. k ≥ 5 rules are usually referred to by their hex rule numbers, k ≤ 3 rules are
usually referred to by their more familiar decimal rule numbers, especially binary k=3 so called
“Elementary Cellular Automata” — for example ECA 60 is shown below,

7 6 5 4 3 2 1 0 - binary value = rcode index
111 110 101 100 011 010 001 000 - k=3 neighborhood
0 0 1 1 1 1 0 0 - output string = rcode, 60 in decimal

In DDLab the neighborhood configurations are rotated and displayed vertically for compactness
making a so called “neighborhood matrix” (figure 13.1), showing also the k-index, as in these
example for k=3, and k=5 below. A bit-string can be assigned in the corresponding order to make
the rcode.

7......0 - rcode index
: :

2 - 11110000
k index 1 - 11001100

0 - 10101010

11000001 - rcode, decimal 193, or hex c1

31......0 - rcode index
: :

4 - 11111111 11111111 00000000 00000000
3 - 11111111 00000000 11111111 00000000

k index 2 - 11110000 11110000 11110000 11110000
1 - 11001100 11001100 11001100 11001100
0 - 10101010 10101010 10101010 10101010

-------- -------- -------- --------
11111100 01100010 10001000 00110111 - rcode

fc 62 88 37 in hex
4234315831 in dec

2The rcode rule-table order can be inverted — section 18.3

128 CHAPTER 13. RULE TYPES

k=1 k=2 k=3 k=4

k=5

k=6

k=7

k=8

k=9

Figure 13.1: The binary neighborhood matrix, k=1 to 9, as displayed in DDLab.

13.4 Binary totalistic rules

For binary (v=2) totalistic rules, a cell’s value depends only on the sum of 1s in its neighborhood
— tcode and kcode are identical (for v ≥ 3 they are different — section 13.6).

A tcode rule-table (tcode-table) has k+1 bits representing the possible totals, set out in
reverse value order, from k to 0, where each total is assigned an output [0,1]. The resulting bit
string defines one of the 2k+1 possible tcodes. If DDLab is not in TFO-mode, it automatically
transforms the tcode into rcode (section 13.3). Here is an example for k=5,

5 4 3 2 1 0 - totals
- - - - - -
1 1 0 0 1 0 - output = tcode = kcode, 50 in dec, 32 in hex,

rcode = 11101000100000011000000100010110
or 3900801302 in dec, e8818116 in hex

Totalistic codes are also useful for setting threshold functions, for example, the k5 tcode-table
111000 is the majority rule.

129

13.5 Multi-value full rule-table — rcode

A full rule-table, rcode, for multi-value systems >2 (v= 2 to 8 in DDLab), has vk entries.
Table 13.1 shows how rcode increases exponentially with v and k, and also the “safe” limits of k.
Larger but risky kLim (table 7.1) are possible if “exLimits” was activated in section 7.1.1.

k 1 2 3 4 5 6 7 8 9
v=3 3 9 27 81 243 729 2187 6561 19683
v=4 4 16 64 256 1024 4096 16384
v=5 5 25 125 625 3125 15629
v=6 6 26 216 1296 7776
v=7 7 49 343 2401 16807
v=8 8 64 512 4096

Table 13.2: The size of full rule-tables for v=3 to 8, against k, showing “safe” values of k.

The convention in DDLab is to list neighborhood configurations from left to right in reverse
n-ary value order3 so the all-max neighborhood is on the left. Each neighborhood is assigned an

output [0,1,. . . ,v-1], and the resulting n-string defines one of the vv
k

possible rcodes. The rcodes
may also be expressed in decimal (if applicable — section 16.6) or in hexadecimal. An example
for a v3k3 rcode is shown below, where the central row shows all possible neighborhoods, the top
row their trinary values (the rcode index), and the bottom row the rcode itself,

26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

222 221 220 212 211 210 202 201 200 122 121 120 112 111 110 102 101 100 022 021 020 012 011 010 002 001 000

0 0 2 1 2 1 0 1 2 2 1 2 1 1 0 2 1 1 0 0 0 2 0 2 2 0 1

DDLab treats the n-string as a bitstring, assigning the minimum number of bits for each value;
1 bit if v=2, 2 bits if v= 3 or 4, and 3 bits if v= 5 to 8. The resulting bitstring can be expressed
in hexadecimal, in this case the rule is 026469949408a1.

In DDLab the neighborhood configurations are rotated and displayed vertically for compact-
ness making a so called “neighborhood matrix”, showing also the k-index. The n-ary string can
be assigned in the corresponding order to make the rcode.

26.........................0 - rcode index
| |

2 - 222222222111111111000000000
k index 1 - 222111000222111000222111000

0 - 210210210210210210210210210
|||||||||||||||||||||||||||
002121012212110211000202201 - output string = rcode, hex 026469949408a1

In the main sequence of prompts, a graphic of the multi-value neighborhood matrix is displayed
(but not for mixed-k or in TFO-mode) — figure 13.2 gives examples. The matrix graphic can be
saved, selected part shown, and rescaled (section 14.11).

3The multi-value rcode rule-table can be inverted – section 18.3

130 CHAPTER 13. RULE TYPES

Figure 13.2: Examples of the multi-value neighborhood matrix, colored according to the value color
key (section 7.1). Top: v3k3, Center: v4k3, Bottom: v5k7 central part only.

13.5.1 Transforming rcode to the iso-rule

For symmetric n-templates in 1d, 2d or 3d (section 16.10.1), the rcode bit/value string graphic
(section 16.4) can be transformed to the iso-rule (section 16.10.4). The iso-rule graphic string will
appear with key-press R at the prompts in section 16.4.1.1. The algorithm scans rcode from left
to right and constructs the iso-group from each unassigned n-template.

The examples in figure 13.3 show majority (voting) rcode (section 16.7) transformed to iso-
rules, which also induces isotropy in the original rcode. The iso-rule string is much shorter than
the rcode-string as can be seen in in figure 13.3 and table 16.3.

Any index selected in the iso-rule string graphic will exhibit its iso-group graphically
with accompanying details in a separate window by key-press G (figure 13.4), and further

(a) v2k5 rcode(32), 2d square iso-rule(12)
(b) v2k9 rcode(512), 2d square iso-rule(102)

(c) v3k7 rcode(2187), 2d hex iso-rule(276)

(d) v5k5 rcode(3225), 2d square iso-rule(600)

Figure 13.3: Examples of majority (voting) rules (section 16.7) for a range of v,k n-templates presented
as pairs of bit/value strings: as rcode, and (below each) transformed to iso-rules. The string sizes,
where rcode≫iso-rule, are noted. Only binary majority rcode with odd k is isotropic by default when
initially selected.

131

335 359 461 485

(a) 2d v2k8 (92/101) (b) 2d hex (224/275) (b) 3d (162/170)

Figure 13.4: Examples of iso-groups showing (group-index/max-index).

options (sections 16.10.6, 16.10.6.1) will show iso-groups at positions up and down the iso-rule
string, or a range of iso-groups (figure 16.18), or the complete graphic of the iso-rule prototype
neighborhoods (figure 16.19). These iso-rule option as covered in detail in section 16.10.

13.6 Multi-value totalistic rules, tcode and kcode

For multi-value systems, if v≥3, totalistic rules separate into two types — k-totalistic rules
(kcode), and t-totalistic rules (tcode). For v=2, kcode and tcode are identical (section 13.4).

13.6.1 k-totalistic rules - kcode

The kcode rule-table (kcode-table) is a list of the outputs for all possible combinations of value-
frequencies in the neighborhood. Each combinations is represented by a string of length v (shown
below vertically from v-1 down, for v=3,) giving the frequencies of the values v-1 to 0, which must
add up to k, so the last row of frequencies is redundant and could be omitted.

27..........................0 <--kcode index
| |

> 2: 6554443333222221111110000000 < frequency strings 6 0
v=3 values > 1: 0102103210432105432106543210 < of 2s, 1s, 0s, from 0 to 0

> 0: 0010120123012340123450123456 < shown vertically 0 6
||||||||||||||||||||||||||||
0022000220022001122200021210 <--kcode, outputs [0,1,2]

The ordering of the pattern strings themselves depend on their v-ary value, with the higher value
on the left. This can be effectively inverted to allow kcode expressed in the opposite convention to
run as intended (section 31.2.10).

In the example above for the v3k6 “Beehive rule” [47] (also shown as a matrix in section 13.6.2)
the kcode with outputs [0,1,2] are listed in reverse order of the kcode index. The kcode may also
be expressed in decimal (if applicable — section 16.6) or in hexadecimal. If DDLab is not in
TFO-mode, it automatically transforms the kcode into the full rule-table, rcode (section 13.5).

Kcode rules are isotropic because they depend only on the frequency of each value (or color) in
the neighborhood — the positions of values are irrelevant, so symmetric space-time patterns must
conserve their symmetry.

The size of a kcode-table, S = (v + k − 1)!/(k!× (v − 1)!), is much shorter than a rcode-table.
The values of S for different v and “safe” kLim in TFO-mode are shown in table 13.3 — table 13.4
shows all “safe” values of S for increasing v and k. Larger but risky kLim (table 7.1) are possible
if “exLimits” was activated in section 7.1.1.

132 CHAPTER 13. RULE TYPES

v kLim kcode size
2 27 28
3 27 406
4 26 3654
5 25 23751
6 17 26334
7 13 27132
8 11 31824

Table 13.3: Kcode lookup-table size for v and “safe” kLim.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

3 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406

4 4 10 20 35 56 84 120 165 220 286 364 455 560 680 816 969 1140 1330 1540 1771 2024 2300 2600 2925 3276 3654

5 5 15 35 70 126 210 330 495 715 1001 1365 1820 2380 3060 3876 4845 5985 7315 8855 10626 12650 14950 17550 20475 23751

6 6 21 56 126 252 462 792 1287 2002 3003 4368 6188 8568 11628 15504 20349 26334

7 7 28 84 210 462 924 1716 3003 5005 8008 12376 18564 27132

8 8 36 120 330 792 1716 3432 6435 11440 19448 31824

v

k

Table 13.4: The size of kcode-tables for v=2 to 8 showing “safe” values of k.

13.6.2 kcode v=3 matrix

For ternary (v=3) systems, kcode can usefully be show as a 2d matrix [48], where the output state
of each neighborhood is given by the row-index i (the number of neighbors with value=2) and
column-index j (the number of neighbors with value=1). The number of neighbors with value=0
is given by k − (i+ j) so is not required. Two examples are given in table 13.5 for k=6 and k=7.

j
0 1 2 3 4 5 6

0 0 1 2 1 2 0 0
1 0 2 2 2 1 1
2 0 0 2 2 0

i 3 0 2 2 0
4 0 0 2
5 2 0
6 0

j
0 1 2 3 4 5 6 7

0 0 1 2 1 2 2 2 2
1 0 2 2 1 2 2 2
2 0 0 2 1 2 2

i 3 0 2 2 1 2
4 0 0 2 1
5 0 0 2
6 0 0
7 0

Table 13.5: Matrix representations of v=3 k-totalistic rules. Left: v3k6 Beehive rule [47] and
Right: v3k7 Spiral rule [48], both on a 2d network with hexagonal tiling. Some outputs are quasi-
neutral, wildcards, and shown in color: red strong wildcards, blue weak wildcards.

13.6.3 t-totalistic rules - tcode

Tcode depends only to the sum of all the values in the neighborhood, so is a subset of kcode
(section 13.6.1) because each total can include several kcode neighborhoods. The rules are isotropic
because any pattern rotation/reflection must give the same total.

The size of a tcode-table, S = k(v − 1) + 1, is much shorter than kcode (section 13.6.1), but
the tcode kLim is nonetheless set at the same level as kcode in TFO-mode (“safe” or “risky” —
table 7.1). The values of S for different v and safe kLim are shown in table 13.6 below,

133

v kLim tcode size
2 27 28
3 27 55
4 26 79
5 25 101
6 17 86
7 13 79
8 11 78

Table 13.6: Tcode lookup-table size for v and “safe” kLim.

To construct tcode, each total, set out in reverse value order, S-1 to 0, is assigned an output
[0,1,. . . ,v-1], which is the tcode value-string. Here is an example for v7k5.

30.............................0 - totals
| |
6301462664052202461530202656513 - tcode, outputs [0,1,2,3,4,5,6]

The tcode may also be expressed in decimal (if applicable — section 16.6) or in hexadecimal,
as in section 13.5. If DDLab is not in TFO-mode, it automatically transforms the tcode into the
full rule-table, rcode (section 13.3).

13.7 Outer-totalistic rules
TFO-mode only, and not for mixed-k

Outer-totalistic rules apply in TFO-mode. The rules (kcode or tcode) depend on the value of the
center cell, so a number of rules, v, need to be specified.

If o for kcode or to for tcode is entered at the prompt in section 13.1.2, the rules will subse-
quently be assigned in the same way as for a rulemix (chapter 14), but only to the first v cells
in the network (network index 0 to v − 1) representing the values of the target cell, which will
determine the rule to be applied. So this method just utilizes the rulemix functionality, it is not a
proper rulemix.

The method works with any k, but makes most sense if the central cell is not wired to itself —
is empty in the neighborhood (section 10).

For the classic binary game-of-Life (section 14.2.2), two rules are required, and can be set “by
hand” as shown below,

for v=0: 000001000 - birth: exactly 3 live neighbors
for v=1: 000001100 - survival: 2 or 3 live neighbors

← k=8 outer-neighborhood

However, there are automatic methods for setting the game-of-Life and other Life-like rules, in
both outer-kcode (section 14.2.2) and as a full rule-table, rcode (section 16.10.7).

134 CHAPTER 13. RULE TYPES

13.8 Reaction-Diffusion dynamics

Figure 13.5: Reaction-Diffusion dynamics, 2d. Left: v8k8, threshold interval is 1 to 6, 122x122 square
lattice. Right: v8k11, threshold interval is 2 to 7, 255x255 square lattice, random connections within
a 24 diameter local zone.

Figure 13.6: Reaction-Diffusion dynamics, evolved 3d snapshots 44×44×44, v8k11, threshold interval
is 2 to 6, with a seed density of 33%. Each 3d snapshot has its 2d version, the top 5 levels, beside it.
Left: a local CA 3d neighborhood, Right: random connections within a 7 cell diameter local 3d zone.

Reaction-Diffusion or excitable media dynamics [18], can be generated with a type of CA or DDN
with 3 cell qualities: resting, excited, and refractory (or substrate, activator, and inhibitor). There
is usually one resting type, one excited type, and one or more refractory types. In DDLab these
correspond to the values 0, 1, and values≥ 2, which cycle between each other4.

4For binary networks (v=2) the refractory type would be missing, so this would not be reaction-diffusion in its
proper sense, though the option is still present in DDLab.

135

A resting cell becomes excited if the number of excited cells in its neighborhood falls within the
threshold interval (t). An excited cell type changes to refractory. A refractory cell type changes
to the next refractory type (if there are more than one) and the final refractory type changes back
to resting, completing the following cycle,

resting(0): if within (t) → excited(1) → refractory(2→ 3→ · · · → v− 1)→ resting(0)

In DDLab, reaction-diffusion can be set as outer-kcode in TFO-mode, which allows greater
[v, k], or as a full rule-table — rcode (or an iso-rule) in section 13.8.2 (see also section 16.12).

The resulting dynamics, in 2d and 3d, can produce waves, spirals and related patterns that can
resemble the BZ reaction and other types of excitable media. As well as the threshold interval, the
dynamics is sensitive to the initial state and its density of non-resting types (non-zero values) —
usually low for best results. This density (λ parameter) can be set in section 16.3.1. Interesting
results (as illustrated in figures 13.5 and 13.6) can be achieved not only for CA, but also for DDN
were the random wiring is confined to a tight local zone (section 12.5.2 and figures 12.4, 12.5).

13.8.1 Reaction-Diffusion from outer-kcode

Select outer-kcode (section 13.7) by entering o in section 13.1.2. Subsequent top-right prompts
allow the selection of reaction-diffusion dynamics (section 14.2.1).

The required rules are automatically assigned to the first v cells of the network (network index,
0 to v− 1) in a quasi-outer-kcode5. The way this works is as follows, where resting=0, excited=1,
refractory≥2: kcode(0) holds the threshold interval to change the cell from resting to excited
(0→1). kcodes(1, 2, 3,.., v-1) store the colors, so whatever the neighborhood, the cell cycles to the
next color, then back to 0, as described in section 13.8.

13.8.2 Reaction-Diffusion from a full rule-table — rcode

Select rcode which implements any logic, by entering return in section 13.1.1. Then enter RD-R at
the next main sequence prompt (section 16.1.1) for a reaction-diffusion rcode. After the threshold
interval is set in section 13.8.3 below, the rule will be set automatically to emulate reaction-diffusion
dynamics. Reaction-diffusion is isotropic[56], so can be transformed to an iso-rule without loss of
information — enter R in section 16.4.1.1 (see also section 16.12). Note that a reaction-diffusion
rcode can be part of a rulemix.

13.8.3 Selecting the threshold interval

Once reaction-diffusion dynamics has been selected (in sections 13.8.1 or 13.8.2) a subsequent top-
right prompt sets the threshold interval. This example shows the threshold interval set between 1
and 6 in a k=8 network,

thresholds: lower (0-8):1 upper (1-8):6 (if v=8)

This would make a resting cell change into an excited cell if there were between 1 and 6 excited
cells in its outer neighborhood, otherwise it would remain at rest.

5As noted in section 13.7, outer-totalistic rules are themselves a quasi-rulemix, using the rulemix functionality.

Chapter 14

Rulemix options

All cells in a network may have the same rule as in classical CA, or cells may have different rules.
This is referred to as a rulemix (or rule scheme), which may be a rcode-mix, kcode-mix or tcode-mix.
If the network has heterogeneous neighborhoods sizes (a k-mix, chapter 9 and section 11.7) then
there must be a rulemix (by default) — in this case section 14.1 below does not apply.

For just one rule enter return at the prompt in section 14.1, or nhood-matrix-a to amend/save
the neighborhood matrix graphic (section 14.11), then continue with chapter 16.

This chapter describes the rulemix options, and also outer-totalistic rules in TFO-mode which
share the same methods. Outer-kcode provides alternative methods for reaction-diffusion and
Life-like dynamics1.

A rulemix can be assigned from . . .

• the whole of rule-space (rule-spaces for a k-mix)

• a limited subset of rules2 to restrict the range of rules in the rulemix. The number of rules
in the subset can be anywhere from 1 to n (network size), but with an upper limit of 200.
Rules from the subset can be assigned to the network at random, or in repetitive blocks —
thus implement so called “hybrid CA” or HCA.

Rules in a rulemix or a limited subset can be set automatically at random with a predefined
density-bias of non-zero outputs (λ-parameter), and rules can be confined to various sub-categories.
Alternatively, rules can be set individually “by hand” allowing almost any combination, and the
rulemix can be loaded from a previously saved file.

This chapter also describes changing the density-bias, saving and amending the neighborhood
matrix graphic, and listing Post-functions, which are included in the initial rulemix prompt.

14.1 Single rule or rulemix, and other options
not for a k-mix (unless all k’s equal, section 14.6.7), or outer-totalistc rules in TFO-mode

After selecting a rule type in section 13.1, the next top-right prompt selects a single rule or
a rulemix, and includes some other options. The top line of the prompt shows a reminder of

1Reaction-diffusion or Life-like rules can also be set as full rule-tables (rcode), allowing inclusion in a rulemix.
2This subset option does not apply to a k-mix, or to outer-totalistc rules in TFO-mode.

136

137

the current mode, FIELD, SEED or TFO (section 6.1) and an option to preset the density-bias
(λ-parameter). The prompt also differs somewhat according to the rule type,

For rcode, kcode and tcode based on full rule-tables selected in section 13.1.1

FIELD-mode, bias-density (def 50.00%)-s: (or SEED-mode, def 50.00% — for v=2)
RULES: single rcode (def), load rulemix-l, list Post-P, nhood-matrix-a
mix: no limit-n, or set limit up to 200: (or single tcode/kcode above)

In TFO-mode, based on short rule-tables selected in section 13.1.2

TFO-mode, bias-density (def 83.33%)-s: (or def 83.33% — for v=6)
KCODE: single kcode (def), load kcodemix-l (or TCODE: single tcode..)

mix: no limit-n, or set limit up to 200:

Enter return to skip all these rulemix options (and this chapter), and continue for a single
rcode, kcode or tcode, in chapter 16. The rulemix options are summarized below.

14.1.1 Summary of rulemix and other options

A summary of the options in section 14.1 is as follows,

options . . . what they mean

bias-density-s . . . to change the density-bias — the fraction of non-zero values in the
rule-table (section 14.1.2.

single rcode (def) . . . (or kcode, tcode) enter return to continue setting a single rule
(section 16.1).

load rulemix-l . . . to load rule a scheme (rulemix) — rcode-mix .r s, kcode-mix .r v, or
tcode-mix .r t. (section 35.3, and chapter 19).

list Post-P . . . (not in TFO-mode) to list Post functions (section 14.12).

nhood-matrix-a . . . (not in TFO-mode) to amend the presentation of the neighborhood
matrix, and save as a PostScript file (section 14.11).

no limit-n . . . to set an rcode-mix, kcode-mix or tcode-mix, taken from the whole of
rule-space (section 14.4.1).

up to 200 . . . enter a number, 1 to 200 (or 1 to n if n < 200) to set the size of a
limited subset of rules (rcodes, kcodes or tcodes) from which the mix
will be assigned to the network (section 14.4.2). The maximum size of
the limited subset of rules (set limit) is 200, unless the network size
n < 200 — then the maximum set limit is n.

14.1.2 Density-bias (λ-parameter)

Enter s in section 14.1 to change the density-bias — the fraction of non-zero values in the rule-table
(the λ-parameter) but expressed as a percentage. This is applied probabilistically, so each rule
(rcode, kcode or tcode) in a rulemix will not necessarily have exactly the given density-bias. The
following top-right prompt is presented,

density-bias: enter % (def 66.67%): (for v=3, the default is an equal probability of each value)

Enter the new percentage density-bias — the prompt in section 14.1 will reappear with the
revised setting. The density-bias will be applied when setting the following at random,

138 CHAPTER 14. RULEMIX OPTIONS

• single rules (section 16.3.1).

• a rulemix or subset of rules (sections 14.5, 14.4.2).

• a rulemix or subset of rules “by hand” (section 14.6).

Note that for single rules set at random, the density-bias can be reset, either exactly or prob-
abilistically at later stages in section 16.3.1.

14.2 Outer-totalistic kcode or tcode
TFO-mode only

If outer-totalistic (kcode or tcode) was selected in TFO-mode in section 13.1.2, a quasi-rulemix
with v rules is the automatic choice, and a top-right reminder similar to this is presented,

TFO-mode,
OuterKcode: number of kcodes to be set=value-range=3
cont-ret: (or OuterTcode/tcodes, values shown are examples)

The next prompt will be similar to setting a rule-subset (KcodeSet or TcodeSet) in
section 14.4.2, but where the subset size=v. The prompts are as follows,

for kcode (and v=8)

OnterKcode(8): select by hand-h, RD-R Life-L maj-m/u Alt-A rnd-(def):

for tcode (and v=4)

OuterTcode(4): select by hand-h, maj-m rnd-(def):

The rules will be allocated to the first v cells in the network (index 0 to v − 1) representing
the values of the target cell, which determines the rule. The rules are set either at random with
various biases, or by hand, as for a normal rulemix, but although the method utilizes the rulemix
functionality, this is not a proper rulemix (section 13.7).

14.2.1 Setting reaction-diffusion by outer-kcode
for reaction-diffusion from rcode see section 13.8.2

Enter R in the OuterKcode. . . prompt in section 14.2 above to initiate a reaction-diffusion rule
by outer-kcode (sections 13.8, 13.8.1 and figure 13.5). Then set the threshold interval as described
in section 13.8.3. An alternative method for reaction-diffusion is from the full rule-table — rcode,
which also allows reaction-diffusion rules to form part of a rulemix, (section 13.8.2).

14.2.2 The game-of-Life and other Life-like rules by outer-kcode
for Life from a full rule-table (rcode) see section 16.10.7

If k=8 on a 2d square lattice, giving this neighborhood – John Conway’s game-of-Life [10] can
be set as an outer-kcode. Any other Life-like3 rule from the “Life family” can also be set, as well

3http://en.wikipedia.org/wiki/Life-like_cellular_automaton

http://en.wikipedia.org/wiki/Life-like_cellular_automaton

139

Figure 14.1: The game-of-Life (23/3) applied to a v=8 CA. The algorithm in DDLab generates 8
outer kcodes giving similar dynamics to classical binary Life, but including 7 colors + background. In
this example 4 glider guns are located in each corner on a 122×122 lattice, shooting different colored
gliders towards the center. The seed file is Lguns v8.eed.

as Life-like rules with neighborhoods other than the Moore neighborhood, or with v >2. This can
also be done from a full rule-table (rcode) in section 16.10.7, but the outer-kcode method provides
a greater range of v and k.

To set the classic game-of-life (but with possibly v colors), enter L in section 14.2, the following
top-right prompt (for k=8) appears,

Life k=8 (def: survival 2,3, birth 3,) accept-ret amend-a:

Enter return to accept the default. If a is entered to amend, the following further prompts
are presented,

140 CHAPTER 14. RULEMIX OPTIONS

accept-ret, or enter number+ret, max entries=9, max value=8:
enter survival (def=2.3,): followed by . . .

enter birth (def=3,):

Enter the new values for survival, followed by the new values for birth. After each number
enter return for the next number. There may be up to k entries — their order, or repeats, are
not significant. return without a number concludes the entries. q reverts to the first Life prompt,
but with the defaults possible altered.

The Life option is available for v ≥ 2, and any k as well as the k=8 neighborhood, for 1d and
3d as well as 2d, and for a rulemix by hand. For v >2, for a (23/3) Life setting, the algorithm in
DDLab generates an equivalent rule-table giving the same dynamics as classical binary Life, but
including v-1 colors plus the background, as in figure 14.1.

As well as using the prompts above, the game-of-Life as an outer totalistic rule can also be set
“by hand”. For example, select v=2, k=8, and a 2d square lattice. Then in section 13.1.2 select
outer-totalistic (kcode or tcode). Two outer totalistic rules need to be set (because v=2), the first
for a central cell of 0, the second for a central cell of 1. Select “by hand”, then select b for bits in
the single rule prompt, similar to prompt 14.6.2 or 16.1.2. Set each rule (kcode or tcode) in turn
as below,

for v=0: 000001000 - birth: exactly 3 live neighbors
for v=1: 000001100 - survival: 2 or 3 live neighbors

← k=8 outer-neighborhood

14.3 Setting the neighborhood, k=0

If a k-mix was selected in section 9.1 or 11.7, DDLab identifies any self-wired k=1 cells, and
gives an option to set the rule (or kcode or tcode) at these cells to make them effectively k=0
(section 9.2). The following prompt is presented,

single self wirings=4, set rule for k=0 equiv -0:
(shows the number of k=1 self-wired rules found)

Enter 0 to accept. Note that if the effective wiring to a cell is k=0, it will appear disconnected
in the 1d wiring graphic (section 17.6), as illustrated in figure 14.2.

14.4 Methods for setting the rulemix or rule-subset

A rulemix, rule-subset (or quasi-rulemix) will be set if,

• n for no limit was selected in section 14.1 — this sets a rulemix

• a number, 1 to n (upper limit 200) for a rule-subset was selected in section 14.1 — this sets
the subset size.

• the network has mixed-k (set in chapter 9 or section 11.7) — this forces a rulemix.

• outer-totalistic was selected in section 13.1.2, followed by the outer-totalistic reminder in
section 14.2 — this sets a quasi-rulemix of v rules.

141

Figure 14.2: Effective neighborhood k=0, as
shown in the 1d wiring graphic (section 17.6)
with no connections to the previous time-step.

There are two strategies for creating a simple rulemix.

• The direct strategy, the only possibility for a k-mix, otherwise enter n for no limit in
section 14.1 — allows any rule from rule-space(s) to be included, so if randomly assigned, a
repeat of the same rule is unlikely for a large rule-space.

• The indirect strategy (enter a number s: 1 to n, upper limit 200). This first creates a limited
subset of rules from which rules will be assigned at random to the network, or sequentially
in repeating blocks of size s, so the final rulemix can be restricted to just a few rules - or
even just one rule (section 14.4.3).

The options below, which differ only slightly between the direct and indirect strategies, allow
rules to be set automatically at random (section 14.5) with various constraints depending on the
type of rule, or individually (by hand) by the various methods described in chapter 16.

14.4.1 Setting a rulemix directly

If n for no limit was selected in section 14.1, or for a k-mix, the rulemix will be assigned directly
to the network with the following prompts, which depend on the type of rule.

For full rule-tables and rcode, the prompt is,

RcodeMix: select by hand-h, maj-m/u Alt-A chain-c iso-i Post-P
canalyzing-C/+C, rnd-(def):

In TFO-mode, or if kcode or tcode was selected for full rule-tables (rcode) in section 13.1.1,
the prompt is,

KcodeMix: select by hand-h maj-m/u Alt-A rnd-(def): (for kcode)

or

TcodeMix: select by hand-h rnd-(def): (for tcode)

14.4.2 Setting a rulemix indirectly - specify a rule-subset
does not apply to a k-mix

142 CHAPTER 14. RULEMIX OPTIONS

A number (1 to 200), or (1 to n if n < 200), selected in section 14.1, specifies the size s of the
subset of rules. Rules from this subset will be automatically assigned at random to the network,
or sequentially in repeating blocks of size s. The prompts are similar to section 14.4.1 but without
maj and canalyzing, and Alt for tcode. For rcode the prompt is,

RcodeSubset(22): select by hand-h (for a subset size 22)

Alt-A chain-c iso-i Post-P rnd-(def):

In TFO-mode, or if kcode or tcode was selected for full rule-tables (rcode) in section 13.1.1,
the prompts are,

KcodeSubset(5): select by hand-h, Alt-A rnd-(def): (for kcode, for subset size 5)

or

TcodeSubset(33): select by hand-h rnd-(def): (for tcode, for subset size 33)

Once the rule-subset has been selected, a further prompt is presented,

2 Rcodes were set (for a subset of 2 rules, or Kcodes, Tcodes)

apply as repeating blocks-b, or randomly-(def):

Enter return to set rules from the subset at random. Enter b to set rules sequentially in
repeating blocks equal to the subset size s. In the example above, the two rules in the subset
will be set alternately in the network, which can sometimes lead to interesting results for so called
“hybrid CA” or HCA.

14.4.3 A rulemix with just one rule

To set up any network (CA, RBN or DDN) with a homogeneous rule that allows later additions
and revisions as if it had a rulemix (as in figure 14.3), select a rulemix with a limited subset of rules
consisting of just one rule, i.e. enter 1 at the prompt in section 14.1.1, and set the rule by hand
(section 14.6). This fools DDLab into assuming the network has a “rulemix” when in fact all the
rules are the same.

14.5 Rulemix - random
The following options in section 14.4 assign rules either entirely at random, or at random from
some subcategory of rules. The program continues with options to review network architecture
described in chapter 17.

options . . . what they mean

rnd-(def) . . . enter return to assign rules entirely at random from the whole of
rule-space, for rcode, kcode or tcode. The density-bias (λ-parameter)
can be preset in section 14.1.2

maj-m/u . . . enter m to assign majority (voting) rules (section 14.7).
Enter u (not for tcode) to assign majority rules but with the outputs
from uniform neighborhoods flipped or shifted (section 14.8).

Alt-A . . . (not for tcode) to assign rcode or kcodes at random from the subset
of “Altenberg” rules, (section 16.9)

143

Figure 14.3: A 2d CA set up with the spiral-rule [48] 100×100 perturbed by a central 20×20 homo-
geneous block of chain rules that have been inserted. To do this first set up as a rulemix consisting of
just one rule, then create a rule block (sections 17.7.5 and 17.9.10).

the options below for rcode only

chain-c . . . to assign rcode at random from the subset of “chain” rules,
(section 16.11).

iso-i . . . to assign isotropic rcode at random, where rotated and reflected neigh-
borhoods (in 1d, 2d and 3d) have the same output.

Post-P . . . to assign rcode at random from the subset of “Post functions”
(section 14.12). A prompt to restrict the Post value will first be
presented as in section 14.12.2.

canalyzing-C/+C . . . enter C to see and amend rcode canalyzing inputs, or enter another
subcategory followed by C: mC, uC, AC, cC, iC, or PC. Canalyzing
inputs are described in chapter 15.

14.6 Rulemix by hand

A succession of rules can be set individually, by hand, to create a rulemix, rule-subset, or outer-
totalistic rules. Each rule is set just like a single rule in chapter 16 — all the relevant options apply
depending on the rule type.

144 CHAPTER 14. RULEMIX OPTIONS

A top-right prompt gives the current rule index (starting with 0), and allows jumping to any
other valid index, and changing the current default method of rule selection. The selected rule
and other details (and options) for the rule will appear as for a single rule in chapter 16. At any
stage, the remaining rules can be set at random with valid biases.

14.6.1 By hand reminder

If h is entered in 14.2 or 14.4, a top-right context dependent reminder appears, for example,

for a rule subset
by hand: subset of 22 rcodes (or kcode, tcode)

for a rulemix of the whole network
by hand: kcodemix of 150 kcodes (or rcodes, tcodes)

for outer-totalistic rules (v=2) — TFO-mode only
by hand: outertot of 2 kcodes (or tcodes)

for a kmix (the whole network) — lower and upper values of k are indicated
by hand: rcodemix of 150 rcodes (kmix 3-6) (or kcodemix, tcodemix)

14.6.2 By hand single rule prompt

At the same time as the “by hand” reminder above (section 14.6.1), the main sequence single rule
prompt appears (heavily context dependent — see section 16.1) to accept or revise the default
method of rule selection (and other options), for example,

Select v2k5 rcode (S=32): empty-e fill-f maj-m Alt-A life-L chain-c rnd-r
ReDiff-R iso-i bits-b hex-h dec-d rep-p load-l values-v prtx-x (def-r):

Enter return to accept the default rule selection method, or change it with any another valid
entry, and set the rule for the current rule index. The rule selection methods are described in
detail in chapter 16 and summarized in section 16.2.

14.6.3 By hand options

The rule at each “index” is set in turn, starting from index 0, where “index” relates to the context
selected — either the whole network, or the rule subset, or outer totalistic. A top-right prompt
keeps track of the index, the range of k for a k-mix, the current value of k, the rule-type, and the
current by hand selection method.

For a k-mix, if a rule has already been set for the current k, the prompt start as follows,

index=7 k(3-9) (v3k4 rcodemix), same as last-s, all remaining-a: (for example)

Options s and a to copy previous rules are described in (section 14.6.6). Without a previous
k rule there are no copy options — the k-mix prompt is as follows, for example,

index=7 k(3-9) (v3k4 rcodemix) (or kcodemix, tcodemix)

hand=r, change-(any valid entry) or index-q: (if r is the current selection method)

For a homogeneous-k network, the prompt is as follows, for example,

145

index=12 (v3k4 rcodemix) (rnd all-a if hand=r, m, A, c, i only)

hand=A, change-(any valid entry) or index-q, rnd all-a:

Opinion a is descibed in (section 14.6.5). Enter return to set the rule with the current
selection method, possibly with intermediate steps. The methods are similar to setting a single
rule (chapter 16). Once set, each rule (in bits/values and hex) may appear below the single rule
prompt (section 14.6.2) and in the bottom “rule window” (section 16.19). Enter q to change the
current selection method or jump to a new index (section 14.6.4).

14.6.4 Change the selection method or rule index

To change the selection method, enter any valid option in sections 14.6.2 or 14.6.3.
If q is entered in prompt 14.6.3 the following top-right prompt appears, for example,

change: index(16)-i, start again-a, selection-s, cont-ret:

Enter a to restart, from index 0.
If i is entered above, the following top-right prompt appears, for example,

this index=16, enter new index 0-16:

Enter a number to change the rule index.
If selection-s is entered above, the following top-right prompt appears, where the lower line

gives a list of valid selection methods. The options included in the list depend on the rule type and
k, and correspond to the main sequence single rule options (sections 14.6.2 and 16.1), for example,

for rcode

index=16 (v5k4), change selection method (now r), abort-q
as main sequence choices - e/f/x/m/u/A/L/c/r/i/R/b/h/d/p/l/v:

the second line for kcode

as main sequence choices - e/f/x/m/u/A/r/b/h/d/p/l/v:

the second line for tcode

as main sequence choices - e/f/x/m/r/b/h/d/p/l/v:

Enter any one of the listed choices to change the selection method which becomes the new
default. The selection methods are described in detail in chapter 16 and summarized in section 16.2.

14.6.5 Complete the rulemix automatically

For a rulemix with homogeneous-k, if the current selection method is setting rules at random,
or at random with constraints (section 16.2), the following option is included in the prompt in
section 14.6.3,

. . . rnd all-a: (if hand= r, m, A, c, i, only)

Enter a to abandon setting rules by hand, and complete setting rules at random automatically
for the rest of the network according to the current method and constraints, for example according
to the density-bias (λ-parameter) if hand=r (section 16.3.1).

146 CHAPTER 14. RULEMIX OPTIONS

14.6.6 Copy rules automatically for a k-mix

While setting rules by hand for a k-mix, a rule set previously with a given k can be copied. The
following option is included in the prompt in section 14.6.3,

. . . same as last-s, all remaining-a: (if a rule for the current k was set previously)

Enter s to copy to the current cell index, or a to also copy to all the remaining cells in the
network with the same k — these cell indexes will be skipped in the remaining rule assignment
procedure. Enter return to ignore these options and continue.

14.6.7 Mixed k where all k’s (and rules) are the same

To create a k-mix network where all k’s are the same (k=3 in this example), at the prompt for
setting the k-mix in section 9.3 . . .

set k-mix: load-l hand-h specify-s rnd-(def):

. . . select s to set the percentage of k’s required (section 9.7.1), then enter return until k=3,
then set 100%,

enter % k=3 (100.0% left) back-b:100

To make it possible in the future to increase k for some cells, k-max can be set at some higher
value (section 9.10) for example,

. . . set greater max k-max (def 3, limit 9):7

After further options, DDLab will recognize if all k’s are the same, and present the single rule
or rulemix prompt (section 14.1) — for a single homogeneous rule enter 1.

14.7 Rulemix - majority

If m is selected, in section 14.4.1, a “majority” (voting) rule will be set at each cell. For v=2 the
majority rule outputs 1 for a majority of 1s in the neighborhood, 0 for a majority of 0s. In the
case of even k, and a tie between 1s and 0s, the output is set according to the value of the central
neighborhood index, as defined in chapter 10.

For v >2 the majority rule outputs the majority value in the neighborhood. In the case of a
tie one of the most frequent values is chosen at random.

14.8 Rulemix - majority with shifted uniform outputs
not for tcode — see also section 16.8 for a single rule

If u is selected in section 14.4.1, “majority” (voting) rules are set as in section 14.7 above, but the
uniform (unanimous) neighborhoods have their outputs shifted by -1, except for 0 which becomes
v-1. For random wiring, this can result in some interesting bi-stable, tri-stable, v-stable, dynamics,

147

time →

Figure 14.4: Shifted majority kcode-mix with random wiring, v8k11, where uniform neighborhoods
have their outputs shifted to a different color. The 1d space-time pattern (n=150) shows zones of
color density that remain stable for an unpredictable number of time-steps before flipping to a different
quasi-stable regime. The image shown is rotated by 90◦ so the time flows from left to right.

as in figure 14.4. For v=2 this is the same as flipping the “end bits” (all-0s and all-1s), as before
in binary DDLab (figure 16.12).

14.9 Rulemix for large networks, or large k

Assigning the rulemix to large networks, especially for large k, may take some time. For n ≥ 5000
or (n ≥ 500 and k ≥ 10), the assignment is monitored by a progress bar near the top-right hand
corner of the screen. When the assignment is complete, the program will continue with options to
review network architecture described in chapter 17.

14.10 The all 0s output

A rulemix set at random may be biased to have the “all 0s” neighborhood output in every rule
reset to 0 — the default for rcode, or any rule may be allowed — the default for kcode and tcode.
The following prompt is presented,

for rcode-mix
rcodemix: allow any rule-a, or force all 0s->0-(def):

for kcode-mix or tcode-mix
kcodemix: force all 0s->0-0:

For rcode, enter return to force all 0s->0, or a to leave the rulemix as is. For kcode or tcode,
enter 0 to force all 0s->0, or return to leave rulemix as is.

In a locally wired network, forcing all 0s->0 ensures that a small zone of non-zero cells can
grow at no more than the network’s “speed of light”, otherwise non-zero cells can appear at the
first time-step throughout the network.

148 CHAPTER 14. RULEMIX OPTIONS

14.11 Amend/save the neighborhood matrix graphic
for rcode and single rules only, not rule-mix or TFO-mode

This section to amend/save the neighborhood matrix graphic (sections 13.3–13.5) applies to rcode
and single rules only, but is included in this chapter because the option occurs within the top-right
prompts within the main prompt sequence.

Enter nhood-matrix-a in section 14.1 for the following suplimentary prompts presented in
sequence, pausing for input at each colon “:”. This example relates to figure 14.5. Enter return
for defaults,

nhood-matrix: exit-q, % of matrix (def 100%):51 (for example)

index=2088, scale in pixels (def 2, max 30):12 PScript-p:p (for example)

show matrix, back-q redo-r cont-ret:

option/info . . . what they mean

exit-q, . . . enter q to backtrack to the previous prompt (section 14.1),

% of matrix (def 100%): . . . enter a percentage (example 51) to show just part of a large
matrix, for example v8k4 (size 4096).

index=2088, . . . the left index of 51% of the matrix.

scale in pixels (def 2, max 30): . . . select the cell scale (example 12).

PScript-p: . . . enter p to save the (amended) graphic to a PostScript file, default
filename my mrxPS.ps — filing prompts will be presented as in
chapter 35.

show matrix, . . . the (amended) graphic will be shown for all the options below.

back-q redo-r cont-ret: . . . enter
q to backtrack to the previous prompt (section 14.1),
r to revise from the start of these options,
return to continue setting a single rcode (section 16.1).

30
4095 4031 3967 3903 3839 3775 3711

3

0

2087 2079 2071 2063 2055 2047 2039 2031 2023

Figure 14.5: Top: The default neighborhood matrix for v8k4 starting on the left at index 4095, colored
according to the value color key (section 7.1). Because of the large size most of the matrix is out view.
Above: Zooming into part only of the matrix set to 51% places index 2088 on the left. The scale is
reset to 12 pixels. Other examples can be found in figures 13.1 — 13.3.

149

14.12 List Post functions
for rcode only, not in TFO-mode

Post functions [33] are rules that belong to certain classes of Boolean functions that are closed
under composition, and which play a role in the emergence of order in Boolean networks, a “softer”
version of canalyzing functions. In DDLab, Post functions are generalized for multi-value, but as
their theoretical relevance has only been demonstrated for Boolean functions, any multi-value
results should be treated with caution.

Very briefly, if u is the Post value from [v−1, v−2, . . . , 0] or just [1, 0] in the Boolean case, and
the Post class is [2, 3, 4, . . . , i], where i stands for all or “infinity”, a rule-table (function) belongs
(non-exclusively) to A[u]2, A[u]3,. . . ,A[u]i, if any [2,3,. . . ,all] neighborhoods where the rule-table
output=u have a common u component (DDLab only computes class 2, 3, and i).

In the literature the neighborhood (string) is the “vector”, and the rule-table is the “function”.
By this definition, if a value u occurs just once in the rule-table or not at all, the function belongs
to Post class A[u]i. These classes are nested; A[u]i ∈ A[u]3 ∈ A[u]2. For Boolean functions the
class A[u]i must also be canalyzing. Note also that totalistic rules, kcode and tcode, are much
more likely to include Post functions than rules in general.

14.12.1 Initial Post-function prompt

Enter P in section 14.1 to find and list all, or just samples, of Post functions in the terminal
window (including data on canalyzing, and the P and Z parameters) and/or to save the list to a
.dat file. A prompt similar to this, depending on the context, is presented,

_tcode index
/ _tcode-table (totalistic)

/ / _rule-table
/ / / _Post value and class

/ / / / _Canalyzing
/ / / / / _P-parameter
/ / / / / / _Z-parameter

/ / / / / / /
15: 1111 11111111 A[0]i C=3 P=1 Z=0
14: 1110 11111110 A[0]i C=3 P=0.875 Z=0.25
13: 1101 11101001 A[0]2 C=0 P=0.625 Z=0.75
12: 1100 11101000 A[1]2 A[0]2 C=0 P=0.5 Z=0.5
8: 1000 10000000 A[1]i C=3 P=0.875 Z=0.25
4: 0100 01101000 A[1]2 C=0 P=0.625 Z=0.75
0: 0000 00000000 A[1]i C=3 P=1 Z=0
v2k3: Post count=7=43.750\% (2=3 3=0 i=4) all tcode-space=16 (Post only)

\ _or (full list)
_or tcode-sample=x

Table 14.1: Post function list and data output for tcode-space v2k3, no restriction, with explanatory
notes. Only rule-tables ≤128 are displayed. The last line is the data summary.

43539: 00011100011100000010000011000000 A[1]2 C=0 P=0.71875 Z=0.507812
41744: 10000100111010000100000010001000 A[1]2 C=0 P=0.71875 Z=0.4375
40536: 01110010111111000100000010000000 A[1]2 C=0 P=0.625 Z=0.5625
38222: 11011101000000000110111000000000 A[1]i C=1 P=0.65625 Z=0.570312
38161: 01011101110001101000100000000000 A[1]2 C=0 P=0.65625 Z=0.617188
28130: 00000100100000001100000011000100 A[1]i C=1 P=0.78125 Z=0.390625
23020: 00011000011100001100000010000000 A[1]2 C=0 P=0.75 Z=0.5
21167: 10010011000010000110010000000000 A[1]2 C=0 P=0.75 Z=0.5
12990: 11000100001001110000000000000000 A[1]i C=1 P=0.78125 Z=0.4375
11724: 00101010000000101000000010001000 A[1]i C=1 P=0.78125 Z=0.4375
5419: 00010010010000101000100010000000 A[1]2 C=0 P=0.78125 Z=0.4375
v2k5: Post count=11=0.022\% (2=7 3=0 i=4) rule-sample=50000 (Post only)

Table 14.2: Post function list and data output for a 50000 sample of v2k5 rcode-space, restricted to
Post value 1, the sample index is on the left. For explanatory notes see table 14.1.

150 CHAPTER 14. RULEMIX OPTIONS

1553: 221222121222212121102 A[0]3 C=0 Z=0.26749
1418: 200000000000200100220 A[1]i C=0 Z=0.152263
1145: 200000002022022000020 A[1]i C=0 Z=0.251029
924: 122112122212101111000 A[0]2 C=0 Z=0.419753
656: 022000022000022100020 A[1]i C=0 Z=0.27572
473: 111122221221211222021 A[0]2 C=0 Z=0.358025
422: 121210101101010101111 A[2]2 C=0 Z=0.366255
414: 020200000212022002000 A[1]3 C=0 Z=0.283951
222: 010212000111001000101 A[2]2 C=0 Z=0.366255
202: 222222020221022112022 A[1]2 C=0 Z=0.407407
197: 022022202201202202200 A[1]2 C=0 Z=0.432099
v3k5: Post count=11=0.550\% (2=6 3=2 i=3) kcode-sample=2000 (Post only)

Table 14.3: Post function list (multi-value) and data output for a 2000 sample of v3k5 kcode-space,
unrestricted. Only the kcode-table is shown because the rule-table size>128. The sample index is on
the left. For explanatory notes see table 14.1.

Post functions: sample-s, rcode-space (2ˆ8=256)-p, all-a: (for rcode v2k8

or kcode/tcodes-space, the option -p is removed if the table-size> 232

Enter p for whole of rule-space, only possible if its size≤ 232 (then the size is shown in the
prompt). Alternatively enter s for just a sample of rule-space. Add a in either case (i.e. pa or sa)
to show all the functions, not just the Post functions, useful for finding parameter data on rules
in general. q will exit the prompt, return has no effect.

14.12.2 Restrict Post-functions

If a for all functions was not selected in section 14.12.1, a top-right prompt to restrict the Post
value is presented,

restrict Post value (0-1): (for Boolean functions. (0-2), (0-3) etc for multi value)

Enter the Post value [v − 1, v − 2, . . . , 0]. Enter return for no restriction.

14.12.3 Set Post-function sample size

If s to select a sample was selected in section 14.12.1, a top-right prompt to set the sample size is
presented,

sample (def 10000):

Enter the sample size or return to accept the default size.

14.12.4 Final Post-function prompt

The following top-right prompt, with exact wording depending on the context, is presented to print
the data to the terminal, save it to a .dat file with (default filename post data.dat), or both,

rule sample (2000) (Post only): print xterm-(def), save-s, both-b:
possible alternatives: all rules/kcode/tcodes, rule/kcode/tcode sample, (Post only)/(full list)

To cut short a lengthy computation in progress enter q. When complete, the program returns
to section 14.12.1. Enter q to exit Post-functions, or start a new listing.

Chapter 15

Setting Canalyzation in a random
rcode-mix
not in TFO-mode.

The dynamics on a random rcode-mix can be biased towards order by including varying proportions
of “canalyzing” inputs, with applications in modelling genetic regulatory networks [20, 43].

A canalyzing input may be defined as follows: if a particular value (0,1,. . . ,v-1) on an input
to a cell (referred to as a “gene” in this context) determines the gene’s output irrespective of its
other inputs, that input is said to be canalyzing. A given gene may have from zero to k canalyzing
inputs, but the outputs of all of these must be the same. As k increases, the fraction of rule-space
with canalyzing rules (having at least one canalyzing input) deceases exponentially (section 24.9.5),
so the probability of setting such a rule at random deceases accordingly.

Traditionally, canalyzation applies to Boolean rules, but the same definition has been general-
ized for multi-value networks and is now applied in multi-value DDLab. However, the examples in
this chapter remain focused on Boolean rules.

The methods bias the randomly assigned rules by varying or tuning the fraction of canalyzing
rules, or inputs, in the network. The algorithms for tuning canalyzation in DDLab are designed to
minimize secondary biases in the distribution of canalyzing inputs. Rule-tables will be amended
at random for the required degree of canalyzation.

15.1 Selecting Canalyzing

If not in TFO-mode, canalyzing can be selected at various points in DDLab.

15.1.1 Selecting canalyzing from the rcode-mix

When setting the rcode-mix directly in section 14.4.1, at the top-right prompt,

RcodeMix: select by hand-h, maj-m Alt-A chain-c iso-i Post-P
canalyzing-C/+C, rnd(def): (canalyzing-C/+C not for kcode or tcode)

Enter C to apply canalyzing to random rules, or mC, AC, cC, iC (but not PC), to apply
canalyzing to biased random rules. The (biased) rules will be set first, then modified by cumulative
random mutation to achieve the required canalyzation.

151

152 CHAPTER 15. SETTING CANALYZATION IN A RANDOM RCODE-MIX

15.1.2 Selecting canalyzing from wiring graphic — transform rule

Once the rulemix has been set, canalyzing can be reached from the wiring graphic options
(section 17.4). At the wiring graphic option,

. . . rule: Save/rev/trans-S/v/t . . .

. . . enter t for the transform rule options (section 18.1). A top-right prompt similar to the one
below will be presented,

transform rule: solid-o invert-v comp-c neg-n ref-r canal-C (all+a)
equiv>k (4-7), max k-m, eff k: all-K this-k, save-s:

Enter Ca to select canalyzing for the whole network, described in this chapter, or just C to
set canalyzing for a single rule described in section 18.6. The transform rule prompt also appears
automaticaly after a single rcode is set in the main prompt sequence, allowing canalyzing to be set
for that rule.

15.1.3 Selecting canalyzing from the Derrida plot

Canalyzing can be selected from the Derrida plot (chapter 22). The following top-right prompt
appears once the Derrida plot is complete (section 22.5),

Derrida plot complete
reset-r canalyzing-C:

Enter C to reset the canalyzing for a new Derrida plot.

15.2 The first canalyzing prompt

A series of top-right prompts allow the canalyzation to be set and reviewed. The first canalyzing
prompt is as follows,

set canalyzing genes-g inputs-(def):

Enter g to specify canalyzing genes, the fraction of network elements with at least one canalyz-
ing input. Enter return (the default) to specify the fraction of canalyzing inputs (wires), where
the total number of wires is n× k for homogeneous-k, or the sum of all k’s for a mixed-k network.

15.3 Canalyzing percentage or number

For a network with homogeneous-k, according to whether “genes” or “inputs” were selected in
section 15.2 above, the next prompt is as follows,

c-inputs: redo-q number-n %-(def): (or c-genes)

or
mixed k, c-inputs: redo-q number-n %-(def): (or c-genes, for mixed-k networks)

153

k=5, canalyzing frequency,
canalyzing inputs set to 45%.

k=10, canalyzing saturation,
canalyzing inputs set to 20%.

Figure 15.1: Canalyzing frequency/saturation for homogeneous-k networks, n=30×30, showing the
degree of canalyzation of each gene according to a color code, and a histogram of canalyzation in the
network — the colors in the network and histogram correspond. Above Left: canalyzing frequency
histogram. Above Right: canalyzing saturation histogram (because k ≥ 10). The colors in the network
and histogram correspond.

Enter return (the default) to set a percentage of the total genes/inputs as canalyzing, or enter
n for a specific number. From this point on, the options for networks with homogeneous-k, and
mixed-k, are somewhat different.

15.4 Canalyzing - homogeneous-k

The next prompt gives the fraction and percentage of the current canalyzing genes and inputs,
and asks for the required canalyzing settings, for example,

c-inputs=0/4500=0.0% genes=0/900=0.0% (for a 2d network, k=5, 30×30)
set new % c-inputs, redo-q accept-ret: (values depend on the earlier choices)

If, say, 45 (for 45%) is entered. The prompt will reappear with updated information,

c-inputs=2025/4500=45.0% genes=793/900=88.1%
set new % canalyzing inputs, redo-q accept-ret:

Enter a new canalyzing setting, or return to accept — the program will continue with options
to review network architecture described in chapter 17, or enter q to revert to the first canalyzing
prompt (section 15.2).

154 CHAPTER 15. SETTING CANALYZATION IN A RANDOM RCODE-MIX

Initial canalyzing inputs, 3.0%. Canalyzing inputs set to 45%.

Figure 15.2: Canalyzing saturation for two networks with the same (roughly even) k-mix 3-7, with
the canalyzing saturation histograms above, relating to section 15.5. n=30×30. Left: The network
showing the initial, expected, canalyzing. Right: The canalyzing inputs set to 45%. The colors in the
network and histogram correspond.

At the same time as the prompt appears, a window in the lower right hand corner of the
screen gives a 2d graphical display of of the degree of canalyzation of each gene, irrespective of the
network’s native dimensions (figure 15.1).

Above this is a histogram of canalyzation in the network. For k ≤ 9 the “canalyzing frequency”
histogram shows the frequency of each degree of canalyzation, 0 to k (figure 15.1 Above Left). For
k ≥ 10 or for mixed-k (section 15.5) a different histogram, “canalyzing saturation” shows the
frequency of different percentages of canalyzation in six columns, for 0%, 100%, and intervals of
25% in between, i.e. 0%, < 25%, < 50%, < 75%, < 100%, 100% (figure 15.2 Above Right).

15.5 Canalyzing - mixed-k

For a network with mixed-k, following the prompts in sections 15.2 and 15.3, the next prompt
shows the percentage of different k’s (see also section 9.7.1), and offers an option to reset the
canalyzation for just a subset of the network having a particular k, or for the whole network,

...
%k: 3=19.9 4=19.7 5=19.1 6=21.0 7=20.3
enter k for just one nhood, all-(def) (genes/inputs depends on the earlier choice)

155

The initial k=5 genes with no
canalyzing inputs, as expected.

Canalyzing inputs to the k=5 genes
set to 45%.

Figure 15.3: Just one k in a mixed-k network. Canalyzing saturation for two networks with the same
(roughly even) k-mix, 3-7, as shown in section 15.5. n=30×30. Only the selected k=5 genes are
shown. An empty outline indicates no canalyzing inputs and gaps are genes where k 6= 5. Left: The
initial network showing k=5 genes with no canalyzing inputs, as expected. Right: Canalyzing inputs
of the k=5 genes set to 45%. The colors in the network and histogram correspond.

15.5.1 Canalyzing for the whole network - mixed-k

Enter return to set canalyzing for the whole mixed-k network. The next prompt gives the fraction
and percentage of the current canalyzing genes and inputs, and asks for the required canalyzing
settings. For example, the prompt may appear as follows, in this case for a 30× 30 network, with
a k-mix of 3 to 7 (figure 15.2),

c-inputs=134/4530=3.0% genes=91/900=10.1% (2d network, 30 × 30)

set new % c-inputs, redo-q accept-ret: (values depend on the earlier choices)

The reason for the initial canalyzing degree (figure 15.3 Left) is that about 23.5% of inputs in
randomly assigned k=3 rules are likely to be canalyzing. For k=4 rules the figure is about 1.5%
(section 24.9.5).

If, say, 45 (for 45%) is entered. The prompt will reappear with updated information,

c-inputs=2034/4530=45.0% genes=794/900=88.2% (2d network, 30 × 30)

set new % c-inputs, redo-q accept-ret: (values depend on the earlier choices)

Enter a new canalyzing setting, or enter return to accept, the program will continue with
options to review network architecture described in chapter 17, or enter q to revert to the first
canalyzing prompt (section 15.2).

156 CHAPTER 15. SETTING CANALYZATION IN A RANDOM RCODE-MIX

A homogeneous-k =9 network. A mixed-k network, k=3-13.

Figure 15.4: Examples of two large networks, n=255×255, with large k. The canalyzing inputs were
set to 20%. Several tries with small increments were required to reach this setting.

At the same time as the prompt appears, a window in the lower right hand corner of the
screen gives a 2d graphical display of the degree of canalyzation of each gene, irrespective of the
network’s native dimensions (figure 15.3). Above this is a histogram of canalyzing saturation for the
mixed-k network showing the frequency of different percentages of canalyzation in six columns,
for 0%, 100%, and intervals of 25% in between, i.e. 0%, < 25%, < 50%, < 75%, < 100%, 100%
(figure 15.2 Above).

15.5.2 Canalyzing for a particular k in a mixed-k network

To set canalyzing for genes with one specific k only in a mixed-k network, ignoring the rest, enter
the required value of k at the prompt . . .

enter k for just one nhood, all-(def):

. . . in section 15.5. It must be a valid value that exists in the k-mix. For example, if k=5 is
selected (for the network shown in figure 15.3 Left) the following prompt will appear,

k=5 (19.1%) c-inputs=0/860=0.0% genes=0/172=0.0%)
set new % c-inputs, redo-q accept-ret:

This indicates that 19.1% of the network consists of k=5 genes, and that none of the inputs to
those genes are canalyzing, which is to be expected.

If, say, 45 (for 45%) is entered. The prompt below will reappear with updated information,
and the graphic will update – (figure 15.3 Right),

157

k=5 (19.1%) c-inputs=387/860=45.0% genes=146/172=84.9%)
set new % c-inputs, redo-q accept-ret:

Enter a new canalyzing setting, or enter return to accept — the program will continue with
options to review network architecture described in chapter 17, or enter q to revert to the first
canalyzing prompt (15.2).

At the same time as the prompt appears, a window in the lower right hand corner of the screen
gives a 2d graphical display of the degree of canalyzation (figure 15.3) showing just the k=5 genes
selected. An empty outline indicates no canalyzing inputs and gaps are genes where k 6= 5.

Above this is the “canalyzing frequency” histogram for just the k=5 genes (figure 15.3 Above).
This format is employed rather than “canalyzing saturation” because in this example we are dealing
with just one k ≤ 9.

15.6 Canalyzing for large networks, or large k

For large networks, or large k, as in figure 15.4, the algorithm for assigning canalyzing may take
some time. Also, the degree of canalyzation achieved may be less than requested. In this case more
tries should be made (in sections 15.4, 15.5.1, 15.5.2) to reach the required setting, increasing by
small increments.

A top-center window monitors the percentage of canalyzing inputs set so far. A progress bar
near the top-right hand corner of the screen also monitors the assignment of rules to the network,
as in section 14.9.

Chapter 16

Setting a singe rule

This chapter describes the alternative methods of setting a single rule which include rcode, iso-
rules[56] (section 16.10), kcode, tcode, and various sub-types of each of these primary types. The
methods also apply to setting rules “by hand” for a rulemix in section 14.6.

16.1 The first single rule prompt

Following the prompts in sections 13.1.1 or 13.1.2 for the primary rule type, and one of the
following choices in rule-mix options (section 14),

return . . . (the default) to skip rule-mix options and accept a single rcode, kcode
or tcode (section 14.1),

by hand-h . . . to set individual rules in various types of rulemix (section 14.6).

. . . then a main sequence prompt (sections 16.1.1 or 16.1.2) is displayed to accept or revise the
default method of rule selection (and other options). The prompt shows a reminder of the value-
range v, the neighborhood size k, the rule type (rcode, kcode or tcode), the size of the corresponding
rule-table S, and the list of options which are context dependent and may vary considerably.

16.1.1 Single rule prompt examples based on rcode

For rules based on rcode (including kcode and tcode not in TFO-mode) a graphic of the binary
neighborhood matrix is displayed as in figures 13.1 or 13.2, and the prompt is presented as follows,
for example,

for rcode (rnd-iso-i for iso n-templates)

Select v2k5 rcode (S=32): empty-e fill-f prtx-x ascii-v rnd-r rnd-iso-i
bits-b hex-h dec-d maj-m/u Alt-A life-L chain-c RD-R rep-p load-l (def-r):

for kcode

Select v3k4 kcode (S=15): empty-e fill-f prtx-x/swap-x ascii-v rnd-r
bits-b hex-h dec-d maj-m/u Alt-A rcode-R rep-p load-l (def-r):

for tcode

Select v4k5 tcode(S=16): empty-e fill-f prtx-x ascii-v rnd-r
bits-b hex-h dec-d maj-m rule-R rep-p load-l (def-r):

158

159

16.1.2 TFO-mode single rule prompt examples

for kcode

Select v3k4 kcode (S=15): empty-e fill-f k+-k prtx/swap-x ascii-v rnd-r
bits-b hex-h dec-d maj-m/u Alt-A rep-p load-l (def-r):

for tcode

Select v4k5 tcode (S=16): empty-e fill-f prtx-x ascii-v rnd-r
bits-b hex-h dec-d maj-m rep-p load-l (def-r):

16.2 Methods for setting a rule

The meaning of the prompts for setting a rule1 in section 16.1 are summarized below. More details
are given in the rest of this chapter. These options also apply to a rule in a rulemix set “by hand”
in section 14.6, where the selected method stays as the default unless changed in section 14.6.4.
Some options do not apply to particular cases as noted. rnd-r is the initial default in the main
sequence of prompts, bits-b is the default if a rule has already been selected, or if revising a rule
at later stages (sections 30.5.1, 32.16.1).

options . . . what they mean

empty-e . . . to reset all rule-table entries to 0.

fill-f . . . to fill the lookup-table with any valid value with the top-right prompt,

fill with value 0-4 (def 4): (if v=4)

This allows a clean slate for setting bits or values in section 16.4.

k+-k . . . (only for kcode in TFO-mode) to create and save a kcode with an increased
neighborhood k+ by inserting a random string of the correct length within
the current kcode (section 16.17).

prtx-x . . . show the rule in the terminal (section 16.18).

prtx/swap-x . . . (for kcode only) as above, but also allows swapping output values to make
an equivalent kcode (section 16.18.5).

ascii-v . . . to save or load the rule as an ASCII value string, a *.tbl file, described
in section 16.22. This is useful for interchanging the rule between DDLab
and alternative software.

note . . . After the prompts above the program reverts to the first single rule prompt
in section 16.1. The prompts below set a rule and the program continues.

rnd-r . . . to set the rule at random for a given λ parameter or proportions of values
(section 16.3). Then to revise if required as bits/values (section 16.4),
backtack with q and enter bits-b.

rnd-iso-i . . . (for rcode only, and iso n-templates) to set a random isotropic rcode which
allows later selection of the input-frequency histogram (IFH) based on
the iso-rule (section 31.5.1) but see also the new iso-rule options in sec-
ton 16.10.

1Some of these methods are similar to setting a seed in section 21.2.

160 CHAPTER 16. SETTING A SINGE RULE

bits-b . . . to set the rule as a bits/values graphic (section 16.4), including “drawing”
with the mouse or keyboard, transforming to an iso-rule (section 16.10),
and many other options.

hex-h . . . to set the rule in hexadecimal, in a mini “spread sheet” (section 16.5).

dec-d . . . (if applicable) to set the rule in decimal (section 16.6).

maj-m/u . . . Enter m to set a “majority” (voting) rule (section 16.7).
Enter u (not for tcode) to assign a majority rule but with the outputs
from uniform neighborhoods flipped or shifted (section 16.8).

Alt-A . . . (not for tcode) to set an “Altenberg” rule, where the output of each neigh-
borhood is set probabilistically according to the frequency of the values
in that neighborhood (section 16.9).

Life-L . . . (for rcode only, and k ≥ 5) to set to the “game-of-Life” or quasi “Life”
(section 16.10.7).

chain-c . . . (for rcode only) to set a maximally chaotic rule, where Zleft = 1 or
Zright = 1, but not both. For binary, in addition both Zleft and Zright

are greater than 0.5 (section 16.11).

RD-R . . . (for rcode only) to select a reaction-diffusion rule see section 16.12.

rcode-R . . . (for a single tcode or kcode and full rule-table — not TFO-mode)
(section 16.4.1.3) to show the rcode graphic of tcode or kcode, which can
then be modified or transformed to an iso-rule. After selecting tcode or
kcode, (backtrack with q then enter rcode-R.

rep-p . . . to repeat the last rule (secton 16.13).

load-l . . . to load a rule. from a .rul, .vco, or .tco, file. (section 35.3). [v, k] in
the file must be the same as in the base.

Once a single rule has been set, except after rnd-r or in a rulemix “by hand” (section 14.6),
the bits-b option is activated automatically. Once accepted the rule is reconfirmed as a bit/value
pattern (in decimal if applicable) and in hex, and simultaneously displayed in the rule window
(section 16.19). At any stage enter q to backtrack and revise.

16.3 Setting the rule at random

A rule set at random is unbiased by default, but biases can be applied by two methods, firstly
the proportion of non-zero values (λ-parameter), secondly a more explicit bias — the proportions
of different values in the rule-table, either as percentages, or as actual numbers of each value.
An uneven distribution of values in the rule-table, by either method, is more likely to result in
complex dynamics than an unbiased rule-table (figure 33.17). Random rcode can be transformed
to isotropic rcode with >iso-i.

Enter r (the initial default) in section 16.1, to generate a random rule, or once an iso-rule
graphic is visible enter R (section 16.4.1.2) for different random iso-rules. The random rule itself is
displayed as a rule graphic, and below in decimal (if applicable) and in hexadecimal. Density-bias
is simultaneously displayed in a lower top-right density window (section 16.3.1). Initially there is
an equal probability of each value, unless this was reset. In addition to random biases, various
changes and transformations2 can be made (repeatedly) until return is entered to accept the rule.

2These options are similar to setting a random initial state or seed in section 21.3.

161

The following subsequent reminder is shown,

tog-gaps-g, rotate-l/r another-n bias-s/v Z-u/d comp-m >iso-i back-q accept-ret

xxxxxxxxxxxxxxxx(Z–u/d for rcode only, >iso-i for iso n-templates)

These options are summarized below — with more detail in the sections indicated.

options . . . what they mean

tog-gaps-g . . . to toggle gaps between successive blocks of 8 bits/values. This is the
default for binary rules (i.e. between chars) as in figure 16.20.

exp/contr-e/c . . . enter e to expand or c to contract the current scale of the rule-table
bit/value graphic.

rotate-l/r . . . enter l or r to rotate the rule-table left or right by one output, with the
edge outputs wrapping around.

another-n . . . for another random rule with the same density-bias — λ parameter.

bias-s/v . . . enter s to change the density-bias — λ parameter (section 16.3.1). Enter
v to set the value-bias, the proportions of different values in the rule-table,
either as percentages, or as actual numbers of each value if the rule-table
size S ≤ 255 (section 16.3.2).

Z-u/d . . . (for rcode only) enter u or d (or keep the key pressed) to progressively
force the Z-parameter up (towards chaos) or down (towards order), by
selectively mutating the rcode. This is done by flipping bits/values at
random positions, and only retaining the flips that produce the desired
change in Z. The algorithm for forcing Z down can get stuck — if so lower
the density-bias with density-s. There is a similar on-the-fly option while
running space-time patterns in section 32.5.5.

>iso-i . . . (for rcode only, and iso n-templates) to transform the current rcode
to isotropic rcode which allows later selection of the input-frequency
histogram (IFH) based on the iso-rule (section 31.5.1) but see also the
new iso-rule options in secton 16.10..

comp-m . . . to toggle/transform the rule into its complement. For binary this changes
1s to 0s and vice versa. For v >2 each value a is changed to its complement
ac = (v − 1)− a (section 16.20).

back-q . . . to backtrack to the first single rule prompt (section 16.1) — the latest
rule is remembered, and can be amended with bits-b or hex-h.

accept-ret . . . to accept the rule. Once accepted, the rule is also displayed in decimal
(if applicable), and in hex.

Some of these options are described in greater detail below.

16.3.1 Random rule density-bias (λ parameter)

Enter s in section 16.3 to change the density-bias3 — the fraction of non-zero values in the rule-table
(the λ-parameter [26]) but expressed as a percentage. The initial default is an equal probability

3The methods for the seed density-bias in section 21.3.2 are similar.

162 CHAPTER 16. SETTING A SINGE RULE

of each value, but this may have been reset in section 14.1.2. A lower top-right density window
shows information about the density, in this example for rcode v5k6,

density 4-1s(exact)=12500/15625=80.000%, bias-80.000%

where “density 4-1s” indicates the non-zero values, “(exact)” the current method of setting the
density as opposed to “(prob)”, 15625 is the size of the rcode-table, then the actual density, and
the bias requested.

There are two alternative methods to change the density-bias, exact or prob (exact is the
initial default). The following two stage top-right prompt is presented, for example,

for v=2, 22% entered, with prob as the default method

bias-density: enter % (def 50.000% prob):22 exact-e: (enter e to change to exact)

for v=8, 33% entered, with exact as the default method

bias-density: enter % (def 87.500% exact):33 prob-p: (enter p to change to prob)

Enter the new density-bias as a percentage — the result updates the density window. For
binary this is the probability of setting 1s. For v ≥ 3 it is the probability of setting non-zero
values — set without bias. The new density-bias becomes the new default. If the prob method is
active the density-bias requested is applied as a probability, whereas the exact method will apply
the requested bias as closely as possible. To change the default method between prob to exact,
enter e or p as indicated. The density-bias and method will be maintained for further random
rules generated with another-n in section 16.3 updating the density window, and when re-setting
random rules for space-time patterns with on-the-fly key r (section 32.5.1). This is also one of the
method to bias a random rule sample for classifying rule-space (section 33.2.1).

16.3.2 Rule value-bias 2 65 35
3 60 30 10
4 55 25 12 8

.................. value-range v 5 50 25 12 8 5
6 45 23 13 10 6 3
7 40 21 14 10 7 5 3
8 35 20 14 10 8 6 4 3

0 1 2 3 4 5 6 7
% of each value

Table 16.1: The default rule value-bias if not reset. The current rule value-bias can be randomly reset
when running space-time patterns with on-the-fly key R.

The frequency of values randomly distributed in a rule-table, the value-bias, can be set for any
distribution. If the frequency was not set previously by the methods below, a default frequency
will apply based on percentages of each value as in figure 16.1.

Figure 16.1: Example of a v8k4
kcode according to the default
rule value-bias in table 16.1.

Enter v in section 16.3 to set the value-bias, either as whole number percentages, or as actual
numbers of each value if the rule-table size S ≤ 255. The following series of prompts are presented
in a top-right window4,

4The methods for the seed value-bias in section 21.3.3 are similar.

163

if S ≤ 255

bias random rule, %/value-p/v keep-k:

if S > 255

bias random rule, value-p keep-k:

if p was selected

0(100:45 1(55:4 2(51:4 3(47:4 4(43:9 5(34:9 6(25:18

if v was selected

0(120:56 1(64:7 2(57:7 3(50:7 4(43:12 5(31:12 6(19:15

Enter k to keep the last setting, otherwise enter p or v — then for each value, from 0 to
v-2, enter the percentage or number – the value for v-1 is set automatically. The availability for
successive allocations of each value is shown with a bracket, for example at 3(50: (for v=3) enter a
number ≤50. If exactly 50 is entered the allocation will halt as complete. Entering a number >50
or return results in allocating 50 divided by the number of remaining values, so entering return
repeatedly gives an even distribution.

A lower top-right window shows the resulting value-bias distribution for the example above,
where “0-7” (for v=8) indicates the order of values,

if p was selected

rule-bias: percent(100) 0-7: 7 18 9 9 4 4 4 45

if v was selected

rule-bias: numbers of values(120) 0-7: 56 7 7 7 12 12 15 4

If set, the value-bias will be maintained for further random rules generated with another-n
in section 16.3 updating the density window, and when re-setting random rules for space-time
patterns with on-the-fly key R (section 32.5.1). This is also one of the method to bias a random
rule sample for classifying rule-space (section 33.2.1).

16.3.3 Random rule parameters
not applicable in TFO-mode or to iso-rule

For each alternative rule created in section 16.3, current rule parameters (as finally appear in
the rule window — section 16.19) are shown in an upper top-right rule parameters window.
This example is for a v2k5 rcode,

C=1/5=*3*** zl=0.1875 zr=0.1875
ld=0.09375 ld-r=0.1875 P=0.90625 Z=0.1875

abbreviations . . . what they mean
C=1/5 . . . the number of canalyzing inputs [20], in this case 1 out a possible 5 (k=5).
*3*** . . . if there are canalyzing inputs, this shows which are canalyzing, in this case

one input at index 3 (from a possible 0 to 4, see chapter 10).
zl . . . Zleft.
zr . . . Zright.
ld . . . the λ parameter [26].

ld-r . . . the λ ratio [38].
P . . . the P parameter [20] — for binary rules (v=2) only.
Z . . . the Z parameter [38, 44].

164 CHAPTER 16. SETTING A SINGE RULE

16.4 Setting the rule as bits or values

Figure 16.2: Setting bits start-
ing with all 0s and drawing 1s,
with default gaps and white di-
visions. v2k9, S=512.

If bits-b is selected in section 16.1, or iso-R in 16.4.1.1, a bit/value graphic pattern, the rule graphic
representing the current rule-table (initially just 0s) is displayed. This consists of a single row or
multiple rows for longer rule-tables. For v=2 the default has gaps between successive blocks of 8
bits (i.e. between chars) but this can be toggled. The default scale of the pattern depends on the
size of the rule-table, S, but can be changed. The maximum rule-table index, S-1, is in the top-left
hand corner, the zero index in the lower right hand corner of the pattern. The current position on
the pattern is indicated by a small flashing cursor, initially top-left, and also in a top-right inset
window. Bits/values are set with the keyboard or drawn with the mouse on the rule graphic

The colors correspond to values (chapter 7) but 0s are initially colored light green. If a rule
is already current, it can be reset to all-0s with empty-e or to any uniform value with fill-f in
sections 16.1.1 or 16.1.2 to provide a clean slate for setting other bits/values. Alternatively,
fine adjustments can be made to rule-tables set by other methods. Figures 16.2—16.3 illustrate
alternative presentations, and figure 13.4 and 16.5 shows rule graphic examples for rcode and kcode
transformed to the iso-rule with its extra options for the iso-groups — all possible n-template
spins/flips.

16.4.1 Rules: bits/values reminder window

Bits/values in the rule-table are drawn with the mouse and keyboard5. A top-right window and
inset displays give reminders of various options — summarised in section 16.4.1.4, and current
settings — summarized in section 16.4.2. The examples in sections 16.4.1.1 and 16.4.1.2 are for
v2k9 rcode where the rule-table size is 512, and 102 if transformed to the iso-rule,

the inset while drawing with the mouse→ left button: draw 1s width=1

16.4.1.1 rcode/kcode/tcode bits/values reminder
the inset with current settings ց

keys: val/draw-(1-0) vert-v move-arrows rcode i=511 val=1 scale=5 rot=1

mouse: move-click draw-drag width-w file-f PScript-P >seed-F
tog: gaps/0color/dots/divs/divcolor-g/∧/./i/! exp/contr-e/c xaxis-[/]
rot-l/r/+/- flip-X comp-m >iso-I/R/H/* back/cont-q/ret
xxxxxxxxxxxxx (>iso-I/R/H/* for rcode only and iso n-templates, H for 2d v2k9)

16.4.1.2 iso-rule bits/values reminder

the inset with current settings ց
(iso) keys: val/draw-(1-0) vert-v move-arrows iso-rule i=101 val=1 scale=5 rot=1

mouse: move-click draw-drag width-w iso-file/rnd/group-f/R/G PScript-P
tog: gaps/0color/dots/divs/divcolor-g/∧/./i/! exp/contr-e/c xaxis-[/]
rot-l/r/+/- flip-X comp-m back/cont-q/ret
xxxxxxxxxxxxx (the prompt when rcode is transformed to iso-rule with >iso-R)

5Similar methods apply for the seed in section 21.4.2.

165

(a) gaps, black divisions, 0s
light green with dots.

(b) no gaps, white divisions,
0s light green, no dots.

(c) no gaps, no divisions,
0s white with dots.

(d)

Figure 16.3: Setting values — alternative presentations (a), (b) and (c) of a v8k3 rcode, S=512.
(d) shows (c) with its x-axis doubled with option] .

(a) 512 rcode

(b) 102 iso-rule

Figure 16.4: (a) the 512 bit rcode graphic of Conway’s game-of-Life (s23/b3) shown in 8 rows. The
diagonal symmetry in each 8x8 block is a necessary (but insufficient) indication of isotropy but a useful
visual clue for the general case of isotropic rcode for a binary v2k9 2d CA with a Moore neighborhood.
(b) the 102 bit iso-rule, transformed from rcode with R (from options >iso-I/R/H/*).

(a) 36 kcode

(b) 2186 rcode

(c) 275 2d iso-rule

Figure 16.5: If not in TFO mode, kcode or tcode can be shown as the equivalent rcode graphic
(backtrack with q then enter rcode-R), which can then be modified or transformed to an iso-rule.
(a) the kcode for the v3k7 Spiral rule[48], (b) reshown as rcode, (c) transformed to the 2d iso-rule.
Rule-table sizes are shown.

16.4.1.3 redefine kcode or tcode as rcode and iso-rule
not in TFO-mode

Its possible to redefine kcode or tcode (section 13.6), which are intrinsically isotropic, as an iso-rule
to reduce granularity for finer mutation. From the kcode or tcode graphic backtrack with q then
enter rcode-R to show the equvalent rcode graphic, then transform to an iso-rule graphic with
options >iso-I/R/H/* (section 16.10.4). The example in figure 16.5 shows all three bit/value
graphics.

166 CHAPTER 16. SETTING A SINGE RULE

16.4.1.4 rule bits/values reminder options

The following reminder options relate to section 16.4.1 and the rule bit/value graphic as in
figures 16.4 and 16.5. Note that the updated iso-rule options include sub-options detailed
in seperate sections: >iso-I/R/H/* to transform rcode to iso-rule (section 16.10.4) and
iso-file/rnd/group-f/R/G from the iso-rule graphic (section 16.10.6).

options . . . what they mean

keys: val/draw-(4-0) . . . enter a valid number to select the value/color between 0 and the
v-1. Keep the key pressed to draw a horizontal line.

vert-v. . . keep v pressed to draw a vertical line downwards in the selected
value/color.

move-arrows . . . all four arrow keys move the cursor around the rule-table graphic
(up/down arrows for multilpe rows).

mouse: move-click . . . left click on the rule pattern to reposition the small cursor and
activate drawing — sometimes the right button also needs to be clicked
(or right-left a few times) to activate.

draw-drag . . . draw the selected value/color by dragging the cursor with the left mouse
button pressed — release the button to stop. The right mouse button
draws the complementary value/color (section 16.20) in the same way.

width-w . . . enter w to change the width (initially 1) of the line to be drawn, where
the max width is the number of rows. The following top-right prompt is
presented (for example),
reset line width (now 1) max 4:
The width is shown in the drawing inset, and stays for the current draw-
ing session until revised.

file-f . . . save/load the current rule in binary or ASCII. The prompt load/save-
l/s ASCII-L/S is presented.

iso-file/rnd/group-f/R/G . . . from the iso-rule bits/values reminder only (section 16.4.1.2).
These options to load/save iso-rules and generate random iso-rules
(section 16.10.4) and iso-group graphics (section 16.10.6) are described
in detail in the sections noted.

PScript-P . . . to save the rule-table bit/value pattern (or a patch) as a vector PostScript
image (section 16.4.4).

file-F . . . (not for iso-rule graphic) to save the rule-table bit/value pattern (or a
patch) as a 1d seed file (section 16.4.4).

tog: gaps-g . . . enter g to toggle gaps between sucessive blocks of 8 bits/values
(figure 16.3).

tog: 0color-∧ . . . to toggle the zero value color between light green and white (figure 16.3).

tog: dot-. . . . enter a dot to toggle a dot at the center of each zero cell (figure 16.3).

tog: divs/divcolor-i/! . . . enter i to toggle division lines on/off between the rule-table
entries. Enter ! (exclamation mark) for a 3-way toggle of the division
line color – white, black, and light blue (figures 16.1 — 16.3).

167

exp/contrect-e/c . . . enter e to expand, c to contract the scale by one pixel.

xaxis-[/] . . . to change the presentation aspect ratio, enter [to halve the x-axis,] to
double the x-axis, the y-axis will change accordingly (figure 16.3)..

rotate-l/r/+/- . . . enter l or r to rotate the rule-table left or right by the rotation interval
(initialy 1) with the edge outputs wrapping around. Enter + or - to
increase or decrease the rotation interval — shown in the current settings
inset (section 16.4.2).

flip-X . . . to flip (reflect) the rule-table.

comp-m . . . to toggle the rule to its complement. For binary this swaps 1s and 0s. For
v >2 the values are shifted; each output a changes to am by subtraction
from the maximum value v − 1, so am = (v − 1)− a, and the maximum
value changes to zero (section 16.20).

>iso-I/R/H/* . . . for supported n-templates in figure 16.17. These new/improved options
described in section 16.10.4 will transform rcode into the iso-rule, and
apply to the rcode expression of any other rule type such as totalistic
(section 16.4.1.3) or reaction-diffusion (section 16.12).

back/cont-q/ret . . . enter return to accept the rule and continue, q to backtrack.

16.4.2 Rule: bits/values current settings inset

kcode i=209 val=4 scale=5 rot=1 ← the inset with current settings, for v5k6 tcode

current settings . . . what they mean

kcode i= . . . the kcode index (or the rcode or tcode index) – the current cursor
position according to the rule index, where the bottom-right is 0, and
the top-left is S-1, where S is the size of the rule-table.

val= . . . the current drawing value/color.

scale= . . . the current scale in pixels, which can be expanded and contracted.

rot= . . . the current interval by which the rule-table can be rotated.

16.4.3 Rules: setting bits/values with the keyboard and mouse

The active position (to be updated) in the rule-table is highlighted by a small flashing cursor
initially in the top-left. Its position is displayed in the top-right inset window (section 16.4.2).
The cursor is repositioned with the mouse by clicking either the left or right button on the new
position6, or moved with the left/right/up/down arrow keys.

Setting or drawing values on the rule-table pattern is done with the keyboard or mouse
(figures 16.2, 16.6). To set (and activate) a value at the cursor position, press a valid number
key (without return) — the cursor will then advance to the right by one unit. To draw a horizon-
tal line towards the right keep the key pressed; eventually the line will continue to the next row
or jump back to the top-left. To draw a vertical line downwards with the active value, press v.

6Mouse behavior differs slightly between Linux-like systems and DOS. In Linux the mouse pointer changes
direction within the bit/value rule-value pattern, pointing north-west instead of north-east, and within the pattern,
left or right mouse clicks reposition the flashing cursor. In DOS the mouse pointer is confined within the pattern
and clicking the left or right buttons sets values as well as repositioning the flashing cursor.

168 CHAPTER 16. SETTING A SINGE RULE

Figure 16.6: Drawing bits or
values on the rcode pattern by
dragging the mouse pointer.
Top: drawing value 0 with line
width=1 on an all-1s bit pattern,
v2k13 rcode, S=8192.
Bottom: drawing values
0,1,2,3,4,5,6, with line width
1,2,3,4,5,6,7, on an all-7s value
pattern, v8k9 kcode, S=11440.

To draw the active value with the mouse, drag the cursor anywhere over the rule-table pattern
with the left button pressed — release to stop. To draw the complement of the active value
(section 16.20) drag with the right button pressed. While a mouse button is pressed, the inset in
the reminder window changes to show the active button, the current active value, and the current
width of the line, for example,

left button: draw 3s width=2 or right button: draw 4s width=3

Initially the left button draws the value v-1 and the right draws 0, so for binary 1 and 0. A
button press outside the grid area gives changes the reminder window to outside grid .

To activate drawing with the mouse it is sometimes necessary to click the left and right button
alternately. To accept the rule-table enter return. Once accepted, the rule is also displayed in
decimal (if applicable), in hex, and in the rule window (section 16.19).

16.4.4 Rules: save as 1d seed or PostScript

The rule-table pattern (or just a patch) can be saved as a vector PostScript image, or as a 1d seed
file. Saving as a 1d seed file allows a rule string to seed a basin of attraction, which itself is able
to classifing rule-space, as proposed by Burraston [6, 7].

Enter PScript--P or file-F in section 16.4.1 — both options follow the same methods as the 1d
seed options in section 21.4.8. One of the following prompts appear in a top-right window,

for PostScript, PScript-P
PostScript KCODE: save all-a, save patch-p: (or RCODE, TCODE)

for a 1d seed file, file-F
RCODE as 1d SEED: save all-a, save patch-p: (or TCODE, KCODE)

Enter a for the whole rule-table. If p is entered, successive prompts are presented in a top-
right window to define a patch — the default is set by the last two mouse clicks on the rule-table.
The mouse click index shows up in the inset panel in section 16.4.1. This patch prompt example
is for v8k3 rcode,

1d: max i=511, revise coords-ret, accept patch 71-278-p: (patch = last 2 mouse clicks)

start i: end i: (. . . if ret was entered above)

Enter p to accept the default patch. Enter return to set the start/end values manually — the
defaults are the mouse click coordinates.

169

16.4.5 Rules: PostScript prompt

When creating a PostScript image of a rule-table, there are a variety of presentation possibilities
as illustrated in this chapter, and in section 21.4.10 for a seed where similar methods apply.

Enter a (or p for part of the rule-table) at the prompt in section 16.4.4 to save the rule-table
image as a vector PostScript (*.ps) file (default filename my sPS.ps). Various top-right options
will be presented for the exact appearance of the image. This example is for v=8 RCODE,

create PostScript image for 1d, 64x8
symbols-s greyscale-g color-c exit-q (def-c): color-c/C for v=2)

These options are summarized below (then subsequent options continue),

options . . . what they mean

symbols-s . . . to show values as symbols (as in figures 21.10, 21.11 for a seed).

greyscale-g . . . to show values in greyscale (as in figures 21.10 for a seed).

color-c . . . (the default) to show values in color.

color-C . . . (for binary v=2 networks) by default 1s are colored blue on a white
background and yellow on black background. Enter C to instead save 1s
in black or white respectively.

The colors of zero values will follow the current bits/values presentation. Once these options
have been selected, the prompt to amend other settings is presented,

cellscale=5.00 dots(on)=0.70 divs(off), amend settings-a: (for example)

Enter return to accept the defaults, or enter a for the following prompts presented in sequence,

change: cellscale: togdots-x: dotscale: divs(0,w,b,g):

Enter changes required or return to accept defaults, which follow the current bits/values
presentation. The options are summarized below,

options . . . what they mean

cellscale . . . enter a new cell width in pixels.

togdots-x . . . to toggle zero dots on/off.

dotscale . . . (if dots are on) enter a new width for zero dots in pixels, which can be a
decimal number.

divs(0,w,b,g) . . . the initial default division (color) depends on the bits/values presentation,
and is shown in the prompt, for example divs(off) means that there are
no divisions and adjoining cells touch. To change, enter 0 for off, b for
black, w for white, and g for light blue/grey. The new choice becomes the
default.

Cells with value zero (0color) are initially colored light green in the bits/values presentation
(section 16.4), which can be toggled to white with 0color-∧ in section 16.4.1 – the PostScript file
will follow the current 0color.

170 CHAPTER 16. SETTING A SINGE RULE

Once these choices are complete, the *.ps file is saved from the filing prompt (section 35.3).
The default filename is my sPS.ps, the same as for a 1d space-time pattern. Section 36.1 explains
how to view, edit, and crop the PostScript image.

16.5 Setting the rule in hex

If h is selected in section 16.1.1 or 16.1.2, or R then h for an iso-rule (section 16.10.5) the rule is
defined in hexadecimal (hex), which is a shorter way of denoting a rule than the rule-table itself.
The method is the same as setting a seed in hex in section 21.5. The hex expression of the current
rule (initially just 0s) is displayed. Each hex character (0 — 9 and a — f) shows the value of
4 bits, and the characters are displayed in one byte pairs (figure 16.7). During the hex setting
procedure, a top-right reminder window displays the following,

enter hex, arrows-move hex count=0← inset shows the current hex position, from the top-left

rotate-l/r, accept-ret

For an iso-rule (section 16.10.4) the hex setting proceedure occurs in a top-right window
(section 16.10.5 and figure 16.8).

The hex character to be updated is highlighted by a flashing cursor, initially in the top-left. Its
position is displayed in the top-right inset window. The flashing cursor is moved with the arrow
keys, left/right and up/down for more than one hex line. To overwrite, enter a hex character from
the keyboard, without return. This automatically moves the cursor one position to the right.
Hex characters entered which exceed the current value-range will be automatically corrected
downwards to the maximum value after the hex string has been accepted. Enter l or r to rotate
the rule-table by one bit or value as in sections 16.3 and 16.4.1, which will be immediately reflected
in the hex presentation. To accept the rule as expressed in hex, enter return, whereupon the rule
will be presented as bits/values (section 16.4), where it can be reconfirmed or amended.

Figure 16.7: Setting rcode in hex — the game-of-Life, v2k9.

Figure 16.8: Setting an iso-rule in hex from a top-right window — the game-of-Life, v2k9.

171

16.6 Setting the rule in decimal
applicable only for a limited range of v and rule-table size S

The decimal option is useful for binary rules with small neighborhoods, such as the v2k3
“elementary rules” with their well known decimal rule numbers [35, 38] or for v=2 tolalistic rules.
However the decimal option remains valid so long as the rule-table (rcode, kcode or vcode) is
within the limits7 in table 16.2 which lists the maximum length of the bit/value string S and the
corresponding maximum decimal rule number, for each value-range v. If d is an available option
and is selected in section 16.1 or 16.1.2, the rule can be specified by its decimal equivalent. The
following prompt is displayed,

k=3 rule, enter 0-255 (def-rnd-dec): (for example)

Enter a decimal number, or return for a random number which will be displayed. If the
number entered is outside the permitted range, the program presents the message,

k=3 rule, enter 0-255 (def-rnd-dec):333 - too big! back-ret: (for example)

Enter return to revert to the first single rule prompt (section 16.1). Once successfully selected,
the decimal rule is presented again as bits/values (section 16.4), where it can be reconfirmed or
amended.

v max-S max decimal
2 32 4294967295
3 20 3486784400
4 16 4294967295
5 13 1220703124
6 12 2176782335
7 11 1977326742
8 10 1073741823

Table 16.2: Rules in decimal — rule-table
size limitations — the maximum bit/value
string S for each value-range v, and the
corresponding maximum decimal number.
These are notional figures because the ac-
tual limits also depend on the rule type and
neighborhood k.

16.7 Setting a majority rule

If m is selected, in section 16.1, the “majority” (voting) rule will be set — an example was shown
in see figure 2.3. The algorithm differs between rcode, kcode and tcode, and also between v=2 and
v >2. For rcode or kcode the majority value in the neighborhood becomes the output.

In case of a tie,
• for rcode and v=2 the central cell wins.

• otherwise for kcode or v >2 one of the majority values is picked at random (see figure 16.10).

For tcode, the tcode-table is divided into v approximately equal sectors, and the values are
allocated to the sectors in descending order from the left (see figure 16.11). Once selected, the
majority rule will be presented again as bits/values (section 16.4), where it can be reconfirmed or
amended.

Figures 16.9 — 16.11, and 4.15. show examples of the majority rule bit/value pattern, and
evolved snapshots of 2d spacetime patterns, for rcode, kcode and tcode.

7The same limits apply when setting a seed in decimal (table 21.3 section 21.6).

172 CHAPTER 16. SETTING A SINGE RULE

Figure 16.9:
Above: Majority rcode v2k9, shown as a bit
pattern of S=512 bits.

Left: Space-time snapshot from a random
initial state on a 120×120 square lattice, where
the dynamics has stabilized on an attractor.

Figure 16.10:
Above: Majority kcode v8k6 shown as a value
pattern of S=1716 values.

Left: Space-time snapshot from a random
initial state on a 120×120 hexagonal lattice,
where the dynamics has stabilized on an
attractor.

173

Figure 16.11:
Above: Majority tcode v8k7 shown as a value
pattern of S=50 values.

Left: Space-time snapshot from a random
initial state on a 120×120 hexagonal lattice,
where the dynamics evolves into competing
patches.

16.8 Majority with shifted uniform outputs
not for tcode — see also section 14.8 for a rulemix

If u is selected in section 16.1 a “majority” (voting) rule is set as in section 16.7 above, but the
uniform (unanimous) neighborhoods have their outputs shifted by -1, except for 0 which becomes
v-1. For v=2 this is the same as flipping the “end bits”, as before in binary DDLab, so that
unanimity gives the opposite vote, otherwise the majority wins — the tcode is 011001.

For random wiring, this can result in some interesting bi-stable, tri-stable, v-stable, dynamics,
for example in figure 16.12 for v=2, and for a rulemix of kcode majority rules, v=8, in figure 14.4.

time →

Figure 16.12: Flipped (shifted) majority rcode with random wiring, v2k5, where uniform neighbor-
hoods (all-0s and all-1s) have their outputs flipped to the opposite color. A 1d space-time pattern
(n=150) shows bi-stable pattern density, where the duration of the two density regimes is unpredictable.
The image shown is rotated by 90◦ so time flows from left to right.

174 CHAPTER 16. SETTING A SINGE RULE

16.9 Setting Altenberg rules
not applicable to tcode

Enter A to set an “Altenberg” rule (suggested by Lee Altenberg) where the output of each neigh-
borhood is set probabilistically according to the frequency of the values in that neighborhood.
This is a sort of probabilistic majority rule, and results in mobile ordered zones in the dynamics.
An example kcode and 2d snapshot is shown in figure 16.13, and a 1d space-time pattern in
figure 4.11.

Figure 16.13:
Above: Altenberg kcode example v8k7, shown
as a value pattern of S=3432 values.

Left: Evolved space-time snapshot from a
random initial state on a 120×120 hexagonal
lattice.

16.10 Isotropic rules — the iso-rule paradigm
(for rcode only, 1d, 2d: k=3 to 9, 3d: k=6 or 7, n-templates as in figure 16.17)

Rcode can be transformed for isotropic dynamics, which is arguably closer to natural physics[56].
This is achieved by ensuring that rotated and reflected neighborhoods (in 1d, 2d or 3d) have
the same output in the rule-table so that structures such as gliders and glider-guns will operate
equivalently in all directions and orientations. The dynamics will also maintain symmetry from a
symmetric seed, for example from a singleton seed (figures 16.15 and 16.16).

The previous isotropic options8, rnd-iso-i in section 16.1.1 for random isotropic rcode, and
>iso-i in section 16.3 to transform random rcode to isotropic, are retained, but isotropic rcode in
essence includes redundant outputs in its lookup-table, and consequently in the input-frequency
histogram (section 31.5) and its dependent functions: input-entropy, filtering (section 32.11), mu-
tation (section 32.5.4), and classifying rule-space by entropy-variability (chapter 33).

The new iso-rule paradigm[56] scans the current rcode from left to right, identifies and ag-
gregates the set of isotropic neighborhoods into “iso-groups”, and assigns a single output to each

8The previous isotropic method was documented online, http://ddlab.org/update_jan2018.html and in the
EDD update 2018 http://ddlab.org/download/dd_manual_2018/

http://ddlab.org/update_jan2018.html
http://ddlab.org/download/dd_manual_2018/

175

Variant[17]: p=22 Precursor[16]: p=19 Sayab[16]: p=20

Three binary logically universal iso-rules[17] belong to a family with different glider-guns. Gliders streams are
stopped by eaters. The Variant and Precursor rules are closely related differing by two outputs. The Sayab rule
is a distant cousin differing from the Precursor by 33 outputs.

24 c0 04 42 83 01 80 2c a4 29 04 e0 70 — Variant
24 c0 04 42 83 01 80 24 a4 69 04 e0 70 — Precursor
24 01 13 1a 14 20 50 2c 45 05 48 e0 50 — Sayab

V
P
S

Figure 16.14: Significant binary (v2k9) glider-gun iso-rules on 3×3 Moore n-templates with 102 iso-
groups. The iso-rule’s hexadecimal and bit expressions allow comparison of bit differences/similarities.
The glider-guns in SapinR emerge spontaneously, the others are elaborately constructed artifacts.
p=glider-gun period and firing frequency. Green trails denote motion.

(a) the unslanted initial view (b) time-steps shifted 1/2 cell

Figure 16.15: 1d v8k2 periodic space-time pattern of an isotropic CA, size 33, show-
ing 33 timesteps from a singleton seed. The rcode size=64, The iso-rule (size=36):
140761540026777563655513706072505220, as a graphic:
and in hexadecimal: 07 07 c6 c0 16 ff dc f5 b4 be 30 ea 8a 90. (a) is the initial view because
1d even n-templates are skewed right (figure 10.1). (b) central symmetry restored with on-the-fly
“slant” option (section 32.9.1), which shifts successive time-steps by 1/2 cell — so k in 1d CA can be
even as well as odd with a valid iso-rule.

176 CHAPTER 16. SETTING A SINGE RULE

v4k4 hex 2d v4k6 hex 2d

v4k4s square 2d v4k5s square 2d

v5k6 cubic 3d v5k7 cubic 3d

Figure 16.16: Examples of space-time pattern snapshots for v=4 2d and 3d isotropic CA from a
singleton seed, a v>0 single cell against a zero background. The initial symmetry must be preserved.
Isotropy, were rotated and reflected n-templates have the same output, is arguably closer to natural
physics.

177

iso-group, making the “iso-rule”. An iso-rule-table is a list in a conventional order (section 16.10.2)
of the output for each iso-group, and is much shorter (table 16.3) than rcode. The input-frequency
histogram and all its dependent functions can then operate according to the iso-rule without re-
dundant information. The parent rcode is simultaneously transformed to isotropic9.

Among the rule types in section 13, there are iso-rule subsets that must be isotropic by their
very nature: totalistic — kcode and tcode — (section 16.4.1.3), reaction-diffusion (section 16.12),
and outer-totalistic or survival/birth (section 16.10.7).

All these iso-subsets can be expressed as rcode and thus can also be transformed to the iso-rule
(figure 16.5), so an iso-rule can be computed down by reducing rcode, and up by enhancing
iso-subsets, thus providing an intermediate granularity for the input-frequency histogram and its
dependent functions. Isotropy is conserved whatever changes are made to an iso-rule-table.

16.10.1 iso-rule n-templates

2
1

0

k=3

3
2 1

0

k=4t

3
2 1

0

k=4s

4
3 2 1

0

k=5

5 4
3 2

1 0

k=6

6 5
4 3 2

1 0

k=7

7 6 5
4 3
2 1 0

k=8

8 7 6
5 4 3
2 1 0

(i)k=9

5

4

3 2

1

0

k=6

6

5

4 3 2

1

0

k=7

Figure 16.17: Predefined neighborhood templates valid for iso-rules: any 1d n-template is valid, and
also those shown above for 2D (k=3 to 9) and 3d (k=6 or 7). 2d k=4 n-templates can be either
hexagonal or square. To achieve periodic boundary conditions hexagonal n-templates require even
lattice dimensions. The target cell is central even if not part of the n-template.

Currently, DDLab supports iso-rules for the following symmetric n-templates, from the full range
in chapter 10.

1d . . . any k (section 10.1.2) including even k because the initial skewed space-time
pattern can be centered (figure 16.15).

2d . . . k=3 to 9, according to hex or square n-templates as shown in figure 16.17.

3d . . . k=6 or 7 shown in figure 16.17.

16.10.2 iso-rule prototypes and order conventions

The iso-rule conventions in DDLab depend on the decimal equivalents (DE) of neighborhoods
according to their n-templates in 1d, 2d or 3d. The iso-group left to right order is low to high DE
as in figure 16.18 where the prototype neighborhood is the lowest DE on the left. The iso-rule left
to right order is high to low DE of the prototype neighborhoods as in figure 16.19.

9Note that the iso-rule paradigm at present does not support a rulemix of iso-rules, but a rulemix of isotropic
rcode is available with options in sections 14.4 – 14.9.

178 CHAPTER 16. SETTING A SINGE RULE

16.10.3 iso-rule table sizes

The sizes of the iso-rule tables for the n-templates in figures 10.1 and 16.17 depend on v, k, and
the internal symmetries of the n-template so are difficult to calculate analytically. Table 16.3 gives
iso-group sizes computed algorithmically in DDLab.

1d k
2 3 4 5 6 7 8 9 10

2 | 3 6 10 20 36 72 136 272 528
3 | 6 18 45 135 378 1134 3321 9963

| 4 | 10 40 136 544 2080 8320
v 5 | 15 75 325 1625 7875
| 6 | 21 126 666 3996

7 | 28 196 1255 8575
8 | 36 288 2080

2d hex-k 2d square-k 3d
3 4 6 7 4 5 8 9 6 7

----------------- ----------------- -------
2 | 4 8 13 26 2 | 6 12 51 102 | 2 | 10 20
3 | 10 30 92 276 3 | 21 63 954 2862 v 3 | 57 171

| 4 | 20 80 430 1720 | 4 | 55 220 | 4 | 240 960
v 5 | 35 175 1505 v 5 | 120 600 5 | 800
| 6 | 56 336 | 6 | 231 1386

7 | 74 588 7 | 406
8 | 120 960 8 | 666

Table 16.3: Sizes of iso-rules lookup-tables (number of iso-groups) for 1d, 2d hex, 2d square and 3d
n-templates in figure 16.17, for v, k within non-extended limits (section 7.2).

16.10.4 setting an iso-rule

Setting an iso-rule for supported n-templates (figure 16.17), requires an existing rcode bit/value
graphic to be visible, as in figures 16.4 and 16.5, with its top-right reminder (section 16.4.1.1)
and options10 >iso-I/R/H/* (H for 2d v2k9 Moore n-template only). Any of these options
will transform the rcode to isotropic rcode and set the iso-rule. This applies to totalistic rules
redefined as rcode (section 16.4.1.3) or the rcode expression of reaction-diffusion (section 16.12) or
survival/birth (section 16.10.7).

All the >iso options will at least show the iso-rule size and its hex expression in the ter-
minal, and possibly more data, and the rcode bit/value presentation will change unless already
isotropic. The options are detailed below, noting that only >iso-R shows the iso-rule as a bit/value
graphic (figures 16.4 and 16.5) with its options iso-file/rnd/group-f/R/G in the top-right re-
minder16.4.1.1 described separately in section 16.10.5, allowing graphic iso-groups with >iso-G —
also detailed separately in section 16.10.6.

options . . . what they mean

iso-I . . . transforms rcode to the iso-rule showing minimal data in the terminal.
For a 2d v2k5 CA rcode (hex)ee 8b 8d 06, data in the terminal is . . .

iso-size=12 iso-hex=0e c2

10>iso-I/R/H/* is also summarised in section 16.4.1.4

179

iso-R . . . transforms the rcode string-graphic11 to the iso-rule and its shorter string
graphic (section 13.5.1, figures 13.3, 16.4), and presents the iso-rule bits/values
reminder (section 16.4.1.2) with new options . . . iso-file/rnd/group-f/R/G
detaed in section 16.10.5.

iso-H . . . (only for 2d binary, Moore neighborhood, v2k9 3×3 rcode) allows saving/loading
the iso-rule in the “Hensel” notation (section 16.10.9) — compatible with
“Golly” software used in the game-of-Life community12.

iso-* . . . (the star symbol) transforms rcode to the iso-rule and provides detailed iso-
group and iso-rule data in the terminal, as the examples in tables 16.4, 16.8.

index=0 output=0 group_size=1
00000=0

index=1 output=1(birth) group_size=4
00001=1
00010=2
01000=8
10000=16

index=2 output=0 group_size=4
00011=3
01001=9
10010=18
11000=24

index=3 output=0 group_size=1
00100=4

index=4 output=0 group_size=4
00101=5
00110=6
01100=12
10100=20

index=5 output=0 group_size=4
00111=7
01101=13
10110=22
11100=28

index=6 output=1(birth) group_size=2
01010=10
10001=17

index=7 output=1(birth) group_size=4
01011=11
10011=19
11001=25
11010=26

index=8 output=0 group_size=2
01110=14
10101=21

index=9 output=1(survival) group_size=4
01111=15
10111=23
11101=29
11110=30

index=10 output=1(birth) group_size=1
11011=27

index=11 output=1(survival) group_size=1
11111=31

2d v=2 k=5 iso-table(12)=111011000010
group-types (12/32=0.375000)=31 27 15 14 11 10 7 5 4 3 1 0
iso-size=12 iso-hex=0e c2
iso_tablemax=11

Table 16.4:
2d binary rcode-hex=ee8b8d06,
iso-rule=111011000010, iso-hex=0e c2.

Left: The output in the terminal if the *
(star symbol) is entered in section 16.4.1
(>iso-I/R/H/*) to transform rcode
to an iso-rule and show iso-group data,
including: index, output, size, list of
neighborhoods, and (birth/survival) for
binary n-templates with a non-empty
center cell and output=1. A summary at
the foot of the data includes the iso-rule
as a table and in hex. For greater v, k
the terminal data can be very extensive.

Below: time-step 79 (41×41) from a
singleton seed with iso-histogram colors.

11iso-R does not apply to the random rule string graphic (section 16.3) but to the rcode string-graphic
(section 16.4.1.1). To change from random to rcode string-graphic, backtrack with q then enter bits-b.

12See also section 21.11 for Saving/Loading a seed in the Golly file format.

180 CHAPTER 16. SETTING A SINGE RULE

16.10.5 options from the iso-rule bit/value graphic

If the iso-rule bit/value graphic (as in figures 16.4 and 16.5) is visible (set with >iso-R in
section 16.10.4, options iso-file/rnd/group-f/R/G are displayed in the top-right reminder
16.4.1.1 described below,

options . . . what they mean

iso-file-f . . . to save/load the iso-rule (size S) in binary or ASCII, or revise in hexadec-
imal, giving a top right prompt similar to,

iso-rule (v=2 k=9 S=102) load/save-l/s ASCII-L/S, hex-h
these options are described below,

sub-options . . . what they mean

load/save-l/s . . . load/save the iso-rule as a binary *.isr file, section 16.14.

ASCII-L/S . . . load/save the iso-rule as an ASCII string *.tbl file, section 16.22.

hex-h . . . set or amended the iso-rule in hexadecimal as in section 16.5 and
figure 16.8.

iso-rnd-R . . . to display random iso-rules which can be biased for a given λ parameter,
or proportions of values (section 16.3).

iso-group-G . . . for options to graphically display iso-groups and iso-rule prototypes in a
seperate window, described in section 16.10.6.

16.10.6 iso-group graphics

The iso-group graphics options provide reality checks and illustrate the iso-rule paradigm. Once the
iso-rule bit/value graphic is displayed as in figure 16.4 with its reminder window in section 16.4.1.2
(by entering iso-R in section 16.4.1), enter iso-group-G in section 16.10.5 to graphically display
iso-groups or iso-rule prototypes. A half screen right window opens with iso-group data (decoded
below) with graphics of the patterns in a single iso-group, and various display options, for example,

iso-groups(102) v2k9(2d) iso-index=33>0 group(size 8)

59 62 155 182 218 248 434 440

data . . . decode

iso-groups(102) . . . the total number of iso-groups for the n-template.

v2k9(2d) . . . the CA variables defining the n-template, in this case the Moore neigh-
borhood.

iso-index=33 . . . the iso-rule index, which corresponds to the output that was highligted
by the flashing cursor on the iso-rule bit/value graphic.

>0 . . . the output of this iso-group in the iso-rule.

group(size 8) . . . the number of patterns in the group.

181

59 62 155 182 218 248 434 440 . . . the decimal equivalents of the group patterns — their rcode
index — from lowest (the group prototype) to highest.

Below the data and graphics, further options are presented, described in section 16.10.6.1.

 84

 83

 82

(a) 3 sucessive v2k9 2d square (Moore) iso-groups for iso-indeces as shown (max=101)

144

143

142

(b) 3 successive v3k7 2d hex iso-groups for iso-indeces as shown (max=275)

 62

 61

 60

(c) 3 successive v3k7 3d iso-groups for iso-indeces as shown (max=171)

Figure 16.18: Examples of 3 successive iso-groups shown graphically; their sizes depend on internal
symmetries. (a) v2k9 has 102 iso-groups, (b) and (c) are both v2k7 but (b) is 2d hex with 276
iso-groups, and (c) is 3d with 172 iso-groups. The iso-group left to right order is low to high decimal
equivalent (DE) where the prototype neighborhood is the lowest DE on the left.

182 CHAPTER 16. SETTING A SINGE RULE

(a) 102 v2k9 2d square (Moore) neighborhood iso-group prototypes

(b) 276 v3k7 2d hex neighborhood iso-group prototypes

(c) 172 v3k7 3d neighborhood iso-group prototypes

Figure 16.19: Examples of the complete set of iso-rule prototype neighborhoods, shown graphically in
descending order of their decimal equivalents (DE) from the top-left. (a) v2k9 has 102 prototypes, (b)
and (c) are both v3k7 but (b) is 2d hex with 276 prototypes, and (c) is 3d with 172 prototypes. The
prototype neighborhood is the highest DE in its iso-group (figure 16.18).

183

16.10.6.1 iso-group graphics — further options

An example of the options that appear at the foot of the iso-group graphics window
(section 16.10.6), and descriptions below,

newgroup: down-ret/] up-[index(101-0)
scale(7)-e/c more-m all-a PScrip-p exit-q

options . . . what they mean

newgroup: down-ret/] up-[. . . (square brackets) to scan for successive singe iso-groups,
up or down (down also with return or the left mouse button).

index(101-0) . . . to select another singe iso-group by entering a number the maximum iso-
index and 0.

scale(7)-e/c . . . expand/contracts the graphics scale, currently (7). Note that division
colors follow the iso-rule bit/value graphic.

more-m . . . to show more iso-groups initially including the current iso-index, as many
as will fit in the window, examples in figure 16.18. Repeating m will show
more groups, with a slight index overlap with the last index, until index
zero, then the list will restart at the maximum index.

all-a . . . from the current index, show all the iso-rule prototypes, the first pattern
in each iso-group with the lowest decimal equivalent, examples in
figure 16.19.

PScrip-p . . . saves the info and graphics in the window as a PostScript file, default
filename my isoPS.ps (section 36) The filing prompts (section 35.3) will
appear.

exit-q . . . to exit the graphics window and bactrack to the iso-rule bit/value graphic.

16.10.7 The game-of-Life and other Life-like rules — rcode
for rcode, k ≥ 5 and n-templates in section 16.10.1

Figure 16.20: Conway’s game-of-Life (survival/birth 23/3) shown as a 512 bit rcode in 8 rows. The
diagonal symmetry in each 8x8 block is a necessary (but insufficient) indication of isotropy so a useful
visual clue for the general case of isotropic rcode for a binary v2k9 2d CA with a Moore neighborhood
(sections 16.10). See figure 16.4 for the equivalent iso-rule of 102 bits, and figures 4.12 and 4.14 for
examples of space-time patterns.

Life-like rules from the ”Life family” are defined in DDLab by survival/birth, a type of outer-
totalistic rule, and can be set with value-range v>2 as well as binary, and any k≥5, as well as the
k=9 neighborhood, for 1d and 3d as well as 2d.

If conforming to the n-templates in section 16.10.1 and figure 16.17, the rules are isotropic
because they are essentially totalistic.

184 CHAPTER 16. SETTING A SINGE RULE

The Life-like rules can also be set in outer-kcode in TFO-mode (section 14.2.2 and figure 14.1),
which allows a greater range of neighborhoods sizes, up to k=25 in 1d and 2d and a more general
implementation of outer-totalistic (section 14.2), but this section describes the method for the full
rule-table, rcode, which allows transformation to the iso-rule (section 16.10.4).

DDLab defines John Conway’s game-of-Life [10] on the v2k9 Moore neighborhood as
survival/birth (23/3) following the format in Mirek’s Cellebration13. A cell is either alive (1) or
dead/empty(0). The first part of (23/3) defines the survival of a cell, requiring 2 or 3 live neighbors,
the second part of (23/3) defines birth, requiring 3 live neighbors, otherwise the cell is dead by
overcrowding or exposure. The 23/3 notation, when entered in DDLab, is automatically translated
into the full lookup-table, rcode (figure 16.20). Any other Life-like rule can be specified in this
notation, for example 1357/1357 for Fredkin’s replicator in figure 16.21.

16.10.7.1 Setting Life-like rules — rcode

When L is entered in section 16.1 the following top-right prompt is presented,

Life k=9 (def: survival 2,3, birth 3,) accept-ret amend-a: for k=9

Enter return to accept the default. If a is entered to amend, the following further prompts
are presented,

accept-ret, or enter number+ret, max entries=9, max value=8:
enter survival (def=2.3,): followed by . . .

enter birth (def=3,):

Enter the new values for survival, followed by the new values for birth. After each number

Figure 16.21:
Above: A rule in the Life family, Fredkin’s
replicator, specified by 1357/1357 in the sur-
vival/birth notation. The v2k9 rcode is shown
as a bit pattern of S=512 bits.
Below: The equivalent 102 bit iso-rule

(hex) 0a 4a 65 99 a4 6d 23 9a 69 a6 6a 66 a6

Left: Starting with one central “eye” as the
initial state, replicated patterns repeatedly
pop out from disorder, this at time-step 193.
222×222 on a square lattice.

13http://www.mirekw.com/ca/whatis_life.html. The survival/birth (23/3) order is sometimes reversed to
birth/survival (3/23) as in http://www.conwaylife.com.

http://www.mirekw.com/ca/whatis_life.html
http://www.conwaylife.com

185

enter return for the next number. There may be up to k entries — their order, or repeats, are
not significant. return without a number concludes the entries. q reverts to the first Life prompt,
but with the defaults possibly altered.

For v >2, for a given Life-like n-template, the algorithm in DDLab generates an equivalent
rcode giving similar dynamics to the binary Life rule, but including v colors. For example, for v=3
and (23/3) any v>0 is considered alive, conserving the Life glider-gun but with two colors plus the
zero background, as in figure 16.22.

To make changes to particular bits/values in Life-like rule-tables, it is best to first trans-
form rcode to the iso-rule because any mutation will then conserve isotropy. The input-frequency
histogram based on the iso-rule allows the landscape of related rules to be explored by a combina-
tion of filtering and mutation (section 16.10.8) or by classifying iso-rule-space (figure 33.11).

Figure 16.22:
The game-of-Life (23/3) appled
to a v=3 CA. The algorithm
in DDLab generates an equivalent
rcode giving similar dynamics to
classical binary Life, but including 2
colors + background. Rcode size
Sr=19683, the iso-rule Si=2862.
In this example two glider-guns
have been constructed, one shoot-
ing red gliders SE, the other shoot-
ing black gliders SW. The seed file
is Lguns v3.eed.

16.10.8 the IFH mutation/filter game

The input-frequency histogram (IFH, section 31.5) allows interactive rule mutations (section 32.5.4)
while observing their immediate effects on space-tine patterns (STP) to make/restore single mu-
tations on-the-fly with keyhits ’1/2’. Mutations made in sequence are restored in reverse order
to finally return to the start rule. IFH mutations positions for keyhit ’1’ are random but non-
repeating, and will avoid filtered bars until there are none remaining. Keyhit ’?’ mutates a selected
target. A mutation assigns a random value different from the current output. For a binary rule the
output is simply flipped. Current mutations are marked at their IFH bar with red blocks which
are removed with keyhit ’2’ as mutations are restored in reverse order.

IFH bars are filtered/unfiltered (section 32.11.5) with on-the-fly keyhits ’f/F’ without the need
to pause. A selected target can be filtered by pausing with keyhit ’q’ (section 32.16) followed by ’f’
which allows finer control of filtering (section 32.16.7). Current filtering is marked at IFH bars with
black blocks which are removed with keyhit ’F’ to unfilter in reverse order. Filtering proceeds in
sequence from high to low bars and is restored in reverse order. Filtered bars immediately suppress
the corresponding cell in the STP, but the effects can be toggled with keyhit ’-’ (dash) without
affecting the IFH filtering scheme, or with the antifilter keyhit ’=’ (equals sigh).

On-the-fly mutation can operate in conjunction with on-the-fly filtering in a sort of muta-
tion/filter game[56]. This is most effective for self-contained dynamics such as a glider-gun/eater
system (figures 31.8, 31.9, 16.23) because the IFH will stabilise, more so if the time-step window

186 CHAPTER 16. SETTING A SINGE RULE

The Sayab glider-gun (SayGG.eed).
far left: colors by value with green dynamic trails.
near left: colors corresponding to histogram
colors.

The iso-rules (hex) are compared below:

24 01 13 1a 14 20 50 2c 45 05 48 e0 50 ---Sayab.

1a fe e9 c4 79 87 23 c3 4a 0d 48 e0 50 ---after all 52 neutral mutations.

Figure 16.23: The log2 input-frequency histogram (IFH) of the Sayab iso-rule glider-gun with 102 bars
based on a moving window of 100 time-steps which allows the IFH to stabilise. All active bars were firstly
filtered (black blocks), then all 52 remaining neutral bars were progressively mutated (red blocks). The
glider-gun system was preserved, though dynamics from other initial states would increasingly diverge
from the original Sayab iso-rule.

is increased (section 32.12.8). Once stabilised all active bars can be filtered, then mutations can
be made to all unfiltered and inactive bars — the gaps in the IFH. These mutations, in any com-
bination, must be neutral for the glider-gun/eater system, but the dynamics of the mutants are
worth investigating from alternative initial states.

In figure 16.23 featuring the Sayab iso-rule[16] the initial state is an isolated glider-gun stabilised
by eaters. All active bars where first filtered in bar size sequence (from high to low) with repeat
keyhits ’f’ marking them with black blocks. Then mutations were made with keyhit ’1’ which
automatically and randomly seek out unfiltered inactive iso-groups represented by missing bars —
gaps — marking them with red blocks. Because all these mutations are neutral, the glider-gun
system is preserved. Once all gaps are mutated, further mutations would hit active bars likely
disrupting glider-guns. The rule can be restored with repeated keyhits ’2’ (or immediately with
keyhit ’O’) to reinstate the original rule. Keyhit ’o’ will reinstate the original glider-gun pattern.

Least impact mutations to active iso-groups can be made progressively by first unfiltering the
least active bars (in reverse order from low to high with keyhit ’F’), or a specific mutation can be
targeted with keyhit with ’?’. Any mutation to an active iso-group is likely to alter the current
space-time dynamics to a greater or lesser extent. If the change is interesting, a new glider or eater,
the mutation can be retained. An undesirable change such as excessive disorder can be undone.

Among functions in DDLab to test dynamics from alternative initial states are on-the-fly keyhits
for a random pattern ’4’ and ’v’ for a random central block (section 32.8.1). Space-time patterns
can be paused at any time with keyhit ’q’ allowing many options (section 32.16) including ’e’ to
edit the current state, and v to edit the rule.

187

The IFH mutation/filter game is best played starting out with a rule featuring emergent struc-
tures as in figure 16.23 where the IFH has stabilised — there are many further examples of such
rules in this book including the rules in figures 16.26, 32.33, 32.7 32.30, 31.8, 31.9, 32.32 — some
of these rules were examined in [56]. Exploring rule-space that is genetically close to significant
rules with these experiments reveals the existence of a vast web of connected but diverse rules able
to support related complex structures.

16.10.9 Hensel notation for Golly
for 2d binary v2k9 (3×3) CA only

Binary 2d isotropic rules with a Moore neighborhood (v2k9 3×3 rcode), also refered to as “non-
totalistic”, can be saved/loaded using the ‘Hensel notation”, which is compatible with “Golly”14,
software used in the game-of-Life community (http://www.conwaylife.com).

The Hensel notation15 is an ASCII string (based on an extention of the Birth/Survival notation)
derived from a matix of the number of live cells in the outer neighborhood (columns) and a classifi-
cation of the appearance of pattern types (rows) denoted by the characters “c,e,k,a,i,n,q,j,r,t,w,z”.
DDLab’s implementation of Hensel’s matrix is shown in tables 16.5, 16.6 and 16.7.

0 1 2 3 4 5 6 7 8

c

e

k

i

n

y

q

j

r

t

w

z

Table 16.5:
The Hensel matrix, as implemented
in DDLab, from which the ASCII
notation is derived. Each neigh-
borhood pattern is the prototype of
an isotropic group, where columns
show the number of live cells
(excluding the center), and lower
case letters mark rows accord-
ing to an appearance classification.
These prototypes are equivalent to
Hensel’s, but sometimes differ be-
cause in DDLab the lowest deci-
mal equivalent is taken as the pro-
totype. These decimal equivalents
are shown in the Birth matrix in
table 16.6, and result from the sum
of live values in the neighborhood
calculated thus:

256 128 64
32 16 8
4 2 1

14A 2d seed or pattern can also be saved/loaded in a file format compatible with Golly, see section 21.11
15This notation by Alan Hensel, appled in Golly and defined in

http://conwaylife.com/wiki/Isotropic_non-totalistic_Life-like_cellular_automaton

and http://golly.sourceforge.net/Help/Algorithms/Generations.html, is an ASCII string based on an exten-
tion of the Birth/Survival notation, defined in http://conwaylife.com/wiki/Rulestring, and which inverts the
survival/birth format for Life-like rules in DDLab (section 16.10.7).

http://www.conwaylife.com
http://conwaylife.com/wiki/Isotropic_non-totalistic_Life-like_cellular_automaton
http://golly.sourceforge.net/Help/Algorithms/Generations.html
http://conwaylife.com/wiki/Rulestring

188 CHAPTER 16. SETTING A SINGE RULE

DDLab translates its own isotropic-rcode or iso-rule encoding (section 16.16) into two such
matrices, one for birth and one for survival. With some further refinements, an ASCII string is
constructed from these matrices defining the rule, which may form part of Golly’s *.rle file. For
example, the Golly *.rle script for the Sayab rule[15] and its glider-gun is,

x = 92, y = 47, rule = B2cei3eq4qt5cy6n/S12an3acejy4ijn5jy6-ek8

2o$2o2$90b2o$90b2o40$46b2o2$46bobo!

which shows the rule’s Hensel string (top) and the initial state (below). The rule can be
saved/loaded in DDLab as a *.hen file (section 16.10.9.1). The initial state “run-length” string
encoding can be saved/loaded in DDLab as a *.gly file (section 21.11).

Hensel_group_matrix Birth (loaded)
0 1 2 3 4 5 6 7 8
0 - - - - - - - -
- 1 5 69 325 171 175 239 -
- 2 10 42 170 327 335 367 -
- - 12 98 99 229 231 - -
- - 3 11 15 79 111 - -
- - 40 7 45 47 365 - -
- - 68 13 71 107 238 - -
- - - 97 101 173 - - -
- - - 70 102 110 - - -
- - - 14 106 103 - - -
- - - 41 43 109 - - -
- - - - 105 - - - -
- - - - 78 - - - -
- - - - 108 - - - -
- - - - - - - - 495

Hensel_group_matrix Survival (loaded)
0 1 2 3 4 5 6 7 8
16 - - - - - - - -
- 17 21 85 341 187 191 255 -
- 18 26 58 186 343 351 383 -
- - 28 114 115 245 247 - -
- - 19 27 31 95 127 - -
- - 56 23 61 63 381 - -
- - 84 29 87 123 254 - -
- - - 113 117 189 - - -
- - - 86 118 126 - - -
- - - 30 122 119 - - -
- - - 57 59 125 - - -
- - - - 121 - - - -
- - - - 94 - - - -
- - - - 124 - - - -
- - - - - - - - 511

Hensel Birth or Survival
0 1 2 3 4 5 6 7 8
0 - - - - - - - -
- c c c c c c c -
- e e e e e e e -
- - k k k k k - -
- - a a a a a - -
- - i i i i i - -
- - n n n n n - -
- - - y y y - - -
- - - q q q - - -
- - - j j j - - -
- - - r r r - - -
- - - - t - - - -
- - - - w - - - -
- - - - z - - - -
- - - - - - - - 8

Table 16.6: Following Hensel’s matrix as implemented in DDLab in table 16.5, the decimal value
matrices for birth and survival are shown (left and center). A rule with all outputs set to 1 would the
give a “full” matrix, the same for birth and survival (right).

Hensel Birth
0 1 2 3 4 5 6 7 8
- - - - - - - - -
- - c - - c - - -
- - e e - - - - -
- - - - - - - - -
- - - - - - - - -
- - i - - - - - -
- - - - - - n - -
- - - - - y - - -
- - - q q - - - -
- - - - - - - - -
- - - - - - - - -
- - - - t - - - -
- - - - - - - - -
- - - - - - - - -
- - - - - - - - -

Hensel Survival
0 1 2 3 4 5 6 7 8
- - - - - - - - -
- c - c - - c - -
- e - e - - - - -
- - - - - - - - -
- - a a - - a - -
- - - - i - i - -
- - n - n - n - -
- - - y - y - - -
- - - - - - - - -
- - - j j j - - -
- - - - - - - - -
- - - - - - - - -
- - - - - - - - -
- - - - - - - - -
- - - - - - - - 8

Hensel string
B2cei3eq4qt5cy6n/S1ce2an3ceayj4inj5yj6cain8

Above: The isotropic Sayab rcode shown as 512 bits
in 8 rows, the default presentation (section 16.4).
Diagonal symmetry in each 8x8 block is a necessary
(but insufficient) indication of isotropy.

Table 16.7: Left: The Sayab rule[16], Hensel’s matrices for birth and survival, with Hensel’s notation
below, an ASCII string constructed fron the matrices. These matrices, and the equivalent decimal
value matrices (figure 16.6), are shown in the terminal when Hensel notation *.hen file is loaded
(section 16.10.9.1). Right: DDLab’s rcode bit pattern.

189

Table 16.6 shows the decimal value matrices for birth and survival (left and center) and a matrix
with all possible entries filled in, which would represent a rule with all outputs set to 1. In practice
the birth/survival matrices would be only partially filled in, as in this example (figure 16.7) for
the Sayab rule[16],

The Hensel notion string is made up of two parts, seperated by a forward slash, B(birth),(valid
total + valid letters),. . . / S(survival),(valid total + valid letters),. . . . Reading off the matrices in
table 16.7 gives the string for the “Sayab” rule as shown. When saving, the string is generated in
full. When loading, the same sort-cuts as applicable for Golly are allowed (section 16.10.9.1).

2d k=9 count=1 output=0 group_size=1
000000000=0

2d k=9 count=2 output=0 group_size=4
000000001=1
000000100=4
001000000=64
100000000=256

2d k=9 count=3 output=0 group_size=4
000000010=2
000001000=8
000100000=32
010000000=128

2d k=9 count=4 output=0 group_size=8
000000011=3
000000110=6
000001001=9
000100100=36
001001000=72
011000000=192
100100000=288
110000000=384
.......................
count 5 to 98 continue
.......................
2d k=9 count=99 output=0 group_size=2
101111101=381
111010111=471

2d k=9 count=100 output=1 ccv=1(survival) group_size=4
101111111=383
111011111=479
111110111=503
111111101=509

2d k=9 count=101 output=0 group_size=1
111101111=495

2d k=9 count=102 output=1 ccv=1(survival) group_size=1
111111111=511

v=2 k=9 iso-table(102)=100100000000010001001100011010000101000
010000001010000001011000100010100000101010010001110000001010000
group-types=511 495 383 381 367 365 351 343 341 335 327 325 255
254 247 245 239 238 231 229 191 189 187 186 175 173 171 170 127
126 125 124 123 122 121 119 118 117 115 114 113 111 110 109 108
107 106 105 103 102 101 99 98 97 95 94 87 86 85 84 79 78 71 70
69 68 63 61 59 58 57 56 47 45 43 42 41 40 31 30 29 28 27 26 23
21 19 18 17 16 15 14 13 12 11 10 7 5 3 2 1 0

Table 16.8: The Sayab rule[16] iso-
group details (count 5 to 98 omit-
ted) and the iso-table and group
types, for count 102 to 1. These
details are shown in the terminal if
* (the star symbol) in entered in
sections 16.4.1 and 16.10.4.

16.10.9.1 Saving/Loading rcode in the Hensel notation
for 2d binary v2k9 (3×3) CA only

Enter H at the prompt >iso-I/R/H/* (sections 16.4.1 and 16.10.4). to transform the current
rcode (the Sayab rule) to isotropic rcode and the iso-rule, and/or save/load in the Hensel notation.
The Hensel notation will show in the terminal,

Hensel string

B2cei3eq4qt5cy6n/S1ce2an3ceayj4inj5yj6cain8

and simultaneously the following top-right prompt is presented,

Golly iso-rule: transform-ret, Hensel notation save/load-s/l:

190 CHAPTER 16. SETTING A SINGE RULE

Enter return to just transform the rule. Enter s or l to also save or load the Hensel notation,
a *.hen file (the default filename is isoRule.hen, see Filing chapter 35). In both cases the bit
pattern (as in figure 16.20) will update. On loading, the new Hensel notation appears in the
terminal, together with the birth and survival partial matrices as in figures 16.6 and 16.7.

When saving, the Hensel string is generated in full, but loading allows the same sort-cuts as in
Golly, for example, just the totals with no following letters signifies all letters are valid, so B2/S23

loads the game-of-Life. A minus sign before letters signifies all letters are valid except these, so the
string B2cei3eq4qt5cy6n/S12an3acejy4ijn5jy6-ek8 is equaly valid for loading the Sayab rule.

To convert DDLab’s *.hen file to Golly’s *.rle file, the relevant preamble (including the seed
as in section 21.11) is added and the file renamed. To convert Golly’s *.rle to DDLab’s *.hen file,
the Hensel notation is isolated and the file renamed. Editing should be done in an “8-bit clean”
editor such as emacs, which does not corrupt certain characters.

16.11 Setting a chain-rule
rcode (full rule-table) only

running forward, time-step -3 to +4

Figure 16.24: Left: a subtree applied to encrypt information [49] at its root state (the “alien” seed),
set to stop after 19 backward time-steps, where the state reached is the encryption. To decrypt, apply
the same rule to run forwards by the same number of time-steps. Right: time-steps before and after the
alien suddenly pops out, then merges back into chaos. The root state is a 1d bit-pattern, here displayed
in 2d (n=1600, 40×40). The alien seed was drawn with the drawing function in DDLab (section 21.4).
The seed could also be an ASCII file, or any other form of information. A v2k7 chain-rule (rcode) was
set at random, and the subtree was generated with the CA reverse algorithm. Note that the subtree
has not branched — branching is highly unlikely because of the large system size.

191

Enter c in section 16.1 to set a chain-rule. Chain-rules are maximally chaotic rules, where
Zleft = 1 or Zright = 1, but not both. The global dynamics of chain-rules exhibit extremely
low convergence in subtrees. For larger systems, states usually have just one pre-image, so
subtrees form a “chain”. Garden-of-Eden density approaches order zero with increasing system
size. Chain-rules comprise approximately the square root of rule-space (figure 24.11), and the
CA reverse algorithm is especially efficient for generating their subtrees. These characteristics
make chain-rules suitable for encryption [49], for example, by running “information” backwards
to encrypt, forwards to decrypt as in figure 16.24. The methods apply equally for v >2.

running forward, time-step -2 to +7

Figure 16.25: Left: A 1D pattern is displayed in 2D (n=7744, 88×88). The “portrait” was drawn
with the drawing function in DDLab. With a v=8, k=4 chain-rule constructed at random, and the
portrait as the root state, a subtree was generated with the CA reverse algorithm as in Fig. 16.24. The
subtree was set to stop after 4 backward time-steps. The state reached is the encryption. To decrypt,
run forwards by the same number of time-steps. Right: To decrypt, starting from the encrypted state
in Fig. 16.25 (n=7744, 88×88), the CA with the same v=8 chain-rule was run forward to recover the
original image. This figure shows time-steps -2 to +7 to illustrate how the image was scrambled both
before and after time step 0.

192 CHAPTER 16. SETTING A SINGE RULE

16.12 Setting reaction-diffusion — rcode
for reaction-diffusion by outer-kcode see section 14.2.1

(a) unfiltered (b) filtered

(c) the iso-rule graphic, size 1720

Figure 16.26: Snapshots of a hex 2d reaction-diffusion CA v4k7, with the iso-rule graphic (c) shown
below. The threshold interval is 1 to 4. The initial state 60×60 has a low density (0.01) of non-zero
cells. (a) the emergent pattern, and (b) the pattern with the 3 most frequent iso-groups filtered,
showing structures that resemble glider-guns.

Enter R in secton 16.1 to initiate a reaction-diffusion rule with the full rule-table — rcode
(sections 13.8, 13.8.2 and figure 13.5). Then set the threshold interval as described in section
13.8.3. Reaction-diffusion rules are isotropic[56], because they are basically totalistic, depending
on just totals of values in the neighborhood, so can be transformed to iso-rules without loss of
information, — enter R in section 16.4.1.1 (see also section 13.8.2. The example in figure 16.26
shows the emergent pattern iso-groups filtered by means of the iso-rule IFH (section 31.5).

Section 14.2.1 describes an alternative method for reaction-diffusion from outer-kcode, which
allows greater [v, k].

16.13 Repeating the last rule
not for the iso-rule

If p is selected in section 16 (for a single rule — not part of a rulemix), the last rule that was
set for the given [v, k] is repeated by automatically loading the “last rule” file with the same v, k
and rule type parameters (section 16.15). The file would have been automatically saved when the
last rcode, kcode or tcode was selected. Once selected, the repeated rule is presented again as
bits/values (section 16.4), where it can be reconfirmed or amended.

In a rulemix, where a sequence of rules is entered by hand (see section 14.6), the “last rule”
file is not relevant — selecting p repeats the previously entered rule from RAM. For a k-mix the
last rule with the current k is repeated.

193

16.14 Load/Save a single rule

If load-l is selected in section 16, file-f in section 16.4.1, or load/save-l/s for an iso-rule in
section 16.10.4, a top-right filing prompt (section 35.3) is presented allowing a single rule to be
loaded or saved as a binary file in DDlab’s encoding (section 16.16). For file-f in section 16.4.1
there is an intermediate prompt load/save-l/s ASCII-L/S — the ASCII choice is covered in
section 16.22.

Default binary filenames are myrul vv.rul for rcode, myrul vv.isr for an iso-rule,
myvco vv.vco for kcode, and mytco vv.tco for tcode — for example myrul v2.rul if the value-
range v=2. If successfully loaded, the rule is presented again as a bit/value pattern (section 16.4)
where it can be reconfirmed or amended. Both the value-range v and neighborhood size k in the
file must be the same as in the base setup. If not, error messages are displayed in a top top-right
window as follows,

current-v not equal to file-v

file-v(3) != base-v(2), can’t load, not loaded! cont-ret: (for example)

current-k not equal file-k

file-k(3) != base-k(5), can’t load, cont-ret: (for example)

However, a single rule file can be loaded at a give position in mixed rule network provided
file-k ≤ base-k — enter v from the wiring graphic, section 17.4.

16.15 Automatic saving of last rule
not for the iso-rule

After a single rule has been set, it will be automatically saved as the “last rule” of that rule type,
with a different filename for rcode, kcode or tcode, and [v, k]. The “last rule” filename has the
following format: l vxky.ext where the extension is .rul for rcode, .vco for kcode and .tco for
tcode, for example, l v4k5.rul.

16.16 Single rule file encoding

The binary file defining a single rule is encoded16 starting with 2 leading bytes as follows: Byte 0
= value-range v, byte 1 = neighborhood k. The rest of the rule-table size S (from 0 to S-1) is set
as bits in successive bytes.

S depends on the rule type, v and k as follows:

16In the binary version of DDLab, the old style encoding started with the neighborhood k at byte 0. In the new
style encoding byte 0 is reserved for the value-range v, and subsequent bytes are displaced by one. Old style files
are nevertheless compatible for loading in the present version of DDLab.

See also the file encoding For the wiring/rulemix (section 19.3 and seeds (section 21.9).

194 CHAPTER 16. SETTING A SINGE RULE

rcode . . . S = vk

iso-rule . . . S depends on v, k, and the n-template, section 16.10.3.
kcode . . . S = (v + k − 1)!/(k!(v − 1)!)
tcode . . . S = v × k

The number of bits required for each rule-table output (vbits) is as follows:

v=2 . . . 1 bit (vbits = 1) as in the old binary version of DDLab.
v= 3 or 4 . . . 2 bits (vbits = 2)

v= 5, 6, 7, 8 . . . 3 bits (vbits = 3)

A single rule encoding therefore requires 2 leading bytes plus the rule-table bytes R, where

R =
⌈

S×vbits
8

⌉

bytes, the upper absolute value, minimum 1 byte.

16.17 Create a similar kcode with increased k
only for kcode in TFO-mode

example for v3k6 majority kcode example for analogous v3k7 kcode

Figure 16.27: The effect of inserting a random string within a v3k6 kcode majority rule to create an
analogous v3k7 kcode. The figures show space-time pattern snapshots from random initial states on
a 88×88 hexagonal lattice. Some aspects of the majority behavior are retained in k7. Note that there
are many possibilities for both examples — the actual kcodes are as shown in this section.

Enter k in section 16.1.2 to create and save a kcode with an increased neigborhood (k+) by inserting
a random string of the correct length centrally within the current kcode. This may preserve some
aspects of the original dynamics, as in figure 16.27. The following top-right prompt is presented,

create similar to k6 kcode and save, enter greater k(7-25): (if the current k=6)

The two rules are printed in the terminal as shown below — the inserted random string of
length 8 is indicated.

195

k-code examples in figure 16.27

v_tablecodemax$[6]$=27

2222222220112001110001111000

v_tablecodemax_new=35 nhood_new=7

222222222011200200022001110001111000}

\

__ the inserted random string of length 8

The new string is automatically saved as the last kcode (l vxky.vco), for example l v3k7.vco,
which can be loaded with repeat-p after backtracking and re-selecting the new k. The program
reverts to the prompt in section 16.1.

16.18 Show the rule in the terminal

Select x in section 16.1 to show the rule data immediately in the terminal, and to present a
top-right prompt (section 16.18.3) for the rule data in more detail. For kcode, this includes a
further option to swap values (colors) to make an equivalent kcode (section 16.18.5). Note that
here there is no restriction on the size of the rule-table, for both hex and values strings.

16.18.1 Immediate rule data

Immediate rule data will appear in the terminal as in table 16.9 (including the cell index for a
rulemix),

rcode — for example

v3k3 rcodeSize=27

(hex) 02 2a 94 06 62 15 11

(rcode-table:2-0)

002022221100012120201110101

vfreq=8+9+10=27 ld=0.63 ld-r=0.944 zl=0.555556 zr=0.444444

kcode — for example

v3k5 kcodeSize=21

(hex) 00 12 81 51 89 15

(kcode-table:2-0)

001022001110120210111

vfreq=4+9+8=21

tcode — for example

v3k7 tcodeSize=15

(hex) 22 06 42 26

(tcode-table:2-0)

202001210020212

vfreq=6+3+6=15

Table 16.9: Examples of the immediate rule data in the terminal (xterm) for rcode, kcode and tcode.

16.18.2 Immediate rule data for a rulemix by hand

If a rulemix is being set by hand in section 14.6 (including a rule-subset, or outer-totalistic), enter x
in section 14.6.3 to show the immediate rule data for the last rule defined. The cell index will be
added to the data as in the example below,

196 CHAPTER 16. SETTING A SINGE RULE

k-code rulemix — for example

v3k3 kcodeSize=10 cindex=5

(hex) 02 64 28

(kcode-table:2-0)

0212100220

vfreq=4+2+4=10

16.18.3 Rule data in more detail — vertical layout

Simultaneously with the immediate rule data, a prompt is presented for more detail, showing in
particular how the neighborhoods and the neighborhood index relates to the rule-table outputs in
a vertical layout. For kcode there are additional options for a horizontal layout, and for a matrix
layout if the value-range v=3.

for rcode or tcode — for example
print rcode-table(S=19) to xterm (vert)-v: (or tcode-table)

for kcode — matrix-m if v=3 only — for example
swap values-s, print kcode-table(S-21) to xterm (vert/horiz/matrix)-v/h/m:

Enter v to show the rule-table details with a vertical layout – the same rules as in table 16.9.

rcode v3k3
26: 222 -> 0
25: 221 -> 0
24: 220 -> 2
23: 212 -> 0
22: 211 -> 2
21: 210 -> 2
20: 202 -> 2
19: 201 -> 2
18: 200 -> 1
17: 122 -> 1
16: 121 -> 0
15: 120 -> 0
14: 112 -> 0
13: 111 -> 1
12: 110 -> 2
11: 102 -> 1
10: 101 -> 2
9: 100 -> 0
8: 022 -> 2
7: 021 -> 0
6: 020 -> 1
5: 012 -> 1
4: 011 -> 1
3: 010 -> 0
2: 002 -> 1
1: 001 -> 0
0: 000 -> 1
\ \ \
\ \ outputs
\ neighborhoods
index

kcode v3k5
0: 0 0 5 -> 1
1: 0 1 4 -> 1
2: 0 2 3 -> 1
3: 0 3 2 -> 0
4: 0 4 1 -> 1
5: 0 5 0 -> 2
6: 1 0 4 -> 0
7: 1 1 3 -> 2
8: 1 2 2 -> 1
9: 1 3 1 -> 0
10: 1 4 0 -> 1
11: 2 0 3 -> 1
12: 2 1 2 -> 1
13: 2 2 1 -> 0
14: 2 3 0 -> 0
15: 3 0 2 -> 2
16: 3 1 1 -> 2
17: 3 2 0 -> 0
18: 4 0 1 -> 1
19: 4 1 0 -> 0
20: 5 0 0 -> 0
\ \ \
\ \ outputs
\ neighborhoods
index

tcode v3k7
14 -> 2
13 -> 0
12 -> 2
11 -> 0
10 -> 0
9 -> 1
8 -> 2
7 -> 1
6 -> 0
5 -> 0
4 -> 2
3 -> 0
2 -> 2
1 -> 1
0 -> 2
\ \
\ outputs
totals=index

Table 16.10: Examples of the vertical layout for rcode, kcode and tcode, with explanatory notes, for
the same rules as table 16.9.

16.18.4 Additional rule data options for kcode

For kcode only, there are two additional layout options at prompt 16.18.3: horizontal layout
(section 13.6.1) — enter h, and matrix layout which applies only if v=3 — enter m. The matrix
layout is clarified in section 13.6.2. The results in the terminal are shown in table 16.11,

197

kcode horizontal layout v3k5

2:544333222211111000000
1:010210321043210543210 --neighborhoods
0:001012012301234012345
|||||||||||||||||||||
001022001110120210111 --outputs

kcode matrix layout v3k5

1 1 1 0 1 2
0 2 1 0 1
1 1 0 0
2 2 0
1 0
0

Table 16.11: Examples of (left) horizontal, and (right) matrix, layout for the same kcode as table
16.10.

16.18.5 Swapping kcode values

Enter s in section 16.18.3 to swap pairs of values (colors) creating an equivalent kcode with equiva-
lent dynamics, so both attractor basins and space-time patterns would be equivalent, which requires
reordering the kcode as well as swapping values. The following top-right prompts are presented,

example for v=3

swap 2 values: enter first (0-2):1 (1 was entered, followed by)

first=1, enter second (0-2):2 (2 was entered)

The prompt then reverts back to section 16.18.3 – swap more pairs or enter return to
continue. In this v3k5 example, the original kcode is 001022001110120210111 from sections
16.18.1 – 16.18.4. The swapped kcode is shown in table 16.12 in some of the same layouts as can
be seen in the terminal. Figure 16.29 shows an example of the equivalent space-time patterns.

v3k5 kcodeSize=21

(hex) 01 a0 02 86 62 62

(kcode-table:2-0)

122000002201212021202

vfreq=9+4+8=21

2:544333222211111000000

1:010210321043210543210

0:001012012301234012345

|||||||||||||||||||||

122000002201212021202

2 0 2 1 2 0

2 1 2 1 0

2 2 0 0

0 0 0

2 2

1

Table 16.12: Swapped values 1 and 2 from the v3k5 kcode in sections 16.18.1 – 16.18.4. The swapped
kcode is shown in layouts from the terminal.

16.19 The rule window

When a rule is set or updated, or selected in the network-graphic (chapter 17), it is displayed in a
lower rule window. The rcode, tcode or kcode are also displayed if applicable, and TFO-mode is
indicated if current. Rule-tables are shown as bit/value patterns and in hex (as much as will fit),
and in decimal (if applicable). The window also gives v, k, rule types, network size, and for rcode
— details of the λ, P , and Z parameters, canalyzing inputs, and Post function data (if applicable).
This window is updated as rules are transformed or mutated. Examples of rule windows and their
data are shown in figure 16.28, and decoded in section 16.19.1. As much of the hex rule-table as
will fit will be shown17.

17Data in the rule window can be printed to the terminal (section 16.18) with no restriction on rule-table size.

198 CHAPTER 16. SETTING A SINGE RULE

full rule-table

full rule-table setting kcode, so both rcode and kcode are shown

kcode in TFO-mode and 2d

Figure 16.28: Rule window examples, images grabbed from the screen.

16.19.1 Decoding the rule window

The abbreviated headings in the first example of the rule window (figure 16.28) are explained below,

(the rcode — look-up table shown as a bit pattern)

v2k3 rcode(dec)186 (hex)ba (values shown are examples)

1d size=14 ld=0.625 ld-r=0.75 P=0.625 zl=0.75 zr=0.25 Z=0.75 C=1/3 **0 Post=A[0]i

key to data in the rule window

v2k3 . . . the value-range v and neighborhood size k.

rcode . . . the rule type, kcode or tcode is also shown if applicable.

1d size=14 . . . the network dimension and size for 1d, 2d or 3d would be shown thus
(for example) 2d size=40x40 or 3d size=20x20x20.

for a full rule-table (rcode) only

ld . . . the λ parameter [26].

ld-r . . . the λ ratio [38].

P . . . the P parameter.

zl . . . Zleft.

zr . . . Zright.

Z . . . the Z parameter.

C=1/3 . . . the number of canalyzing inputs, in this case 1 out a possible 3 (k=3).

**0 . . . shows exactly which of the k inputs are canalyzing (if none this is not
shown) — here there is 1 canalyzing input, at neighborhood index 0.

Post=A[0]i . . . Post-function data, shown only if the rule qualifies (section 14.12).

199

16.20 Complementary values

Figure 16.29: Space-time snapshots of 2d CA, with two equivalent v3k6 kcodes, with swapped values
1 and 2 (red and black). The initial state was a single central cell on a 40×40 square lattice. The
snapshot was taken at time-step 54.

Options to complement values apply to both rules and seeds, for example comp-m in sections 16.3,
16.4, 18.5.1, 21.4 and 21.4.3.

Transforming a value into its complement is simple for binary (v=2) – change 1s to 0s and
vice versa. For any value-range v the “complement” of a value in DDLab is defined as follows:
each value a is changed to its complement ac by subtracting a from the maximum value v − 1, so
ac = (v − 1) − a. This satisfies binary, and for any v the maximum value is the complement of
zero. For odd v this means that the “central” value does not change.

The values are therefore swapped as follows,

v=2 v=3 v=4 v=5 v=6 v=7 v=8

1 0 2 1 0 3 2 1 0 4 3 2 1 0 5 4 3 2 1 0 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

_/ ___/ \ _/ / \ ___/ / \ \ _/ / / \ \ ___/ / / \ \ \ _/ / / /

___/ _____/ \ ___/ / \ _____/ / \ \ ___/ / /

_____/ _______/ \ _____/ /

_______/

16.21 Transforming the single rule
not in TFO-mode

For full rule-tables (rcode) only, including kcode and tcode expressed as rcode, single rules that
have been set can be transformed in various ways. The rule’s equivalence class and rule cluster [38]
can also be shown in the terminal. Here is an example of the top-right prompt, though it will
vary according to context, presented once a single rcode has been selected,

200 CHAPTER 16. SETTING A SINGE RULE

transform rcode: solid-o invert-v comp-m neg-n ref-r, canal-C:
equiv greater k(3): (4-13), eff k-k (for example)

save/prtx: rcode/kcode-s/S/x/X EquivClass-E RuleCluster-R:

The various methods for transforming rules are described in chapter 18, and the prompt
may also be accessed from the wiring graphic (chapter 17), space-time pattern interrupt options
(section 32.16.1) and attractor basin complete options (section 30.5).

16.22 Saving/Loading a rule as an ASCII string

An ASCII rule file represents the rule as an ASCII value string *.tbl file (see Filing chapter 35),
and is useful for interchanging rules between DDLab and alternative software. It is different from
a binary rule file (section 21.9), There are a number of routes to save or load the rule-table as an
ASCII file,

ascii-v . . . at the first single rule prompt in section 16.1.1 or 16.1.2. This gives a top-right
prompt,

ASCII rcode-table (v=4 k=3 S=64) load/save-l/s: (or kcode, or tcode)

file-f . . . at the rule bits/values reminder window in section 16.4.1. This gives a top-right
prompt,

rcode (v2 k9 S=512) load/save-l/s ASCII-L/S (for rcode, otherwise kcode, tcode)

iso-file-f . . . at the rule bits/values reminder window in section 16.4.1.2. This gives a top-
right prompt,

iso-rule (v2 k9 S=102) load/save-l/s ASCII-L/S, hex-h (for an iso-rule)

When loading, if file-v is not equal to base-v, the following top-right notice is displayed,

file-v(8) != base-v(5), abort-q, load anyway-ret: (for example)

and if file-size is not equal to base-size, the following top-right notice is displayed,

file-size(512) != base-size(81), abort-q, load anyway-ret: (for example)

In either case, enter q to abort loading, or return to continue loading. Although the loading
prompt warns of a conflict between the file and base (value-range v, or table-size S) with an option
to abort, any ASCII file within DDLab’s naming constraints (section 35.1) with *.tbl extension
can nevertheless be loaded, so file-k can differ from base-k and there is no distinction between
rcode, iso-rule, kcode and tcode. As much or as little of a *.tbl file as will fit can be loaded,
starting at rule-table index zero. Any file-v greater than maxbase-v will be reduced to maxbase-v.

16.22.1 ASCII rule encoding

ASCII encoding for a rule *.tbl file (the same as for a seed *.see file)18 is as follows: the first
byte gives the value-range v, then a byte for each value at index 0 to S-1. For example, the ASCII
file, and the rule-table itself, for the majority rcode, v=4, k=3, S=64, are shown below

18The ASCII rule and seed encoding (*.tbl and *.see) are the same, so the a seed can be loaded into a rule and
vice-vera, provided the file-name extension is changed accordingly.

201

the ASCII file — 1+64 bytes
40000011002230333011311112121012301220121222203230023111333233333
the rcode-table itself — 64 bytes, shown numerically and graphically
3333323331113200323022221210221032101212111131103330322001100000

Chapter 17

Reviewing network architecture

This chapter describes ways of reviewing the network architecture by the following methods,

wiring matrix . . . shows the wiring (and rules if set) in a table or spread-
sheet format, where the wiring can be changed.

1d, 2d or 3d wiring graphic . . . the most powerful method for tailoring the wiring and
rules, and also seeing the details of the network.

Alternatively the network can be reviewed as a network-graph (section 20.5) or its adjacency-
matrix (section 20.19.1) — this does not allow changes to the underlying network, but the graph
can be unravelled by dragging nodes and components, and rotated, rescaled, and many other
manipulations performed. Default presentations include: circle, spiral, 1d, 2d and 3d.

The methods described in this chapter, the wiring matrix and wiring graphic, allow wiring and
rules, set in chapters 10 — 16, to be examined, changed, and tailored to requirements, including
biased random settings to predefined parts of the network. These are very flexible methods, and
for RBN/DDN its usually easier to set up a suitable dummy network initially, then tailor it here.

For any wiring graphic, new functions make use of the mouse pointer (section 17.5) — a mouse
click will reposition the active cell — the last two clicks will define the default corners of a block,
making it easier to explore and amend network wiring.

The 1d graphic has two alternatives. Wiring can be shown between successive time-steps, or
between cells arranged in a circle. Both 1d methods apply whatever the native dimensions of the
network. The 2d graphic can be applied to both 1d and 2d networks. For a 3d network, the wiring
graphic shows a simultaneous display in both 2d and a 3d isometric (2d+3d), where the 2d view
shows horizontal slices through the 3d network — “levels” stacked above each other, and provides
the surface for the mouse pointer.

17.1 The network architecture prompt
see also “Reviewing wiring” section 12.7

Once the wiring (chapters 11 or 12) has been set, or subsequently the rule or rules (chapters 14 or
16), and possibly transformed (chapter 18), a top-right network architecture prompt is presented.
The exact wording and options offered depend on previous settings. The prompt can also be

202

203

activated at later stages in DDLab, while drawing space-time patterns (section 32.16) or attractor
basins (sections 30.4, 30.5, 30.5.1).

The prompt (examples in section 12.7) starts as follows, showing default network sizes,

1d network (n=150), . . . (for a 1d network)

2d network (40x40), . . . (for a 2d network)

3d network (9x9x9), . . . (for a 3d network)

The first line of the prompt continues,

. . . wiring only - rules not set (if rules have not been set)

. . . review/revise/learn, wiring and rules (if rules were set)

The prompt continues as follows,

graph-g, matrix: revise-m view-M prtx-Mp
graphic: 1d+timesteps-1 circle-c 2d-2: (for a 1d or 2d network)
or
graphic: 1d+timesteps-1 circle-c 2d+3d-3: (for a 3d network)

For example, for a 1d network with rcode set, the prompt appears as follows,

1d network (n=150), review/revise/learn, wiring and rcode
graph-g, matrix: revise-m view-M prtx-Mp
graphic: 1d:timesteps-1 circle-c 2d-2:

options . . . what they mean

graph-g . . . for the network-graph (chapter 20), where network nodes and
connections can be rearranged and unravelled.

matrix: . . . the “wiring matrix” section 17.2

revise-m . . . for the network architecture in a spread-sheet type format, the wiring
matrix, where the wiring can be changed.

view-M . . . to view the wiring matrix and save matrix image as a vector PostScript
file 17.2.1.

prtx-Mp . . . to view as above, but also to print the wiring matrix in the terminal.

graphic: . . . the “‘wiring graphic” section 17.3

1d:timesteps-1 . . . enter 1 for a 1d wiring graphic where wiring is shown between succes-
sive time-steps, section 17.6, applies also to 2d and 3d.

circle-c . . . enter c for a 1d wiring graphic arranged in a circle, section 17.6,
applies also to 2d and 3d.

2d-2 . . . enter 2 for a 2d wiring graphic, section 17.7, applies also to 1d.

2d+3d-3 . . . enter 3 for the wiring graphic in 3d, and simultaneously in 2d in
successive horizontal slices, section 17.8.

204 CHAPTER 17. REVIEWING NETWORK ARCHITECTURE

17.2 The wiring matrix

Enter m or M in section 17.1 to show the network architecture in a spread-sheet type format,
the wiring matrix; M to see the matrix or save its image as a vector PostScript file; m to change
the wiring. The rules in a rulemix (if set) are also shown, as much as will fit; the wiring matrix
window, and fonts, can be re-sized. Examples are shown in figure 17.1. Rules cannot be changed
in the wiring matrix; this can be done in the wiring graphic (section 17.3).

As described in section 12.6, columns give the cell’s pseudo-neighborhood index, K (k-1,. . . ,0).
Rows give the cell network position, N (n-1,. . . ,0). The 0-0 grid (or the 0-minimum n grid if the
whole matrix does not fit within one window) is in the lower right hand corner. Each grid records
the position in the network x, (n-1,. . . ,0), to which the K’th wire of the N ’th cell is connected.

Note that positions N and x are 1d indexes, even if the network is 2d or 3d — sections 10.2.2
and 10.2.3 explain how to convert x to 2d or 3d coordinates, and vice versa. A column to the left
of the cell index shows the out-degree and out-degree histogram of each cell.

6. 5. 4. 3. 2. 1. 0.

7 9: 2 1 0 9 8 7 6

7 8: 1 0 9 8 7 6 5

7 7: 0 9 8 7 6 5 4

7 6: 9 8 7 6 5 4 3

7 5: 8 7 6 5 4 3 2

7 4: 7 6 5 4 3 2 1

7 3: 6 5 4 3 2 1 0

7 2: 5 4 3 2 1 0 9

7 1: 4 3 2 1 0 9 8

7 0: 3 2 1 0 9 8 7

The wiring matrix
of a 1d CA, v2k7,
n=10.

12. 11. 10. 9. 8. 7. 6. 5. 4. 3. 2. 1. 0. rcode(hex)

8 13: 12 12 5 12 11 8 3 7 13 2 63 1a 1d 5b b9 8f cb 31 83 c7 5f 95 ba d6 56 f3 3a d6 45 30 5c bd 39 4c 25 8b 5f 65 6e e0 8e 10

9 12: 0 2 11 12 6 7 3e 08 0d 12 1e 5f af 4c

6 11: 8 5 5 3 13 2 8 2 5 5 7 84 73 14 88 b6 05 9e f7 94 bc c7 98 0a 3a dc ef cd cc a1 c7 75 2c 03 f0 65 ff b0 62 83 19 4d 05

5 10: 8 13 12 4 4 2 e4 ef d7 0e 57 47 70 30

5 9: 2 9 4 3 6 ae 47 09 66

7 8: 4 7 0 11 4 4 5 3 6 7 2 bf 74 80 63 46 65 99 f9 f5 6a 58 e3 f4 14 83 23 be fc 94 41 60 7e c9 6f 3f 85 39 aa e3 60 58 41

9 7: 4 5 10 0 9 9e 68 79 04

7 6: 5 0 7 a8

11 5: 6 2 1 13 3 2 13 ee 3d e4 cf 28 e3 f6 0b 2c 4c 5f e8 c9 9a e8 f6

10 4: 1 6 12 0 10 0 6 7 10 7 10 12 7e ec 7d 46 1e 76 8a d2 64 6c 93 c8 89 3e 69 36 c2 30 d0 f6 40 49 da d6 b6 ef 48 97 95 e7 25 07

8 3: 8 12 2 9 1 5 3 1 13 7 b2 d5 06 58 4d 02 1f 59 18 93 54 ed b7 4f 4c 1b 1d 47 a9 1d 9c 07 ef 8d 9b d4 51 51 0e 7f 6f 6c

11 2: 0 6 0 4 9 2 8 11 1 10 6b 5b 9c cc ce 7a c1 93 e0 c7 6b 4e 25 9d 7c 09 78 2f 64 17 13 a8 d0 1c a7 92 fd 1a 55 85 7f c0

7 1: 5 1 12 3 4 5 13 4 1 11 3 13 11 84 bc 3c ca 3f 82 ad ec e2 47 b1 e5 de 9d 4a ae cc f4 05 fe 5e 2e da 3e 74 fa cf 9e bd cc 3b 4c

8 0: 8 9 0e

The wiring matrix for
a v=2 k-mix (k=2 to
13) with random wiring,
showing the rcode in hex
for each cell, as much as
will fit.

Figure 17.1: Wiring matrix examples. k-1,. . . ,0 indexes columns, n-1,. . . ,0 indexes rows. The column
on the left shows the “out-degree” of each cell, the number of wires leaving it, also shown as a
histogram. For a rulemix only (if set), rules are shown in hex, as much as will fit, in the right column.
For k ≤ 3, decimal rules are added. If the matrix was set with m in section 17.1, the wiring can be
set by hand as in a spread-sheet (section 12.6) and a rule in the active cell also appears in the rule
window (section 16.19). If the matrix was set with M in section 17.1, the matrix cannot be amended,
but there is an option to create a vector PostScript file, as in these figures.

205

17.2.1 Viewing the wiring matrix and creating vector PostScript

If M was selected in section 17.1, the wiring matrix is just displayed (enter m in section 17.2.2 to
also amend) together with the following top-right prompt,

if the matrix fits one window

PScipt-P layout-l font-f jump-(j=13-0) quit-q:

for a large matrix requiring a succession of windows, this example for a 2d network, 40x40

more-ret PScipt-P layout-l font-f jump-(j=1599-0) quit-q:

options . . . what they mean

more-ret . . . for a large network that requires more than one window, enter return
for the next section of the list, otherwise enter return to continue.

PScipt-P . . . enter P to save the matrix as seen in the matrix window to a vector
PostScript file. The default filename is my mxPS.ps (see chapter 36).

layout-l . . . enter l to change the matrix window width. The following top-right
prompt is presented, for example,

change window width (922-231 now=462):

Enter the new width in pixels within the limits indicated.

font-f . . . enter f to change the font size, a 3-way toggle between normal, medium
and small.

jump-j(1599-0) . . . enter a number within the limits indicated to jump directly to a given
cell index, which will become the first entry in the top row.

quit-q . . . enter q to revert to the network architecture prompt in section 17.1.

For DOS there is a further option: enter p to print the current matrix window, with printer
limitations as noted in section 5.6.3.

17.2.2 Amending the matrix
see also “Wiring by hand” section 12.6

Enter m in section 17.1, or h in section 12.3, to display the wiring as a matrix or “spread sheet”,
which allows filling in the wiring positions for each cell’s pseudo-neighborhood index. If m, the
wiring will have already been set in chapters 11 and 12, so all positions will be filled but can be
amended. If h, the matrix will start as a blank grid, to be set “by hand” (section 12.6) as in
figure 12.6. In both cases, the following top-right reminder is presented,

hand wire/revise:jump-j (for a 2d network, 40×40)
enter wiring positions 0-1599 (return on blank/0=random
move-arrows more/complete-m layout-l font-f quit-q

These options are also described in section 12.6 “Wiring by hand”, but this section assumes a
wiring matrix that has already been set — selected withm in section 17.1. Move around the matrix
with the left/right/up/down arrow keys. Enter the new position at the flashing green cursor and
complete the entry by moving to another grid with an arrow key or return. On zero, just return
gives a random position. A rectangle is drawn around any position covered. An entry outside the
network limits will be ignored.

206 CHAPTER 17. REVIEWING NETWORK ARCHITECTURE

Large networks may require several successive windows to display the matrix. Enter m to see
the next window. Moving beyond the top or bottom row in the current window with the arrow
keys or return also brings up the preceding or next window. return on the very last (bottom
right) entry makes the program continue. Enter j to jump to a new cell index, the following
prompt is presented,

jump to index (1599-0): (for a 2d network, 40×40)

Enter the new cell index, which will become the first entry in the top row. Options l or f
to alter the presentation of data and the amount visible in the matrix window are described in
section 17.2.1 above. Enter q to accept the wiring and revert to the prompt in section 17.1.

17.3 The wiring graphic

The wiring graphic is a diagram where the wiring and rules can be viewed, amended and reset by
flexible methods described in the rest of this chapter, including use of the pointer/click to select
the active cell and the corners of a “block” (section 17.5).

Note there is an alternative “network-graph” (section 20.5) with distinct drag/drop and other
interactive functions, which can be accessed from the wiring graphic, then the two can be toggled
(section .20.21).

To select a wiring graphic, enter 1, c, 2 or 3 in section 17.1 — described below,

options . . . what they mean
1d:timesteps-1 . . . for a 1d wiring graphic shown between successive time-steps.

circle-c . . . for a 2d wiring graphic shown between cells arranged in a circle.
2d-2 . . . for a 2d wiring graphic, which may also be selected for a 1d network.

2d+3d-3 . . . for a 3d wiring graphic which only applies to a 3d network.

Note the native dimensions of the network can differ from the dimensions chosen for the wiring
graphic. All 1d methods apply whatever the native dimensions of the network. The 2d graphic
can be applied to both 1d and 2d networks. However the 3d graphic only applies to a 3d network.
The display and amendments apply to the “active cell” or to a predefined block of cells.

t0

t1

|
cell 29

|
cell 0

 cell=14 wiring=13 2 28 18 6 outwires=4 links:bi=16 self=4=2.7%

Figure 17.2: The 1d wiring graphic showing the wiring between successive time-steps, k=5, n=30.
Each cell’s “outwires” are represented by the heights at time-step t1.. For data decode see section 17.9.

207

17.4 The wiring graphic reminder

A wiring graphic reminder of the options available appears in a top-right window at the same time
as the wiring graphic. The options vary between the 1d, 2d, and 3d wiring graphic but there are
also many similarities. Various context dependent options are presented for analyzing the network,
and amending the wiring or rule/s for a single cell, a group of cells — a ”block”, or for the network
as a whole1. The first line of the reminder shows the network dimensions and size. If rule/s have
not been set, the first line reads wiring only instead of wiring/rules and some options will be
missing. Note the new option graph-g to switch to the “network-graph” (section 20.5) and toggle
back and forth with wiring graphic (section .20.21).

As a consequence of possibly large network sizes in 2d and 3d, the default when defining a
block is to show just its edges, to speed up the graphics presentation for large blocks, but this can
be toggled to show the block in full as before with edges-G (sections 17.7.5 and 17.8.5). If a block
is active, the prompts show tog:block-a (instead of tog:all-a) and the block’s start-end (for 1d)
or opposite corner coordinates (for 2d or 3d) are shown instead of the coordinates of the active
cell, for example rewire 2d block 3,3-8,8: instead of rewire 2d cell 26,24:.

Examples of the 1d, 2d, and 3d wiring graphic reminders are shown below. Options in
green appear/apply for rcode and mixed-k only, and in red only after rules are set, with some
dependence on rcode and rule-mix.

1d time-step and circle wiring graphic — for 1d (can work for 2d or 3d)

1d (n=150) wiring/rules: move-arrows jump-j/mouse-click
one cell: right/left arrows, 15 cells: up/down arrows, PScript-P
block-b tog:all-a pseudo-p, in/out-i/o avZ-z hilght/Lrn-l/L
rewire 1d cell 74: untangle-u hand-h rnd-r/w/R special-s local:1d-1
graph-g change k=8(max 13)-k kill-K del-d rule: Save/rev/trans-S/v/t Derrida-D
file/data-f hist:In(k)/Out/Both-I/O/B, reset-q cont-ret

2d wiring graphic — for 2d (can work for 1d)

2d (40x40) wiring/rules: move-arrows, jump-j/mouse-click
exp/contr-e/c up/down-u/d tog:gaps-T gridcolor-! fill-W hex-x, PScript-P
block-b tog:all-a cell-links(1)-n pseudo-p index-i avZ-z hilght/Lrn-l/L
rewire 2d cell 26,24: hand-h rnd-r/w/R special-s local:1d-1 2d-2
graph-g change k=8(max 13)-k kill-K rule: Save/rev/trans-S/v/t Derrida-D
file/data-f hist:In(k)/Out/Both-I/O/B reset-q cont-ret

3d wiring graphic — with an active block

3d (20x20x20) wiring/rules: move-arrows, levels up/down-[/] jump-j/mouse-click
exp/contr-e/c/E/C up/down-u/d tog:gaps-T fill-W grid3d-x, PScript-P
block-b tog:block-a edges-G block-links(4)-n pseudo-p index-i avZ-z hilght/Lrn-l/L
rewire 3d block 2,2,2-7,7,7: hand-h rnd-r/w/R special-s local:1d-1 2d-2 3d-3
graph-g change k=6(max 13)-k kill-K rule: Save/rev/trans-S/v/t Derrida-D
file/data-f hist:In(k)/Out/Both-I/O/B, reset-q cont-ret

1Note that while interrupting incomplete attractor basins, though the wiring graphic can be accessed, any
options for changing wiring or rule/s are deactivated and do not appear in the prompt.

208 CHAPTER 17. REVIEWING NETWORK ARCHITECTURE

17.4.1 Wiring graphic options summary

The wiring graphic options activate as soon as the key is pressed (without return) — some have
secondary prompts. Below is just a brief summary roughly following the order in which the options
are listed in the reminders. More details are given in further sections in this chapter.

presentation options . . . what they mean

move- mouse-click . . . use the mouse pointer and click to reposition the active cell — the
last two clicks define the default corners of a block (section 17.5).
For 1d, 2d and 3d — see sections 17.6.2, 17.7.2 and 17.8.2.

move-arrows jump-j . . . use the arrow keys to move around the network and reposition the
active cell (or one level in 3d), or enter j to jump to a particular
cell index. For 1d, 2d and 3d — see sections 17.6.2, 17.7.2 and
17.8.2.

one cells: right/left arows . . . (1d graphic and circle only) to move left or right. (section 17.6.2).

15 cells: up/down-u/d . . . (1d graphic and circle only) to junp 1/10th left or right
(section 17.6.2).

up/down-u/d . . . (2d and 3d graphic only) to shift the 2d version of the 3d wiring
graphic to see the relevant part (section 17.8.9). Also works for
the 2d wiring graphic (section 17.7.8).

levels up/down-[/] . . . (3d graphic only) use the square braces, “[” for up, “]” for down,
to move between levels (section 17.8.2).

exp/contr-e/c . . . (2d and 3d graphic only) to expand or contract a 2d wiring
graphic (section 17.7.7), or the 2d version of the 3d wiring graphic
(section 17.8.8).

exp/contr-E/C . . . (3d graphic only) to expand or contract the 3d isometric
(section 17.8.8).

*PScript-P . . . to redraw and create a vector PostScript file of the current wiring
graphic (section 17.9.14).

block-b . . . define a block of cells in 1d, 2d or 3d, for resetting the wiring or
rules (sections 17.6.3, 17.7.5, 17.8.5).

tog: other grid toggle options . . .

gaps-T . . . (2d, and 2d view of 3d, graphic only) to toggle gaps between
cells. Eliminating gaps results in simple grid lines which may be
preferable, especially for a solid block of cells.

gridcolor-! . . . (2d, and 2d view of 3d, graphic only) to toggle the outline color
of cells in a block, between grey and black.

fill-W . . . (2d, and 2d view of 3d, graphic only) to toggle the color of cells
in a block, between red and white.

hex-x . . . (2d graphic only) to toggle between square and hex layout.

grid3d-x . . . (3d graphic only) to toggle grid lines on the 3d isometric
(section 17.8.7).

all-a . . . (block inactive) toggle showing the active cell on its own, or

209

the whole network (with caution for large networks). Combine
with n to see wiring with red links.

block-a . . . (block active) toggle showing the active cell on its own, or the
whole block (with caution for large networks). Combine with n
to see wiring with red links.

edges-G . . . (2d and 3d graphic only) toggle between block edges (the default)
and a full block. Combine with n to see wiring.

cell-links(1)-n . . . (2d and 3d graphic only — block inactive) a 5-way toggle for
alternative presentations of wiring relative to either the active
cell (or the whole network if set with all-a or block-a above).
For the active cell these options may be used with pseudo-p
below. (sections 17.7.3, 17.8.3).

block-links(4)-n . . . (2d and 3d graphic only — block active) a 5-way toggle for alter-
native presentations of wiring for the block, eitherjust its edges
or the full block set with edges-G. (sections 17.7.3, 17.8.3).

pseudo-p . . . (for the active cell) toggle to showing or omit the pseudo-
neighborhood.

index-i . . . (2d and 3d graphic only) Toggle the index numbers in the
pseudo-neighborhood. The numbers shown up if the scale is
large enough.

miscellaneous options . . .

in/out-i/o . . . (1d and circle graphic only) show the indirect inputs and out-
puts of past time-steps, the “degrees of separation” between cells
(sections 17.6.6, 17.6.7).

*avZ-z . . . (rcode-mix and/or k-mix) to calculate the average and weighted
average Z and λ parameters (section 17.9.2).

*hilght/learn-l/L . . . (rcode only) enter L to implement the learning, forgetting, high-
lighting functions. Enter l for only highlighting nodes in attractor
basins (chapter 34). When interrupting space-time patterns the
option is learn-L — highlighting does not apply.

rewire: options . . . shows the coordinates of the cell, or block if active.

untangle-u . . . (1d and circle graphic only) “untangle” the wiring of the cell,
block, or the whole network, and reset the rules for equivalent
dynamics (section 17.6.8).

*hand-h . . . rewire the active cell by hand (section 17.9.4).

*rnd-r . . . to randomly rewire the active cell or block, respecting any biases
set in special-s below. Note that for 2d and 3d, the maximum
reach is no longer limited by the shortest axis (section 17.9.5).

*rnd-w . . . as for rnd-r above, but if a block is active randomly rewire cells
outside the active block (section 17.9.5).

*rnd-R . . . For homogeneous-k, rnd-R gives unbiased random wiring, either
to a single cell or block as for rnd-r above. For mixed-k, rnd-R
will bias the wiring according to the k distribution in the k-mix,
allowing a power-law distribution of outputs as well as inputs
described in section 9.7.2 (section 17.9.5).

210 CHAPTER 17. REVIEWING NETWORK ARCHITECTURE

special-s . . . set “special” wiring biases, which can then be applied to the
active cell, or block (inside or outside) with rnd-r or rnd-w
above (section 17.9.6).

*local:1d-1 2d-2 3d-3 . . . set local CA wiring for the cell or block (section 17.9.7).

graph-g . . . to launch the “network-graph” (section 20.5) with its distinct
drag/drop and other interactive functions, and the ability to
toggle back and forth with wiring graphic (section .20.21).

*change k=8(max 13)-k . . . (rcode and k-mix set) change k up or down for the cell or block,
up to kLim (section 7.2).

*kill-K . . . (rule-mix set) kill or neutralize a cell by cutting all its links, both
inputs and outputs, except for one input to itself. The rule is also
reset for effective k=0 (section 17.9.9).

del-d . . . (1d networks, 1d or circle graphic only, k-mix, rcode set, in
main prompt sequence, active cell>0, not in TFO-mode) delete
a cell from the network, and shorten the network by one
(section 17.6.9).

rule:Save/rev/trans-S/v/t options . . .

*Save-S . . . save the rule for a cell,

*rev-v . . . revise or load the rule for a cell, and copy to a block
(section 17.9.10).

*trans-t . . . transform the rule or rules, set canalyzing inputs (section 17.9.11).

more miscellaneous options . . .

*Derrida plot-D . . . draw the Derrida plot for the network, described in chapter 22.

*file/data-f . . . filing, save and load the network architecture.

*hist:In(k)/Out/Both-I/O/B . . . show a histogram of the frequency distribution of inputs
(i.e. k), outputs, or both (i.e all connections) in the network.

*reset-q . . . backtrack to redisplay the network (section 17.1).

Options marked with an asterisk such as *rnd-r apply jointly for 1d, 2d and 3d networks —
most of these options are described further in section 17.9. Other options apply more specifically,
or uniquely, to a particular dimension – these options are described further in sections 17.6 for 1d,
17.7 for 2d, and 17.8 for 3d. Options in green appear/apply for rcode and mixed-k only, and in
red only after rules are set, with some dependence on rcode and rule-mix.

17.5 Wiring graphic, mouse pointer/click

New functions in the wiring graphic allow a mouse pointer/click to reposition the active cell, and
the last two clicks to define the default corners of a block. The active cell can still be moved
around with the arrow keys, or “jumped”, as before, but the mouse click method provides an
additional intuitive way to explore and amend network wiring. The pointer/click applies to all
wiring graphics, 1d time-steps or 1d circle layout (section 17.6), 1d as 2d or 2d square or hex
(section 17.7), and 3d where the pointer moves on the 2d version of the 3d network (section 17.8).

In Linux-like systems the usual North East pointer will change direction to North West if
within the active zone of the wiring graphic — for DOS the pointer will be confined within the

211

active zone. While inside the active zone, a small top center window gives a continual readout of
the network coordinates, for example for a 1d, 2d or 3d graphic,

i=1268 XXXXj i,j=34,17 xXXXj i,j,h=6,5,10 xXXj

17.6 Wiring graphic, 1d

Enter 1 or c in section 17.1 for a 1d graphic, which shows how a particular cell (the “active cell”),
or a predefined 1d block of cells, is wired in a 1d, 2d or 3d network.

If 1 is entered, the wiring is shown between two time-steps, from time-step t0 to t1, as in
figure 17.2 and elsewhere. Network cells at t0 are shown in a row above cells at t1, and the
out-degree of each cell is indicated by the height of the cell’s representation at t0 (the cell wiring
out-degree histogram).

If c is entered, the wiring is shown between cells, represented as nodes or radial lines, arranged
in a circle, as in 17.3 and elsewhere. The zero index is due east and increases clockwise. The cell
index is shown within each disc for networks smaller than about n=40. For networks greater than
about n=162, cells are shown as short radial lines. Each cell’s “outwires” are represented by the
length of radial lines outside each cell (the cell wiring out-degree histogram).

In both presentations, an option allows the pseudo-neighborhood to be omitted, showing just
direct links. The active cell is moved around the network with mouse pointer clicks or arrow keys,
and it’s possible to “jump” to a new location. The rule for the active cell appears in the rule
window described in section 16.19.

Sections 17.6.1—17.6.9 below explain some of the options specifically for 1d in more detail that
were summarized in section 17.4.1.

29

28

27

26

25
24232221

20

19

18

17

16

15

14

13

12

11

10
9 8 7 6

5

4

3

2

1

0

Figure 17.3: Examples of the 1d circle wiring graphic. Left: the same network as in figure 17.2, k=5,
n=30. Right: k=13, n=500. The “active” cell is repositioned by mouse pointer clicks or moved by
the arrow keys. Each cell’s “outwires” are represented by the length of the red radial lines outside the
circle. The cell index is shown for networks smaller than about n=40. For networks greater than about
n=162, the nodes themselves are not shown, but just the radial lines.

212 CHAPTER 17. REVIEWING NETWORK ARCHITECTURE

t0

t1

|
cell 149

|
cell 0

 cell=109 wiring=64 119 77 99 128 outwires=5 links:bi=11 self=7=0.9%

 cell=117 wiring=41 37 6 50 127 outwires=5 links:bi=11 self=7=0.9%

Figure 17.4: The 1d wiring
graphic, showing wiring to a
block of 11 cells, k=5, n=150.
Above: As time-steps. Left: As
a circle. The block was defined
from cell 60–80 and has random
wiring set with key r. The “ac-
tive cell” (109) is still visible, and
can be moved with a mouse click
or arrow keys as usual.

17.6.1 Data — 1d wiring graphic

Various data about the active cell’s wiring are shown below the 1d graphic. For example, in figure
17.2, a k=5 network, with mixed rules and nonlocal wiring, the data is as follows,

 cell=14 wiring=13 2 28 18 6 outwires=4 links:bi=16 self=4=2.7%

See section 17.9.1 to decode this data. The rule and rule data for the active cell are also shown
(if the rule/s have been set) in the rule window described in section 16.19.

213

t0

t1

|
cell 99

|
cell 0

 cell=49 wiring=27 65 21 outwires=2 links:bi=4 self=3=1.0%

 cell=59 wiring=86 42 95 outwires=3 links:bi=4 self=3=1.0%

Figure 17.5: The 1d wiring
graphic, showing the wiring
of the whole network, k=3,
n=100. If a block is not set, g
toggles the full wiring on and off.
In these examples, the pseudo-
neighborhood was toggled off
with p to show just the (black)
direct links to the active cell.
Above: As time-steps. Left: As
a circle.

17.6.2 Moving or jumping between cells, 1d

To move the active cell, position the pointer and click any mouse button, or use the arrow keys.
The left and right arrow keys move by one cell, the up and down arrow keys move by by n/10
cells for n > 20 or by 2 cells otherwise. Alternatively, enter j to jump to a specific cell index. The
following prompt is displayed,

jump to index (1295-0): (for example)

17.6.3 Defining a block, 1d

Enter b in section 17.4 to define a block of cells. The following top-right prompt is presented,

1d block-1, all-a, no block and single cell-def:
(then, if 1 is selected . . .)

1d block (0-150), first(def 60): second(def 80):

214 CHAPTER 17. REVIEWING NETWORK ARCHITECTURE

t0

t1

|
cell 15

|
cell 0

t0

t1

|
cell 15

|
cell 0

t0

t1

|
cell 15

|
cell 0

t0

t1

|
cell 15

|
cell 0

15

14

13
12

11

10

9

8

7

6

5
4

3

2

1

0

(a) random wiring
pseudo-n’hood

15

14

13
12

11

10

9

8

7

6

5
4

3

2

1

0

(b) random wiring
direct

15

14

13
12

11

10

9

8

7

6

5
4

3

2

1

0

(c) CA wiring
pseudo-n’hood

15

14

13
12

11

10

9

8

7

6

5
4

3

2

1

0

(d) CA wiring
direct

Figure 17.6: Examples of the 1d wiring graphic, k=5, n=20. (a) and (c) include the pseudo-
neighborhood, (b) and (d) show just direct wiring, toggle between with p. (a) and (b) have random
wiring, (c) and (d) have their wiring changed to 1d CA by entering 1. The same wiring inputs to cell
7 are shown: Top Row: as time-steps, Bottom Row: as a circle.

Enter 1 to define the block, a to define the whole network as a block. If 1 is entered, a
subsequent prompt is presented for the first and second cell indexes delimiting the block. The
defaults correspond to the indexes of the last two mouse clicks. Enter return to accept a default,
or enter any required index.

The wiring of all the cells in the block will be shown in the graphic as direct links, colored light
red. The active cell will still be visible and can be moved as usual. For a 1d network shown in 2d,
the prompt is as described in section 17.7.5

An active block is indicated in the wiring graphic reminder (section 17.4) for example,

rewire 1d block 60-80: . . .

To deactivate the block enter b in section 17.4, then return. If the block is active and visible the
following rewire options . . .

. . . untangle-u . . . rnd-r/w/R special-s local:1d-1
change k=8 (max 13)-k . . . (for example — rcode-mix set)

. . . will apply to just the block, not to the active cell if it is outside the block.
The following rule options apply to the active cell, but if the block is active and visible the

new rule can then be copied to the block (section 17.9.10).

. . . rule:Save/rev/trans-S/v/t

215

17.6.4 Toggling the block, 1d

Enter g in section 17.4 to toggle the active block, making it either visible or invisible, without
deactivating it. Note that options in section 17.6.3 affect a block only if it is both active and
visible. If no block is active, toggling with g just shows the wiring in the whole network.

17.6.5 Include the pseudo-neighborhood, or direct wiring only, 1d

The default wiring representation for the active cell includes the pseudo-neighborhood. Alterna-
tively just the direct connections may be shown, always the case for a block. Enter p to toggle
between the two (figure 17.6).

17.6.6 Recursive inputs to a cell, 1d

Enter i in section 17.3 to show all recursive inputs to a cell, whether direct or indirect, showing
the “input degrees of separation” between cells. This will include inputs to inputs, and so on,
relative to past time-steps, showing the potential upstream influence on the cell from past network
dynamics. This is shown in the direct wiring format (section 17.6.5).

Initially, just the wiring from the previous time-step appears, with the following prompt
displayed in the top-left hand corner of the wiring window,

step 1, inputs=2/100, step-s all-def: (for a k=2, n=100 network)

Enter return to generate all inputs in one go. Enter s to show the inputs in steps, by entering
return, or enter q to quit early. In both cases, inputs that relate to different past time-steps are
shown in different colors (cycling through about 7 colors). A small insert in the top-right hand
corner of the wiring window graphically indicates the fraction of cells connected by inputs so far.

Intermediate prompts show the number of inputs so far, for example,

step 4, inputs 27/100=27% cont-ret: (values shown are examples)

Once all possible input cells have been found, the following prompt appears in the top-left hand
corner of the wiring window,

step 12, inputs 80/100=80% complete (values shown are examples)

Enter return to reactivate the main wiring reminder (section 17.4) and revert to the normal
wiring graphic functions.

17.6.7 Recursive outputs from a cell, 1d

Enter o in section 17.4 to show all recursive outputs from a cell, whether direct or indirect,
showing the “output degrees of separation” between cells, the converse of of recursive inputs in
section 17.6.6. This will include outputs from outputs, and so on, relative to future time-steps,
showing the potential influence from the cell on future network dynamics downstream.

Initially just the immediate wiring outputs (if any) will be shown from t0 to t1. The number
of these outputs may be less than that shown as “outwires” in the 1d wiring window data
(section 17.6.1) because there may be duplicate output wires which are only counted once. The
following prompt is displayed in the top-left hand corner of the wiring window,

216 CHAPTER 17. REVIEWING NETWORK ARCHITECTURE

Figure 17.7: Recursive inputs (direct and indirect) to a given cell for a k=2, n=100 RBN.
Above: As time-steps. Below: As a circle. Firstly, inputs are shown after 4 backward steps with 27
cells reached. Secondly, the complete inputs are shown after 12 backward steps with 80 cells reached.
A small 2d insert in the top-right hand corner of the wiring window graphically indicates the fraction
of cells connected so far.

step 1, outputs=2/100, step-s all-def: (for a k=2, n=100 network)

Enter return to generate all outputs in one go. Enter s to show the outputs in steps, by
entering return, or enter q to quit early. In both cases, outputs that relate to different future
time-steps are shown in different colors (cycling through about 7 colors). A small insert in the
top-right hand corner of the wiring window graphically indicates the fraction of cells connected by
outputs so far.

Intermediate prompts show the number of outputs so far, for example,

217

Figure 17.8: Recursive outputs (direct and indirect) from a given cell for a k=2, n=100 RBN.
Above: As time-steps. Below: As a circle. Firstly, outputs are shown after 4 forward steps with 27 cells
reached. Secondly, the complete outputs are shown after 8 forward steps with all 100 cells reached. A
small 2d insert in the top-right hand corner of the wiring window graphically indicates the fraction of
cells connected so far.

step 4, outputs=27/100=27% cont-ret: (values shown are examples)

Once all possible output cells have been found, the following prompt appears in the top-left
hand corner of the wiring window,

step 8, outputs=100/100=100% complete (values shown are examples)

Enter return to reactivate the wiring graphic reminder (section 17.4) and revert to the normal
wiring graphic functions.

218 CHAPTER 17. REVIEWING NETWORK ARCHITECTURE

| |

random wiring, wires cross

| |

untangled random wiring

Figure 17.9: Untangling the wiring: wire connection points to the 1d pseudo-neighborhood for the
active cell are rearranged so that the wires do not cross, and the rcode (if set as part of a rulemix) is
automatically transformed to give equivalent behavior. In TFO-mode there is no need to transform the
rule. In this example k=12, n=50.

17.6.8 Untangling the wiring

Enter u in section 17.4 to “untangle” the wiring for the active cell, for the defined block if visible,
or for all cells in the network, so that wire connection points to the pseudo-neighborhood (when
shown in 1d) do not cross each other (figure 17.9) — the wiring positions in the network itself are
unchanged. This option applies in the 1d wiring graphic (for 2d and 3d networks as well as 1d)
but the effect is best seen in 1d time-steps rather than the alternative circle presentation.

The following top-right prompt is presented,

untangle 1d wiring: all-a, single cell-(def): (for the active cell)

or if a block is active and visible
untangle 1d wiring: block 11-22, all-a, single cell-(def): (for example)

If an rcode-mix was set, rules are transformed for equivalent dynamics2. For a single rcode
network (section 14.1) the wiring will be untangled, but the rcode will remain unchanged — to get
around this, set the rcode-mix where all the rules are the same (section 14.4.3).

Note that in TFO-mode there is no need to transform rules when untangling because changing
the connection points of wires to the pseudo-neighborhood has no effect on dynamics.

17.6.9 Deleting a cell
(1d networks, 1d or circle graphic, k-mix, rcode set, in main prompt sequence, not in TFO-mode)

Enter d in section 17.4 to delete the active cell from the network and shorten the network by one
cell, which automaticaly rewires the network and updates the 1d or circle graphic. The active cell
must not be at index zero.

This option is only available in the main prompt sequence, not while interrupting space-time
patterns or attractor basins. Backtrack to the main prompt sequence if necessary. In addition, the
base network itself must be 1d and have mixed-k, with rcodes set (so not in TFO-mode). When a
cell is deleted, all its links, both inputs and outputs between the cell and other cells, will be cut,
and cell indexes greater than the deleted cell will be reduced by one.

2If the order of the k inputs in the pseudo-neighborhood is changed, the rcode is transformed to achieve identical
behavior. Thus there are k! equivalent pseudo-neighborhood orders and corresponding rcode.

219

17.7 Wiring graphic, 2d

Enter 2 in section 17.1, for the 2d graphic. This shows how a particular cell (the “active cell”),
or a predefined 2d block of cells, is wired in the 2d network (or in a 1d network presented in 2d).
The 2d graphic can be expanded and contracted, and shifted up and down if necessary to see the
relevant part. The active cell is moved around the network with a mouse pointer/click or with the
arrow keys, and it’s possible to “jump” to a new specified location. The rule for the active cell
appears in the rule window described in section 16.19.

For 1d networks shown in 2d, the most reasonable i, j dimensions are automatically computed,
with i ≥ j (for n prime i = n, j = 1).

The display can be toggled between ‘direct wiring” and wiring to the pseudo-neighborhood
(section 17.7.4) as in figure 17.10. By default, “direct wiring” is displayed if the wiring is nonlocal,
and the pseudo-neighborhood for local CA wiring. Enter p to toggle between the two. A 5-
way toggle (enter n) alters the presentation of connections, and the cells connected, also useful
in visualizing blocks. The active cell is colored red, its pseudo-neighborhood yellow, the “actual
neighborhood” cells are colored green (figure 17.10).

Sections 17.7.1 — 17.7.8 below explain some of the options specifically for 2d in more detail
that were summarized in section 17.15).

19

19

0

0(a) pseudo-square

19

19

0

0(b) pseudo-hex

19

19

0

0(c) direct-hex

Figure 17.10: The 2d wiring graphic, n=20×20 RBN, k=13, with a central active cell. Toggle
with pseudo-p between wiring to the pseudo-neighborhood — the default for local wiring, and direct
wiring — the default for random wiring, as (b)↔(c) above. Toggle with toghex-x between square
and hexagonal layout and corresponding (default) neighborhoods (section 10.1.3 and figure 10.2), as
(a)↔(b) above. The “active” cell is repositioned by mouse pointer clicks or moved with arrow keys.

17.7.1 Data — 2d wiring graphic

As for the 1d wiring graphic, various data about the active cell’s wiring are shown at the foot of
the 2d wiring graphic. For example, for figure 17.10 the data is as follows,

2d cell=10,10=210 wiring=16,0 14,9 9,12 15,12 17,7 3,6 1,7 15,19 0,13 outwires=7 links:bi=37 self=10=0.3%

220 CHAPTER 17. REVIEWING NETWORK ARCHITECTURE

See section 17.9.1 to decode this data. The current cell, and cell input positions, are shown as
I, J coordinates. The rule and rule data are shown in the rule window (section 16.19).

17.7.2 Moving or jumping between cells, 2d

To move the active cell, position the pointer and click any moouse button, or use the arrow
keys. Alternatively, enter j to jump to a specific cell. The 2d cell position is specified by its I, J
coordinates. The following prompts are presented,

jump to coord I,J
enter I(19-0): enter J(19-0): (for a 2d network size 20× 20)

17.7.3 Alternative wiring presentation, 2d

A 5-way toggle allows alternative presentations of the active cell, or an active block. Enter
cell-links-n to toggle between the five alternatives, as shown in figure 17.11. For the active cell,
the 5-way toggle works both with direct wiring and with the pseudo-neighborhood (pseudo-p) in
section 17.8.4.

For a 2d block, the alternatives are shown in figure 17.13.

1. cell+inputs+links 2. cell+links 3. cell+inputs 4. cell only 5. links only

Figure 17.11: Toggling between 5 alternative ways of showing a cell, its inputs and connections, in 2d
with cell-links-n, starting with the initial block presentation 1 (cell+inputs+links).
Top Row: shows direct wiring. Bottom Row: shows the pseudo-neighborhood toggled on (with
pseudo-p, section 17.7.4). n=7×7 random (nonlocal) wiring, k=5.

17.7.4 Include the pseudo-neighborhood, or direct wiring only, 2d

By default, “direct wiring” is displayed if the wiring is nonlocal, and the pseudo-neighborhood is
displayed for local CA wiring. Enter p to toggle between the two as in figure 17.10, and between
the top and bottom rows of figure 17.11.

221

19

19

0

04. block only

Figure 17.12: The 2d wiring graphic showing a
block in full, i.e. a solid block as in the 1st edi-
tion of EDD. The new default presentation is to
show just the block edges as in figure 17.13, but
this can be toggled to show the solid block with G
(section 17.7.6). The active cell is shown here with
direct wiring — without its pseudo-neighborhood
(section 17.7.4).

17.7.5 Defining a block, 2d

Enter b to define a 2d block of cells. The following top-right prompt is presented3,

2d block-2, all-a, no block and single cell-def: (then, if 2 is selected . . .)

2d block (max 19,19) (for a 20× 20)

first corner (def 2,2) I: J:
second corner (def 5,5) I: J:

Enter 2 to define a block, a to define the whole network as a block. If 2 is entered, a subsequent
prompt is presented for the first and second set of coordinates delimiting the block. The defaults
correspond to the last two mouse clicks. Enter return to accept a default, or enter any required
value.

As a consequence of larger network sizes allowing larger blocks, for 2d (and 3d) the new default
presentation is to show just the block edges to speed up the graphics presentation (figures 17.13,
17.14), but this can be toggled to show the block in full (figure 17.12) as before, with edges-G
(section 17.7.6).

As long as a block is active and visible (toggle with g), the 5-way toggle block-links(x)-n
(section 17.7.3) applies to the block. The active cell will still be visible and can be moved, and its
pseudo-neighborhood toggled with p, as usual.

An active block is indicated in the wiring graphic reminder (section 17.4),

rewire 2d block 2,2-5,5: . . .

To deactivate the block enter b in section 17.4, then return. If the block is active and visible the
following rewire options . . .

. . . rnd-r/w/R special-s local:1d-1 2d-2
change k=9(max 13)-k . . . (for example — rcode-mix set)

. . . will apply to just the block, not to the active cell if it is outside the block.
The following rule options apply to the active cell, but if the block is active and visible the

new rule can then be copied to the block (section 17.9.10).

. . . rule:Save/rev/trans-S/v/t

3For a 2d network shown in 1d, the prompt is as shown in section 17.6.3

222 CHAPTER 17. REVIEWING NETWORK ARCHITECTURE

19

19

0

04. block only

Left: The 2d wiring graphic, just after a block was
set — defined by the lower right (2,2) and upper
left (5,5) coordinates, and showing just the block
edges — the default presentation. While visible,
the presentation of the block is subject to the 5-way
toggle with with block-links-n. The active cell be-
haves as usual apart from not responding to n, but
if the block is made invisible by toggling with g,
the 5-way toggle applies to the active cell (as in
figure 17.11) instead of the block.

5. links only 1. block+inputs+links 2. block+links 3. block+inputs

Figure 17.13: Toggling between 5 alternative presentations of a 2d block with block-links(x)-n, starting
with the initial block presentation-4 (block only). n=20×20 RBN, k=9. The active cell is still visible
and can be moved, and its pseudo-neighborhood toggled with p, as usual.

17.7.6 Toggling the block, 2d

If a block is active (section 17.7.5), enter block-g to toggle the block, making it either visible or
invisible, without deactivating it. Enter edges-G to toggle between showing just the block edges
(the default — figure 17.13) and a full or solid block (figure 17.12).

17.7.7 Expand/Contract the scale, 2d

The initial scale of the 2d wiring graphic is set automatically. Enter e to expand, c to contract
this default scale. The contraction step is usually one pixel, but continues (by × 0.9) until the
total image height is reduced to about 10 pixels. This allows for large 2d networks to be examined
as in figure 17.14, but the background grid will disappear with contraction less than 3 pixels.

17.7.8 Shifting the 2d graphic up and down

If only part of the graphic fits within the display area, it can be shifted up and down to see the
relevant part. This may be necessary for larger 2d networks, especially if they have been expanded
in section 17.7.7. Enter u or d to move the graphic up or down by 1/5 of its vertical dimension.

223

999

999

0

0

Figure 17.14: 2d wiring graphic,
1000x1000, showing a randomly con-
nected central cell, k=21.
A “block+inputs” is active, its lower cor-
ner located at 50,50 and upper at 700,700,
with just the block edges showing. Be-
cause the scale is less than 3 pixels, the
background grid of dots does not appear.
A randomly wired cell is shown at 500,500.

17.8 Wiring graphic, 3d

Enter 3 in section 17.1, for the 2d+3d graphic, where the network is shown simultaneously in 2d,
and a 3d isometric projection4 seen from below, as if looking up into a cage (figure 17.15). As in
2d, this shows how the active cell, or a predefined 3d block of cells, is wired in the 3d network.
The 2d view and the 3d isometric can be independently expanded and contracted.

The 2d view shows successive horizontal slices (levels), stacked above each other, with the levels
indicated. For larger networks the 2d view can be shifted up and down to see the relevant part.
Otherwise the 2d view behaves very much as the 2d graphic described in section 17.7.

The 2d view acts as a sort of canvas for manipulating active cell position and simultaneously
update on the 3d isometric. This is done with a mouse pointer/click, or with the arrow and square
bracket keys — [,] — for moving up and down between levels. There is also a “jump” option
to a new specified location. The rule for the active cell appears in the rule window described in
section 16.19.

As in the 2d wiring graphic, the display can be toggled between ‘direct wiring” and wiring to
the pseudo-neighborhood. By default direct wiring is displayed if the wiring is nonlocal, and to the
pseudo-neighborhood for local CA type wiring. Enter p to toggle between the two. A 5-way toggle
(enter n alters the presentation of connections, and the cells connected, also useful in visualizing
blocks. The active cell is colored red, its pseudo-neighborhood yellow, the “actual neighborhood”
cells are colored green (figure 17.16).

Sections 17.8.1 — 17.8.9 below explain some of the options specifically for 3d in more detail
that were summarized in section 17.4.1.

17.8.1 Data — 3d wiring graphic

As for the 1d and 2d wiring graphics, various data about the current cell’s wiring are shown at the
foot of the 3d wiring graphic (figure 17.15). See section 17.9.1 to decode this data. The current
cell position, and the actual neighborhood positions, are shown as i, j, h coordinates. The rule and
rule data are shown in the rule window (section 16.19).

4Perhaps more accurately — a 45◦ oblique projection seen from within.

224 CHAPTER 17. REVIEWING NETWORK ARCHITECTURE

Figure 17.15: An example of the 3d wiring graphic (i, j, h=20×9×9, RBN, k=7) as it appears on
the DDLab screen. The active cell includes its pseudo–neighborhood, and a block (1,1,1 to 11,6,8)
has be activated and its edges are visible. Rules have been set — the active cell’s rule appears in the
bottom panel. Left: the 2d view of the 3d network showing successive levels 0 to 9 stacked above each
other (expand/contract with e/c). Right: the network as a 3d isometric (expand/contract with E/C).
Foot: the wiring data. Top Right: the wiring graphic reminder.

17.8.2 Moving or jumping between cells, 3d

To reposition the active cell, click any mouse button with the mouse pointer on the 2d view.
Alternatively use the arrow keys and square bracket keys — [,] — for moving up and down
between levels. There is also a “jump” option, enter j to jump to a specific cell specified according
to the i, j, h coordinates.

The following prompts are presented,

jump to index I,J,H (this example for a 3d network size 20× 9× 9)

enter I(19-0): enter J(8-0): enter H(8-0):

Any change in the active cell on the 2d view will simultaneously update on the 3d isometric.

225

1. cell+inputs+links 2. cell+links 3. cell+inputs 4. cell only 5. links only

Figure 17.16: Toggling between 5 alternative ways of showing a cell and its connections in 3d
with n. Top Row: with direct wiring. Bottom Row: with the pseudo-neighborhood toggled on (with p.
n=7×7×7 RBN, k=7. These changes are seen simultaneously in the 2d view and the 3d isometric
(figure 17.15).

17.8.3 Alternative wiring presentation, 3d

A 5-way toggle allows alternative presentations of the active cell, or an active block. Enter n to
toggle between the five alternatives (figure 17.16) which appear simultaneously in the 2d view and
the 3d isometric (figure 17.15). For the active cell, the 5-way toggle works both with direct wiring
and with the pseudo-neighborhood (toggle with p section 17.8.4). The alternatives for a 3d block
are shown in figure 17.18.

17.8.4 Include the pseudo-neighborhood, or direct wiring only, 3d

As in 2d, by default, “direct wiring” is displayed if the wiring is nonlocal, and the pseudo-
neighborhood for local CA wiring. Enter pseudo-p to toggle between the two, as between the
top and bottom rows of figure 17.16.

17.8.5 Defining a block, 3d

Enter b to define a 3d block of cells. The following top-right prompt is presented5,

3d range-3, all-a, no block and single cell-def: (then, if 3 is selected . . .)

3d block (max 20,7,20) (for a 40× 40)

first corner (def 2,2,2) I: J: H:
high corner (def 5,5,5) I: J: H:

Enter 3 to define a block, a to define the whole network as a block. If 3 is entered, a subsequent
prompt is presented for the first and second set of coordinates delimiting the block. The defaults
correspond to the last two mouse clicks. Enter return to accept a default, or enter any required
value.

5For a 3d network shown in 1d, the prompt is as shown in section 17.6.3

226 CHAPTER 17. REVIEWING NETWORK ARCHITECTURE

4. (solid) block only

Figure 17.17: The 3d wiring graphic showing a block in
full, i.e. a solid block as in the 1st edition of Exploring
Discrete Dynamics. The new default is to showing just
the block edges as in figure 17.18, but this can be tog-
gled to show the solid block with G (section 17.8.6).
The active cell is shown here with direct wiring —
without its pseudo-neighborhood (section 17.8.4).

As a consequence of larger network sizes allowing larger blocks, for 3d (and 2d) the new default
presentation is to show just the block edges to speed up the graphics presentation (figures 17.15,
17.18, 17.19), but this can be toggled to show the block in full (figure 17.17) as before, with edges-G
(section 17.8.6).

As long as a block is active and visible (toggle with g), the 5-way toggle block-links(x)-n
(section 17.8.3) applies to the block. The active cell will still be visible and can be moved, and its
pseudo-neighborhood toggled with p, as usual.

An active block is indicated in the wiring graphic reminder (section 17.4),

rewire 3d block 2,2,2-5,5,5: . . .

To deactivate the block enter b in section 17.4, then return. If the block is active and visible the
following rewire options . . .

. . . hand-h rnd–r/w/R special-s local:1d-1 2d-2 3d-3
change k=7(max 13)-k . . . (for example — rcode-mix set)

. . . will apply to just the block, not to the active cell if it is outside the block.

The following rule options apply to the active cell, but if the block is active and visible the
new rule can then be copied to the block (section 17.9.10).

. . . rule:Save/rev/trans-S/v/t

17.8.6 Toggling the block, 3d

If a block is active (section 17.8.5), enter block-g to toggle the block, making it either visible or
invisible, without deactivating it. Enter edges-G to toggle between showing just the block edges
(the default — figure 17.18) and a full or solid block (figure 17.17).

17.8.7 Toggle 3d background grid

Enter grid3d-T to toggle the background grid on the isometric view, which is only visible when
the scale is 3 or more pixels (expand/contract with E/C).

227

4. block only

Left: The 3d wiring graphic, just after a block was set —
defined by the lower right (2,2,2) and upper left (5,5,5)
coordinates, and showing just the block edges — the de-
fault presentation. While visible, the presentation of the
block is subject to the 5-way toggle with block-links-n.
The active cell behaves as usual, apart from not re-
sponding to n, but if the block is made invisible by
toggling with g, the 5-way toggle applies to the active
cell (as in figure 17.16) instead of the block.

5. links only 1. block+inputs+links 2. block+links 3. block+inputs

Figure 17.18: Toggling between 5 alternative presentations of a 3d block(withblock-linksn, starting
with the initial block presentation-4 (block only). n=20×7×20 RBN, k=7. The active cell is still be
visible and can be moved, and its pseudo-neighborhood toggled with p, as usual. These changes are
seen simultaneously in the 2d view and the 3d isometric (figure 17.15).

17.8.8 Expand/Contract the scale, 3d

The initial scales of the 2d+3d graphic are set set automatically, but can be independently
expanded and contracted. Enter e to expand, c to contract the 2d view. Enter E to expand,
C to contract the 3d view. The contraction step is initialy one pixel, but continues (by × 0.9)
until the total image height is reduced to about 10 pixels. This allows for large 2d networks to be
examined as in figure 17.19, but the background grid will disappear with contraction less than 3
pixels.

17.8.9 Shifting the 3d graphic up and down

If only part of the 2d view of the 3d wiring graphic fits within the display area, it can be shifted
up and down to see the relevant part. This is necessary for larger 3d networks, especially if they
have been expanded in section 17.8.8.

Enter u or d to move the graphic up or down by about one level. Enter s to restore the default
start position.

228 CHAPTER 17. REVIEWING NETWORK ARCHITECTURE

49

48

47

46

Figure 17.19: 3d wiring graphic 100x100x100, showing a randomly connected central cell, k=27
(3x3x3). A “block+inputs” is active, its lower corner at 2,2,2 and upper at 47,47,47, with just the
block edges showing. Because the both the scale is less than 3 pixels, the background grids does not
appear. A randomly wired cell is shown at 50,50. Left: the 2d view shifted down with d (section 17.8.9)
to expose levels 46 to 49 revealing the top of the block. Right: the network as a 3d isometric.

17.9 Further options for the 1d, 2d and 3d wiring graphics

The following options which were marked with an asterisk in section 17.4.1 apply jointly to 1d, 2d
and 3d networks, and are described in the rest of this chapter, sections 17.9.1 to 17.9.14 below,

17.9.1 Decoding wiring graphic data — 1d, 2d and 3d

Various data about the active cell’s wiring are shown at the foot of the 1d, 2d and 3d wiring
graphic. For example,

for 1d cell=13 maxk=9 k=5 wiring=10 8 12 7 9 outwires=5 links:total=86 av-k=4.30 bi=7 self=5=5.8%

for 2d 2d cell=10,10=210 wiring=16,0 14,9 9,12 15,12 17,7 3,6 1,7 15,19 0,13 outwires=7 links:bi=37 self=10=0.3%

for 3d 3d cell=10,4,4=810 wiring=9,8,1-10,3,0-6,1,7-11,7,1-14,4,5-8,1,2-6,6,7-outwires=7 links:bi=60 self=20=0.2%

229

decode of wiring data
cell= . . . the active cell coordinates (1d, 2d or 3d) and the 1d cell index.
maxk . . . for mixed-k networks, shows the max-k setting.

k . . . for mixed-k networks, shows k for the active cell.
wiring . . . the inputs — network indexes (for 1d) or coordinates (for 2d or 3d) of cells

wired into the pseudo-neighborhood, ordered k − 1 . . . 0.
outwires . . . the number of output wires, how many wires from the network are

“plugged into” the active cell.
self . . . the number of self-links, or inputs that are also outputs, from the active cell.

bi-links . . . the number of cell pairs that have both inputs and outputs to each other.

The active cell’s rule, together with other details, (updated as the active cell is changed) are
displayed in the lower rule window at the foot the DDLab screen (section 16.19).

17.9.2 Computing the (weighted) average λ and Z parameters
rcode-mix and/or k-mix

This option applies once rcode-mix has been set in chapter 14 — rcode-mix is set by default for a
k-mix. Enter z in section 17.4 to calculate and display the average, and weighted average, λr and
Z parameters of the rules making up the rulemix. The data is displayed in a top-right window,
for example, for a 1d network n = 150, k-mix 3 to 7, and randomly assigned rules,

av:ld-r=0.839063 Z=0.63653
wt.av:ld-r=0.826438 Z=0.626692 cont-ret:

For random wiring and/or mixed-k networks, the weighted averages take account of the influ-
ence that each cell has on the network according to its proportion of the network’s out-wires, rep-
resented graphically by the height of cells at t0 in a 1d wiring graphic, for example in figure 17.4.1.
In networks with local wiring and no rulemix the weighted average equals the average.

17.9.3 Options for learning pre-images
rcode only — not in TFO-mode.

Enter L in section 17.4 to start the “Learning, forgetting, and highlighting” functions (chapter 34).
Learning/forgetting involves attaching/detaching sets of states as pre-images of a target state. For
attractor basins, enter l to just highlighting selected states.

Learning/forgetting usually requires both nonlocal wiring and a rulemix. Algorithms automat-
ically adapt the network’s wiring and/or rules to achieve the required transitions between states.
The results and side affects of learning can be seen most clearly in a basin of attraction field,
but the methods (allowing larger networks) also apply to a single basin, a subtree, or simply to a
space-time pattern running forward. For further details refer to chapter 34.

17.9.4 Hand rewiring

Enter h in section 17.4 to rewire individual wires for just the active cell by hand, which is rewired
in a way similar to that described in sections 12.6 and 17.2.2, but for the active cell only. A top-
right window displays the pseudo-neighborhood wiring connections as a 1d “spread sheet” with k
entries (figure 17.20), including the following reminder, for example,

230 CHAPTER 17. REVIEWING NETWORK ARCHITECTURE

Figure 17.20: Hand wiring a single cell from the 1d wiring graphic, n=150, k=13

hand rewire: use return or arrows to move
enter wiring position 0-149, q to complete (this example for a 1d network, size 150)

Note that the wiring position x is a 1d index, even if the network is 2d or 3d. To convert
between the index and coordinates see sections 10.2.2 and 10.2.3.

17.9.5 Random rewiring

Enter r in section 17.4 to randomly reset the wiring of the active cell, or of the block if defined
and visible. Enter w to randomly resets the wiring of the cells outside an active block, if the active
block is visible. Both r and w will respect the biases on random wiring (which include local CA
wiring) set in section 17.9.6 (see also section 12.5). Note that for non-square 2d networks and non-
cubic 3d networks, the random wiring, possibly within a local zone set in section 12.5.2, random
wiring is no longer limited to the shortest axis. Unbiased random wiring (for homogeneous-k) can
also be set with R.

2d 66×22, k=21 3d 66×10×22, k=27 (3×3×3)
Figure 17.21: For homogeneous-k, enter rnd-R for totally unbiased random wiring, ignoring any biases
set in section 17.9.6. The examples show wiring to the psuedo-neigorhood.

For a k-mix network, if R is entered, the wiring will be randomly reset, but biased by the
k distribution. That is, the probability of plugging wires into a cell with k inputs will be given by
P = k/T , where T is the total number of links in the network. so that cells with most inputs also
end up with the most outputs and vice versa. If a power-law distribution of the k-mix was set for
the network in section 9.7.2, entering R will rewire to give an approximate power-law distribution
of outputs (figure 17.22), creating a “scale free” network , said to be characteristic of many natural
and artificial networks, from metabolic networks to the world-wide-web [4]. The graph of such a
network is shown in figure 20.1.

17.9.6 Biased random rewiring

If special-s is selected in section 17.4 a series of options are presented in a top-right window that
allow a variety of restrictions or biases to the random wiring before it is set in section 17.9.5 above.
These biases apply to the active cell, or to the block (inside or outside) if defined and visible.

231

The special wiring options are fully described in section 12.5 (Special wiring, random) — they
differ to some degree between the 1d, 2d or 3d wiring graphics.

17.9.7 Local 1d, 2d or 3d wiring

If 1, 2 or 3 is selected in section 17.4 the wiring of the active cell, or block if defined and visible,
will be reset to local 1d, 2d or 3d CA-like wiring to the local neighborhood, with periodic boundary
conditions. For 3d networks, 1d, 2d or 3d local CA wiring applies. For 2d networks, 1d, 2d local
wiring CA applies. For 1d networks, only 1d local CA wiring applies. Note that CA wiring can
also be set as “random wiring” in section 17.9.6 above, allowing various biases to the CA wiring
as described in section 12.5.

17.9.8 Changing the neighborhood size, k
rcode-mix set only — not in TFO-mode

Given a rcode-mix (section 14.1), and irrespective of k-mix, enter k in section 17.4 to change the
neighborhood size k of the active cell, or of the block if active and visible. The following additional
prompt appears,

reset nhood size k (1-13): (if kLim=13)

The maximum k allowed is kLim (table 7.1), which may be greater than the actual max-k in the
network (section 9.10). The new wiring will preserve as much as possible of the old neighborhood
wiring. If k is increased, the wiring at the extra pseudo-neighborhood indexes is set as local 1d,
2d or 3d (depending on the network dimensions) with periodic boundary conditions.

For a homogeneous-k network, an individual cell or block may only have its k setting reduced.
The network will from then on be treated as a k-mix with max-k equal to the original value of k.

Changing k effects the highest pseudo-neighborhood indexes, which are either removed or
added. The original rcode (or part if k was reduced) is preserved. Any excess rule-table entries
are set to 0.

Note that k may also be increased from the transformation options (sections 17.9.11, 18.7.1)
giving a neutral transformation with equivalent dynamics.

17.9.9 Kill a cell
rcode-mix set only — not in TFO-mode

Enter K in section 17.4 to kill or neutralize the active cell6, or the block if active and visible, by
cutting all links, both inputs and outputs. The cell retains one input to itself, k=1, and the rcode
is set so the cell’s value stays constant, with effective k=0 (section 9.2). For v=2 the decimal
rcode is 2. The cell then has no influence on the network, which can be applied to model “gene
knockout”. Alternatively, the cell can serve as a constant unchanging input to other cells if they
rewire into it.

6For 1d networks, a cell can also be deleted entirely (section 17.6.9).

232 CHAPTER 17. REVIEWING NETWORK ARCHITECTURE

17.9.10 Revising and copying the rule
if rules are set

Enter v in section 17.4 to revise the rule of the active cell. Once the rule is revised, it can be
copied to a block. This option is intended for networks with mixed rules. For a single rule network
(set in section 14.1), i.e. without a rulemix, any revision applies to the whole network. Note that
a rulemix where all the rule are the same can be set up as described in section 14.4.3.

A secondary window is presented in the lower right hand corner of the screen, with rule selection
prompts. The various methods for revising and re-selecting rules are described in chapter 16.

If a block is active and visible, the rule can be automatically copied to all cells in the block
which have the same k as the cell in question. The following prompt is presented in a top-right
window, showing the block coordinates and their 1d equivalent indexes in brackets (section 17.2),
for example,

Copy rule to 33-55 -c: (1d)
Copy rule to 2d range 0,22-39,33 (880-1359)-c: (2d, 40×40)
Copy rule to 3d range 0,0,8-19,19,12 (3200-5159)-c: (3d, 20×20×20)

Enter c to copy the rule within the block, to all cells with matching k. Once set (and copied),
the new rule is displayed in the rule window (section 16.19).

To change a rule to one with a different neighborhood size k, first change k in the rewiring
window (section17.9.8), then change the rule.

17.9.11 Transforming the rule
rcode set only — more options rcode-mix — more options k-mix — not in TFO-mode

If t is selected in section 17.4, the rcode for just the active cell may be transformed in the various
ways described in detail in chapter 18. This option is intended for networks with rcode-mix or
k-mix. For networks with homogeneous rcode any revision applies to the whole network.

A top-right window is presented with the transformation prompts. The rule may be transformed
to equivalent or related rules. For example the rule may be complemented, or transformed to an
equivalent rule by negative or reflection transformations. Canalyzing inputs may be set or amended
for the active cell or the whole network as described in section 15. A k-mix allows more options
— neutral transformations to rules with greater k, or k reduced to “effective k” for the particular
cell or for the whole network.

The network may be “reverse engineered” by loading an exhaustive mapping of transitions
(section 18.7.4) and automatically generating the minimal mixed-k network that satisfies the
mapping, (i.e. reduced to effective-k), one solution to the “inverse problem”.

17.9.12 Filing, from the wiring graphic

Enter f in section 17.4 for the network filing options where it’s possible to save, and load networks
that fit into the “base”, thus to combine networks and create networks of sub-networks, described
in chapter 19. To load a network file, first set up a compatible or “dummy” network (section 19.4).
The complete network architecture, or just its wiring or rulemix, can be saved, and loaded into a
base network. The options vary according to the k-mix, rules set, and other constraints.

When a file is loaded, it is automatically treated as a block and located by a prompt, for
example in a 2d network,

233

2d:i,j=40,40, file: i,j=11,11, enter start coords (def 14,14, max 29,29, rnd-r)
I: J:

Enter the lower coordinates of the block, r for a random position, or return for a central
position. Once loaded the block becomes active with its edges apparent in the wiring graphic,
framing the whole graphic for a file/base of equal size.

Network data can also be printed to a file, to the xterm window for Linux-like systems, or to
a printer for DOS (section 19.6).

17.9.13 Link-histogram of the network’s k and output distribution

Enter I, O or B in section 17.4 to show a histogram of link frequency distribution. I gives the k
distribution — of inputs, O gives the output distribution, and B gives both the input and output,
i.e of all connections in the network. The k distribution can also be displayed from section 9.11.
Examples of power-law distributions are shown in figures 17.22. Random wiring without bias
would give a Poisson distribution as in figure 9.1.

The histogram plots each k or output (x axis), against its frequency in the network as a
percentage (y axis). The actual frequency, as a percentage and total, are shown under each
histogram bar. The following information and prompt is also shown,

k (input) distribution output distribution

both k and output distribution

Figure 17.22: Histograms of a power-law distribution of network links, (k) inputs, outputs, and both
combined. The power-law exponent was set to 2.0 in section 9.7.2 for a mixed=k network 40×40.
Random wiring was reset for the whole network withR (section 17.9.5), where outputs are preferentially
allocated according to k.

234 CHAPTER 17. REVIEWING NETWORK ARCHITECTURE

n=100 av-k=2.02 save/load-s/l cont-ret: (for example)

n is the network size which should equal the sum of all the frequency totals. av-k, av-out or
av-in-out is the average k, out-degree, or all links to a node.

Enter s or l to save or load the histogram data as a .his file (section 35.3). In both cases the
data appear in the xterm window (not for DOS), for example for figure 17.22 Top Left,

histogram: 1+13 columns

0 1015 254 113 64 41 29 21 16 13 11 9 8 6

17.9.14 Creating a vector PostScript file of the wiring graphic

Enter P in section 17.4 to save the wiring graphic image (1d, 2d or 3d) as a vector PostScript file
recording exactly what appears on the screen, including text data. The following top-right prompt
appears,

save wiring graphic to PostScript: greyscale-P color-p:

Select greyscale or color, then the filename — default my wgPS.ps. The complete wiring
graphic will be redrawn as the file is being created, for example, figures 17.4.1, 17.19, 17.21, and
others in this chapter, which were cropped with the methods described in section 36.1.

Chapter 18

Transforming rules
not in TFO-mode.

If not in TFO-mode, rule transformation options are automatically presented after a single rcode,
kcode or tcode has been set (section 16.21), and can also be selected from the following options,

• the wiring graphic, section 17.9.11

• space-time pattern interrupt options, section 32.16.1.

• attractor basin complete options, section 30.5

For totalistic rules the equivalent rcode expression of the kcode or tcode will be transformed.
If there is not a rulemix, transformations apply to the whole network. For a rulemix from the
wiring graphic, transformations apply to the active cell or a predefined block. When interrupting
space-time pattern or attractor basin, the required cell index is first selected with an upper-right
prompt, similar to the examples below,

enter cell index, 1599-0: (this example for 2d space-time patterns1, 40×40)
enter cell index, 11-0: (this example for an attractor basin, n=12)

The rcode may be saved at any stage as a *.rul file (chapter 19), and the transformed rcode
is displayed in the lower rule window. The transformation options include,

• inverting the rcode between two conventions for listing neighborhoods (section 18.3).

• various manipulations of the rcode table, including “solidifying” (section 18.4) and negative
and reflection transformations within equivalence classes and rule clusters [38] (section 18.5).

• setting or amending canalyzing inputs (v=2 only) (section 18.6).

• transforming the neighborhood2, equivalent rcode with greater k, or with smaller “effective-k”
(section 18.7).

• creating a network to satisfy an exhaustive mapping of transitions (v=2 only) (section 18.7.4).

• Showing Equivalence Classes or Rule Clusters in the terminal (section 18.5).

1Note that the cell index x is expressed as 1d, even if the network is 2d or 3d — sections 10.2.2 and 10.2.3
explain how to convert x to 2d or 3d coordinates, and vice versa.

2Transforming the neighborhood does not apply when interrupting space-time patterns (section 32.16.1) or
attractor basins.

235

236 CHAPTER 18. TRANSFORMING RULES

18.1 Options for transforming rules

Examples of the transformation options are show below. They vary according to the context3

depending on factors such as the rulemix, k-mix, and kmax. Any number of transformations may
be made cumulatively.

18.1.1 Transform options, single rule

For a single rule network, transformations apply to all cells in the network.

transform rcode: invert-v solid-o comp-m neg-n ref-r canal-C
equiv>k(3):(4-13), eff k(if k=3)

save/prtx: rcode-s/x EquivClass-E RuleCluster-R:
or if totalistic, kcode (or tcode)

save/prtx: rcode/kcode-s/S/x/X EquivClass-E RuleCluster-R:

18.1.2 Transform options, mixed-k

For a mixed-k network the transformation options are selected from the wiring graphic in
section 17.9.11. Then the first two lines of the prompt are . . .

transform rule: invert-v solid-o comp-m neg-n ref-r canal-C (all+a)
equiv>k(3):(4-7), max k-M, eff k: all-K this-k (if k=3 and kmax=7)

If k=kmax equiv>k. . . is omitted.
For v=2 only, and kmax = n and n ≤ 13, there is an additional option to load an exhaustive

map (.exh) file (see also section 29.8.1), which would have been saved previously in section 29.7.3,
so the second line of the prompt would start with . . .

exh map-e, . . .

18.1.3 Transform options, mixed rule, homogeneous-k

For a mixed rule network with homogeneous-k network, the “greater k” and “effective k” trans-
formations do not apply.

transform rule: invert-v solid-o comp-m neg-n ref-r canal-C (all+a)
save/prtx: rcode-s/x EquivClass-E RuleCluster-R:

Note that a mixed-k network may be set up where all rules and k’s are the same, allowing the
full scope of the transformations.

3Transformations which change the size of k are omitted while interrupting space-time patterns, and the trans-
formation prompt is deactivated altogether while interrupting incomplete attractor basins.

237

18.1.4 Transform all cells in a mixed rule network

For a single rule network, transformations described in sections 18.3 to 18.6 apply to all cells,
whereas for a mixed rule or mixed-k network, just the selected cell in the wiring graphic
(section 17.9.11) can be transformed, or all cells in the network.

To transform all cells, add a to the selection, i.e. enter va in section 18.3, oa in section 18.4,
ma in section 18.5.1, na in section 18.5.2, ra in section 18.5.3 and Ca in section18.6. Entering
Ca allows canalyzing inputs for the whole network to be reset as described in chapter 15.

Note that for a mixed rule or mixed-k network, all rules in a predefined block can be transformed
if invoking transformations from the wiring graphic (section 17.9.11).

18.2 Saving or printing the transformed rule

The transformed rule (rcode) is displayed in the rule window. Enter s at prompt in section 18.1.1
to save the rule (section 35.3), or x to print the rule in the terminal (xterm) for Linux-like systems.
If a totalistic rule was selected, S will save, and X will print, the totalistic version of the rule —
the kcode or tcode.

18.3 Inverting the rcode

The rcode-table (or any rule-table) can be expressed according to two alternative conventions,
where the output of the all-0s neighborhood is either on the left or right. In DDLab the all-0s
output is on the right (the least significant bit/value) and the all-max-value output is on the left
(sections 13.3, 13.5), so that a rule-table string can be expressed as a decimal number following
Wolfram convention [35] (if within the limits in section 16.6). Other conventions (e.g. [22]) follow
the opposite order.

Enter v (or va) at the prompt in section 18.1 to invert the rcode/s between the two conventions.
Effectively, the outputs of complementary neighborhood pairs in the rule-table are swapped. For
example (for k=5) the outputs of 00000 and 11111, or 00111 and 11000, etc. The example in
figure 18.1 shows a 1d v2k7 “density classification” CA rcode [22] inverted to the convention in
DDLab.

05040587 05000f77 03775583 7bffb77f feedffde c1aaeec0 eef000a0 e1a020a0

Figure 18.1: Transforming rcode: Left: the space-time patterns of a 1d density classification rule
from [22] does not appear as intended because the order convention is the opposite of DDLab’s.
Right: after the rule is inverted to DDLab’s convention the density rule behaves correctly. n=199,
v2k7. The same random initial state is used in both cases. The rule-tables are shown in hexadecimal.

238 CHAPTER 18. TRANSFORMING RULES

18.4 Solidifying the rule

If o (or oa) is entered at the prompt in section 18.1, the rcode/s will be changed to achieve the
following behavior. For binary (v=2) “on” (i.e. “1”) cells will remain on. For v ≥ 3 a cell with
the highest value (v-1) will remain on.

18.5 Equivalence classes and rule clusters

As described in [38], a binary 1d rcode4 has equivalent rcodes by three symmetry transfor-
mations, negative, reflection, and negative+reflection in either order (figure 18.2), described in
sections 18.5.2 and 18.5.3 below. The transformations make potentially four equivalent binary
rcodes — there may be fewer because a transformation may lead to identity. For example, the
rule-space of 256 v2k3 elementary rules [35] collapse into 88 equivalence classes, so only 88 proto-
type rules are required to fully describe rule-space behavior [38]. The rcodes are equivalent in the
sense that a transformed initial state will make equivalent transformed space-time patterns, and
attractor basins states are equivalent in the same way — their topology is identical.

Complementary transformations (section 18.5.1) will further group the rcodes into 48 rule
clusters [38] which share a number or properties, including in-degree, g-density and Z-parameter.

For v ≥ 3 there will in principle be more equivalent rules in an equivalence class by permutations
of values, but in DDLab at present the equivalence class size is still limited to 4 rules and the rule
cluster to 8 rules because the complementary (thus negative) transformations are not computed
exhaustively, but simplified as described in section 18.5.1.

Enter E or R to print the equivalence class or rule cluster in the terminal. Examples of
rule clusters are shown below. Starting with a rule, s=start, n=negative, r=reflection, nr=
negative+reflection, and complements are shown on the second line,

for (elementary) rcode 110, in decimal

s=110 n=137 r=124 nr=193

s=145 n=118 r=131 nr=62

for tcode 35, k=5, in decimal — n= and nr=identity so not shown

s=14 n=35

s=49 n=28

for a v3k3 rcode, in hex

s=160088268a45a9 n=10164204a22a85 r=1a24a4458a0289 nr=120a8216642481

s=14aa2284206501 n=1a9468a6088025 r=1086066520a821 nr=18a02894468629

For binary rules within the decimal rule limits (section 16.6) rcode is shown in decimal if k ≤ 3,
and kcodes/tcodes if k ≤ 5. Otherwise rules are shown in hex.

4The CA dimensions are in fact irrelevant, so equivalence classes and the resulting equivalent dynamics apply
to 2d and 3d as well as 1d.

239

rule 193 rule 124 (193n)

rule 137 (193r) rule 110 (193nr)

Figure 18.2: Equivalent transformations of the elementary rule v2k3 rcode (dec)193, giving (negative)
rule 124, (reflected) rule 137, and (negative+reflected) rule 110 (in either order). The initial state E
has also been transformed to En, Er, and Enr to produce equivalent space-time patterns — this is
done in section 21.4.2, where comp-m gives the complement or negative transformation for a binary
state, and flip-h (horizontal flip) gives the reflection.

18.5.1 Complementary transformation

If m (or ma) is entered at the prompt in section 18.1, the rcode (or rcodes) will be transformed
to its “complement”. For binary (v=2) this is done by flipping all entries in the rcode-table, 1 to

240 CHAPTER 18. TRANSFORMING RULES

0 and 0 to 1. For v ≥ 3 each entry a is changed to its simplified “complement” ac = (v − 1) − a.
See section 16.20 for a further explanation. A complementary rcode is usually not equivalent to
the original.

18.5.2 Equivalent rcode by the Negative transformation

If n (or na) is entered at the prompt in section 18.1, the rule will be transformed into its “negative”
equivalent rule, by swapping the outputs of complementary neighborhood pairs in the rule-table,
then transforming the resultant rule-table into its complement. A negative rule and the start
rule have equivalent dynamics, but with all state configurations in the space-time pattern comple-
mented.

Note that a negative transformation followed by a reflection transformation (section 18.5.3), or
vice versa (the order is equivalent) produces another equivalent rule, making 4 in all. For certain
rules the transformations result in identity.

18.5.3 Equivalent rcode by the Reflection transformation

If r (or ra) is entered at the prompt in section 18.1, the rule (or rules) will be transformed
into its equivalent rule by “reflection” (by swapping the outputs of pairs of asymmetric reflected
neighborhoods in the rule-table). A reflected rule and the start rule have equivalent, but reflected
dynamics.

Note that a reflection transformation followed by a negative transformation in section 18.5.2,
(or vice versa — the order is equivalent) produces another equivalent rule, making 4 in all [38]
(figure 18.2). For certain rules the transformations result in identity.

18.6 Setting canalyzing inputs, single rcode
see also chapter 15

If Ca is entered at the prompt in section 18.1 for a mixed rcode network, canalyzing inputs can
be randomly biased for the whole network as described in chapter 15

If just C is entered, canalyzing inputs may be amended for a single rcode, or for the active
cell in a mixed rcode network. A given number of the rcode’s k input wires may be set to be
canalyzing, either explicitly or at random. The following top-right prompt is presented.

canalyzing inputs: explicitly-e random-n:

18.6.1 Canalyzing inputs at random, single rcode

Enter n to set a given number of inputs as canalyzing at random (which can be reduced as well as
increased). The following prompt appears, enter the required number,

canalyzing inputs=0, set new number (0-5): (for k=5)

Once set, the prompt in section 18.6 will reappear.

241

18.6.2 Canalyzing inputs explicitly, single rcode

Enter e to set the canalyzing inputs explicitly, the following prompts appear in sequence,

wire (0-5): input value (1,0): output value(1,0): (for v2k5)

Enter the neighborhood index (wire) to be set as canalyzing, and the input and output
canalyzing values, v-1 to 0 (1 or 0 for binary). Once set, the prompt in section 18.6 will reappear.
Other inputs wires may be explicitly set as canalyzing, but the output must be the same as before
to preserve previously set canalyzing inputs (chapter 15).

18.7 Neutral transformations of the neighborhood k
not applicable when interrupting space-time patterns (section 32.16.1) or attractor basins

Options for neutral transformations of the neighborhood k allow k to be increased, or decreased
to find effective k, and rules are adjusted to conserve dynamics. These options apply from the
main series of prompts at the start, not when interrupting space-time patterns or attractor basins.

18.7.1 Equivalent rules with greater k

A rule with a given neighborhood size k has equivalent rules with any greater value of k. If k < kLim

(section 7.2), or k < kmax for a mixed-k network, then the options in section 18.1 includes a prompt
such as equiv>k (4-13), . . . (for example)

Enter a greater value of k, which will produce a new rcode — a neutral transformation for
1d networks5. Increasing k, for example from k3 to k5, k6, or more, results in rcode giving
identical dynamics to that of the original, but mutations of the larger rcode are finer grained, so
the transformation is useful for looking at close mutations of a given rcode, as in figures 28.3 and
28.4. Filtering space-time patterns with very complicated background domains may also require
neutrally increasing k, for example the k3 rcodes 110 and 54 to k5 (section 32.11.5, figures 32.26—
32.28).

For networks with a homogeneous rule the transformation applies to the whole network.
In mixed-k or mixed rule networks, the active cell in the wiring graphic (section 17.9.11), or a
predefined block, is transformed

An extra wire added to an even-k pseudo-neighborhood is added on the left, at the new k-1
index. An extra wire added to odd-k is added at index 0 (on the right) — the original connections
are retained and their indexes increased by one. Thus the original connections remain in the
enlarged pseudo-neighborhood. If more than one wire is added these steps are repeated. Rcodes
are transformed so that the added wires are effectively redundant and play no role in the dynamics6.
However, if the rcode is mutated the extra wires would come into play. Extra wires are connected
within the network as they would be in a 1d cellular automata.

18.7.2 Reducing kmax to the maximum k in the network

For mixed-k networks, kmax may be larger than the maximum k in the network. This may have
been deliberately set in section 9.10, or a network may have been loaded with a smaller kmax

5The algorithm is designed for 1d networks; for 2d and 3d the transformation is not neutral.
6Added wires can be neutrally reduced to effective k in section 18.7.3 to revert to the original wiring and rcode.

242 CHAPTER 18. TRANSFORMING RULES

than the base network (section 19.4.4). Enter M to reduce kmax to the maximum k found in the
network.

18.7.3 Effective k

The pattern of values in a rule-table may be such that some wires are redundant, playing no role
in the dynamics. An example is a rule that has been neutrally transformed with greater k, in
section 18.7.1 above. If k or K is entered at the prompt in section 18 and redundant wires exist,
the rule will be neutrally transformed to a rule with decreased k (to a minimum of k=1) by pruning
redundant connections and transforming the reduced rule-table appropriately.

For a single rule network, the effective k transformation applies to the whole network.
For mixed-k networks, if lower-case k is entered only the chosen cell in the network is transformed,
whereas if upper-case K is entered all cells will have their rules reduced to each effective k (to a
minimum of k=1). To make the effective k=0, see section 14.3.

If a mixed-k network was set up where kmax=n, an option is presented to load an exhaustive
mapping of transitions (section 35.3) and “reverse engineer” the network. An algorithm automat-
ically transforms the network to satisfy the mapping. The effective-k transformation may then
be applied to reduce the network back to its minimal k-mix. A further option allows kmax to be
reduced to the maximum k found in the network (section 9.10).

18.7.4 Reverse engineering - loading an exhaustive map

For a network where kmax = n and n ≤ 13, an exhaustive list of transitions, a random map,
that was previously created (section 29.8) may be loaded to “reverse engineer” the network by
transforming it to satisfy the mapping. This is a rudimentary solution to the inverse problem. At
present it is restricted to the case where all transitions are specified, and where kmax = n (the
network size), so n ≤ 13 because for rcode kmax=13 in DDLab.

The resulting dynamics, and attractor basins, will correspond to the mapping. The method
works in three stages, firstly the rules and wiring are transformed for a fully wired network where
k = n for all cells, then the effective k option (section 18.7.3) is implemented, followed by the
option, if required, to reduce kmax to the actual maximum k found in the network (section 18.7.2).

1. Enter e at the prompt in section 18 to load the mapping file and transform the network to
a fully wired network, which can be seen by pressing return and reverting to “Reviewing
network architecture, wiring and rules” (section 17).

2. Enter K to reduce the wiring to effective k (section 18.7.3). There will be a pause while this
is being computed.

3. Enter M to reduce kmax to the maximum k found in the network (section 18.7.2).

The result may be seen by reverting to “Reviewing network architecture, wiring and rules”
(section 17), and by generating attractor basins (section 30) to check that they are the same as
the basins for the network that was used to generate the exhaustive map.

Chapter 19

File/print network architecture

While the wiring graphic (section 17.4) is visible, the filing option f is available to save, load or
print network architecture, described in this chapter. The k-mix, rule scheme and wiring scheme
may be treated in isolation, or combined. Various compatibility issues apply for loading files
into a “base” network depending on the base properties. Broadly, a file network must fit into
the base network and kmax,file ≤ kmax,base — if so, networks with different dimensions can be
loaded into each other. When successfully loaded, a file network is automatically defined as a block
(sections 17.6.3, 17.7.5 or 17.8.5), with its wiring visible in the wiring graphic, where the block can
be separately manipulated. Any number of sub-networks can be loaded into the base network.

The ASCII data can also be saved, and printed in the terminal (xterm) for Linux-like systems.

19.1 Network filing options

While the wiring graphic is visible, Hit f (without return) in the “wiring graphic reminder”
(section 17.4) for the top-right network filing prompt. The prompt differs between homogeneous-k
(k-hom) and mixed-k (k-mix), and also depends on the context, where n/a signifies non-
applicable — two examples are shown below,

for homogeneous-k and mixed-rule networks
k-hom, rulemix, save/load/print:
wiring-only: print-pw, load-lw, save-sw
rulemix-only: print-pr, load-lr, save-sr
rulemix+wiring: print-pb, load-lb, save-sb:

for mixed-k networks — mixed-rules by default
k-mix, save/load/print: save kmix-k (just k-mix can be saved here, but not loaded1)

wiring-only: print-pw, save-sw
rulemix-only: n/a (rulemix+wiring applies instead)

rulemix+wiring: print-pb, load-lb, save-sb:

1The k-mix information is held as part of the wiring scheme and so is loaded with rulemix+wiring. Just the
k-mix may be saved by entering k, but the k-mix in isolation may only be loaded earlier in the program sequence
(section 9.4)

243

244 CHAPTER 19. FILE/PRINT NETWORK ARCHITECTURE

The following additional variations apply to the prompt,

• If rules were not yet set, no rules appears in the top line — rules-only and
rulemix+wiring are non-applicable.

• For a single rule network, no rulemix appears in the top line — rulemix-only and
rulemix+wiring are non-applicable. To avoid this, the single rule can be set as a rulemix
(section 14.4.3).

• For a k-mix, rulemix-only is non-applicable — rulemix+wiring apples instead.

Subject to these constraints, to save, load or print the network architecture enter two key
strokes as follows,

first option second option
p - to print w - for wiring
l - to load r - for rules
s - to save b - for both wiring and rules

For example, enter sw to save a wiring-only only file (.wso), sr for a rulemix-only file
(.rso), or enter lb to load a rulemix+wiring file (.wrs) which combines both wiring and rule
scheme. The k-mix is implicit in the wiring encoding (section 19.3.1).

19.2 Wiring/rulemix filenames

The binary files defining the wiring scheme (wiring-only), rule scheme (rulemix-only), or
wiring and rule scheme combined (rulemix+wiring) have the following filename extensions and
default filenames, where x is 2 to 8, the value-range v.

extension default filename
wiring-onlyw s my wso.w s

rulemix-onlyr s my rso x.r s for rcode
.v s my rso x.v s for kcode
.t s my rso x.t s for tcode

rulemix+wiringwrs my wrs x.wrs for rcode
.wrv my wrs x.wrv for kcode
.wrt my wrs x.wrt for tcode

19.3 Wiring/rulemix encoding

The encoding2 for all three file types above (section 19.2) starts with 6 bytes or 10 leading bytes
depending on the network size n, 6 lead bytes for “small” n≤65534, or 10 lead bytes for “big”
n≥65535. The leading bytes define v, k or kmax, n, (i, j) the axes of a 2d network, and (i, j, h)
the axes of a 3d network, where kmax = the maximum neighborhood size in a mixed-k network

2See also the file encoding for single rules (section 16.16) and seeds (section 21.9).

245

(for homogeneous-k, kmax = k), n is the network size. For a “small” network, n requires 2 bytes,
and (i, j) requires 1 bytes each. For a “big” network, n requires 4 bytes, and (i, j) requires 2 bytes
each. For 3d h is implicit in n and (i, j). The encoding proceeds as follows3,

byte 0 . . . value-range v, if byte 0=0 then old style encoding is
recognized.

byte 1 . . . the lower 7 bits=k or max-k for a k-mix. The highest
bit=1 indicates a k-mix, the highest bit=0 indicates
homogeneous-k.

byte 2,3 (“big” n byte 2,3,4,5) . . . network size, n.

byte 4,5 (“big” n byte 6,7 and 8,9) . . . [i, j] which gives the dimensions and axis sizes.
If i = 0 and j = 0 the seed is 1d. If both i > 0 and
j > 0 the seed can be either 2d or 3d. h = n

i×j
. If

h > 1 the network is 3d, otherwise 2d.

note axes limits . . . for “small” n max axes (i, j, h)≤255, for “big” n max
axes (i, j, h)≤65535. These limit are enforced when
setting the axes in sections 11.6 and 12.3.

The encoding continues as follows, for each successive cell index from 0 . . . (n − 1), where the
number of bytes encoding a rule-table, R, depends on the rule type, the value-range v and the
neighborhood k as specified in “Single rule file encoding” section 16.16 but without the 2 leading
bytes,

file type . . . bytes required

R: rulemix-only . . . R bytes, starting with the least significant bit/value in the rule-table.

W : wiring-only . . . W bytes:
W = 1× kmax if n < 255.
W = 2× kmax if n ≥ 255 and n<65535 i.e. “small”.
W = 4× kmax if n ≥ 65535 i.e. “big”.
This records the position of each input, indexed 0 . . . kmax−1 starting
with wiring index 0.

wiring+rules . . . The combined wiring-rule scheme, R followed by W .

19.3.1 Mixed-k encoding

For mixed-k networks, the k-mix is implicit in the wiring encoding. Where the actual k of a cell is
smaller than kmax, there will be excess bytes for rules and excess positions/bytes for wiring inputs
in the encoding in section 19.3 above. These excess bytes are filled as follows,

rules . . . excess bytes are initially filled with 0s, but may subsequently contain
obsolete values which are irrelevant.

3In the binary version of DDLab, the old style encoding started with 5 bytes. In the new style encoding byte 0 is
reserved for the value-range v, and subsequent bytes are displaced by one. Old style files are nevertheless compatible
for loading in the present version of DDLab. For single rule encoding see section 16.16 and for seed encoding see
section 21.9.

246 CHAPTER 19. FILE/PRINT NETWORK ARCHITECTURE

wiring . . . excess positions/bytes are filled with maximum values as follows:
with 255 (hex ff) if n < 255.
with 65535 (hex ffff) if n ≥ 255 and n<65535 i.e. “small”.
with 4294967295 (hex ffffffff) if n ≥ 65535 i.e. “big”.

Counting the number of positions/bytes not containing the relevant maximum values (255,
65535, 4294967295) is how the file keeps track of the k-mix. Note that k=0 is illegal, but an
effective k=0 can be set (section 9.2 and 14.3).

The k-mix can also be saved separately in a .mix file (section 19.5).

19.4 Loading networks and sub-networks

Once a base network is set up and visible as a wiring graphic (section 17.3), previously saved
network files, types wiring-only, rulemix-only and rulemix+wiring, can be loaded, either
to replace the base completely or to insert a sub-network positioned somewhere within the base
network. If successfully loaded the file network is automatically defined as a block (sections 17.6.3,
17.7.5 or 17.8.5), with its wiring visible in the wiring graphic — the block can be separately
manipulated. Initially the block’s wiring, whether local or random, will be self-contained, but can
be wired-in to the base network as in figure 19.4. Any number of sub-networks can be loaded into
the base.

t0

t1

|
cell 54

|
cell 0

Figure 19.1: Loading a 3d wiring-only file (3×3×3, k=6) into 1d CA base network (n=55, k=7). The
file appears in the 1d wiring graphic as a bock (section 17.6.3).

19.4.1 loading networks — compatibility

A valid file type in section 19.1 may be still turn out to be incompatible with the base network —
which becomes clear once the file is selected. The rules for compatibility between the base and file
network relate to value-range v, neighborhood k, network size n, and with edge sizes i, j, h in 2d
and 3d. The rules, exceptions, and other issues are described below (sections 19.4.1.1 to 19.4.1.4).

19.4.1.1 Compatibility with v

For compatibility with value-range, v, vfile = vbase is required. Otherwise a top-right error message
appears,

247

file-v(2) != base-v(3), can’t load, cont-ret: (for example)

An exception applies if loading wiring-only from a wiring graphic before rules have been set,
when v is irrelevant.

19.4.1.2 Compatibility with k

For compatibility with neighborhood k, kmax,file ≤ kmax,base is required. Otherwise a top-right
error message appears,

file-kmax(7) > base-kmax(6), can’t load, cont-ret: (for example)

If a wiring-only or a wiring+rules file with mixed-k is loaded into a homogeneous-k
base, the base will automatically be redefined as having mixed-k. Loading wiring-only into a
homogeneous-k base with rules set will truncate rule-tables where kfile < kbase.

An exception to kmax,file ≤ kmax,base applies if loading rules-only; in this case kfile = kbase
(both with homogeneous-k) is recommended. Loading a mixed-k file, or a file where kfile < kbase
is risky because kbase will remain unchanged — a smaller rule-table will simply overwrite the start
of a larger base rule-table giving unexpected results. Attempting this results in a top-right warning
message,

rulemix-only: loading kmix-file is risky, load anyway-l, abort-ret:
(or, for example)

rulemix-only: loading file-k(3) < base-k(5) is crazy, load anyway-l, abort-ret:

19.4.1.3 Compatibility with n

For compatibility with network size n, nfile ≤ nbase is required. Otherwise a top-right error
message appears,

file-n(150) > base netsize(100), can’t load, cont-ret: (for example)

An exception applies if loading a rulemix-only file, where both file and base have
homogeneous-k and kfile = kbase. In this case nfile > nbase will load as may rules as will fit.

19.4.1.4 Compatibility with edge sizes and dimensions

For compatibility with edge sizes i, j, h in 2d or 3d, its recommended that file coordinates fit within
the base coordinates — if so, as well as loading a file into a base with the same dimensions, lower
dimensions can be loaded into higher — the file coordinates are first reallocated with the higher
dimension, for example a 1d file network n=30 is treated as 2d i, j =30×1 or 3d i, j, h = 30×1×1,
a 2d file network i, j = 30×40 is treated as 3D network i, j, h = 30×40×1. A top-right warning
message will show incompatible dimensions,

file-j(40) > base-j(30), load anyway-l, abort-ret: (for example)

If l is entered to load anyway, the start position will be set in section 19.4.3 as if the base were
1d. This is also the case if loading higher dimensions into lower, which can be done as long as
nfile ≤ nbase. Loading in these ways results in a consecutive block, not the usual 2d or 3d block
in a 2d or 3d base, but the block can still be independently manipulated, as in figure 19.2.

248 CHAPTER 19. FILE/PRINT NETWORK ARCHITECTURE

14

14

0

0

14

14

0

0
Figure 19.2: Loading a 3d CA into a 2d CA.
Left: a small 3d DDN (i, j, h = 5×5×5, k=7) was saved as a rulemix+wiring file. Center: the 3d
DDN was loaded as a sub-network into the center of a 2d DDN (i, j = 15×15, k=9), with random
wiring confined to a 5 cell local zone (section 12.5.2). The sub-network is automatically defined and
visible as a block, but because the sub-network dimension is higher than the base, the block consists of
(1d) consecutive cells. When first loaded the sub-network is self-contained within its original boundaries
— the dynamics within the sub-network would be independent of the rest of the network, but not vice
versa.
Right: The result of resetting the sub-network block with confined random wiring by pressing r in the
wiring graphic reminder, section 17.4. This connects the sub-network to its surroundings. Note the
active cell, which can be moved anywhere.

19

18

17

16

1514

12

11

10

9

8

7

4
3

2

1

0

Figure 19.3: Loading a complicated sub-
network (n=10) with a rulemix, k-mix and
nonlocal wiring into a simple 1d CA (n=20).
To do this the CA is set up to have a rulemix
with just one rule. The figure shows the result-
ing network as a network-graph (chapter 20).

19.4.2 Loading a complicated network into a CA and vice versa

In general, to load a file network with a rulemix, the base also requires a rulemix. but this can be
confined to a limited number of rules, or just one rule. What if a complicated file network with
a rulemix, k-mix, and random wiring, (RBN or DDN) needs to be loaded as a sub-network into
a simple CA base network? In such a case (figure 19.3) the CA base network can easily be set
up where its single rule is treated as a rulemix (section 14.4.3). Uniform k can also be treated as
mixed-k (section 9.9), and local wiring as nonlocal (section 12.4.1), but neither is necessary.

Conversely, if a simple CA needs to be loaded as a sub-network into a complicated base network
with mixed rules, the CA should be set up and saved as a rulemix with one rule. To load a CA
into another CA, where their rules or k differ, both the base and the file should be have a rulemix
with one rule.

249

7

7

0

0

13

13

0

0

13

13

0

0

Figure 19.4: Loading a 2d CA into a larger 2d CA — showing a “solid” block “links only” (as in
figure 17.12).
Left: a small 2d hex CA (i, j = 8×8, k=6) was saved as a rulemix+wiring file.
Center: the CA was loaded as a sub-network into a larger 2d hex CA k=7 (i, j = 14×14, k=7),
positioned at coordinates I, J = 4,4 and automatically defined and visible as a block in the wiring
graphic. Because the CAs are both hexagonal, for correct wiring, j in both networks, and the position
coordinate J should be even. When first loaded the sub-network CA is self-contained with its original
periodic boundaries — the dynamics within the sub-network would be independent of the rest of the
network, but not vice versa.
Right: The result of resetting the sub-network block as 2d by pressing 2 in the wiring graphic reminder
section 17.4. This connects the sub-network (the block) to its surroundings — removing its periodic
boundaries. Note the active cell, which can be moved anywhere, showing its neighborhood.

19.4.3 Loading sub-networks in a set position

A file sub-network that is smaller than the base network, which can fit into the base network as
specified in section 19.4.1.4 can be loaded in a set position even if the dimensions of the file and
base network are not the same, as long as nfile ≤ nbase.

If the dimensions and edge sizes are equal, the file will be loaded without further ado, otherwise
prompts allow the file sub-network to be positioned in the base network (the default is a central
position).

For a 1d base, or if edge sizes do not fit, or higher dimensions are being loaded into lower and
load anyway-l is selected in section 19.4.1.4, prompt is as follows,

for 1d networks
1d: array length=150, length file=14, enter start pos (for example)

(def 68, max 136, rnd-r)):

For a 2d or 3d base, if edge sizes fit, the prompt is as follows,

for 2d networks
2d:i,j=66,66, file: i,j=10,10, enter start coords (for example)

(def 28,28, max 56,56, rnd-r)) i: j:

for 3d networks
3d:i,j,h=40,40,40, file:i,j,h=9,9,9, enter start coords (for example)

(def 15,15,15 max 31,31,31, rnd-r)) i: j: h:

250 CHAPTER 19. FILE/PRINT NETWORK ARCHITECTURE

8

7

6

5

4

3

2

1

8

8

0

0

8

7

6

5

4

3

2

1

8

8

0

0

Figure 19.5: Loading a small 3d DDN into a 3d DDN — showing the 2d+3d wiring graphic with and
block “edges” and “links only” (as in figure 17.18
Left: A small 3d DDN (i, j, h = 5×5×5, k=7) (the same as in figure 19.2) was saved as a
rulemix+wiring file, then loaded as a sub-network into the center of a larger 3d DDN (i, j, h =
9×9×9, k=7). When first loaded the sub-network is automatically defined and visible as a self-contained
block within its original boundaries — the dynamics within the sub-network would be independent of
the rest of the network, but not vice versa.
Right: The random wiring for the block was first confined to a 5 cell local zone (section 12.5.2), then
its wiring was randomised by pressing r in the wiring graphic reminder, section 17.4. This connects the
sub-network to its surroundings.

Enter the start coordinates for positioning index 0 of the file sub-network, return for the
default central position, or r for a permissible random position.

Any number of independent sub-networks can be loaded consecutively. The sub-network block
will be visible and active in the base wiring graphic, where it can be be wired-in or otherwise
manipulated. Deactivate/reactivate the block with g, cancel the block with b then return, in
the wiring graphic reminder (section 17.4). Sub-network can be wired into other sub-networks or
other parts of the network as described in chapter 17.

19.4.4 Loading k-mix networks

A k-mix network file can be loaded into a homogeneous-k (k-hom) or a k-mix base network provided
that the base max-k is at least as big as the file max-k (the precise base k-mix is not relevant).
A base max-k smaller than the file max-k results in the following error message,

file-kmax(5) > base-kmax(4), can’t load, cont-ret: (for example)

The max-k in a k-mix network file may be smaller than max-k in the base network. Max-k can
be reduced to the actual maximum k found in the network as described in section 18.7.2.

Note that only the combined network file, wiring and rules, can be loaded into a base network
with mixed-k. The combined file need not be a mixed-k file. To load “just rules” or “just wiring”
in section 19.1, the base network must have homogeneous-k.

251

Figure 19.6: Space-time snapshot of a 2d CA inside another 2d CA with different k. The 2d (80×80)
k=7 CA spiral-rule [48] (v3k7 kcode(hex) 020609a2982a68aa64), was loaded into the 2d (120×120)
k=6 complex CA which generates spiral structures (v3k6 kcode(hex) 020282815a0254). See also
figure 32.24.

19.5 Saving just the k-mix

Enter k in section 19.1 to save just the k-mix (see also section 9.11.3). A top-right filing prompt
appears to save a .mix file (default filename mymix.mix), which is encoded in n bytes, recording
the neighborhood size k for each cell (index 0 to n-1) in each byte. Information on the k-mix
is also implicit in the wiring-only (.w s) and rulemix+wiring (.wrs) files (section 19.3.1), so
usually the k-mix does not need to be saved separately. Loading just the k-mix from a .mix file is
only possible towards the start of DDLab (section 9.4).

19.6 Printing network data to the terminal or file

If p (followed by w, r or b as applicable) is selected in section 19.1, the following prompt is
presented,

for Linux-like systems
network text data: to xterm-p, file-f both-b: (printer-p for DOS)

Enter p to print the data to the terminal (xterm) in Linux-like systems, or to a printer in DOS.

252 CHAPTER 19. FILE/PRINT NETWORK ARCHITECTURE

Enter f to save the ASCII data to a .dat file, or b to print and save simultaneously. Before saving,
a top-right window will prompt for the file name (default my net.dat — section 35.3).

The way the data is presented depends on the selections w, r or b in section 19.1, mixed-k
or homogeneous-k, the type of rule, and if in TFO-mode. The data starts with two introductory
lines. The first shows the value-range, k or the k-mix, and the network dimensions i, j, h and size
n, for example,

v2k5, 1d n=7 . . . for v=2, homogeneous-k, 1d network
v3kmix(4-1), 2d 55 n=25 . . . for v=3, k-mix, 2d network 5×5
v2k4, 3d 6x6x6 n=276 . . . for v=2, homogeneous-k, 3d network 6×6×6

The second line is a reminder that labels the data and gives the data order, for example,

cell. wiring(3-0), rcode(hex) ld ld-r Z C A . . . for rcode
cell. wiring(13-0), kcode(hex) rcode(hex) ld ld-r Z C A . . . for kcode+rcode
cell. wiring(9-0), tcode(hex) rcode(hex) ld ld-r Z C A . . . for tcode+rcode
cell. wiring(5-0), kcode(hex) . . . for kcode in TFO-mode (or tcode)

label . . . what it means

cell . . . 1d index of the cell.

k . . . for a k-mix only, the neighborhood size k for the cell.

wiring(3-0) . . . wiring scheme of the pseudo-neighborhood in this case for 3,2,1,0 for k=4.

kcode . . . kcode in hex (if applicable).

tcode . . . tcode in hex (if applicable).

rcode . . . rcode in hex (if applicable) — kcode or tcode will be shown before the rcode
if a totalistc rule was selected in section 13.1.1.

ld . . . λ parameter.

ld-r . . . λ ratio.

Z . . . Z parameter.

C . . . canalyzing shown in two parts (for k=3) firstly the fraction of canalyzing inputs
(0/3, 1/3 . . .), then which of the k inputs are canalyzing, i.e. *1* — input
1 is canalyzing, 2** — input 2, *10 — both inputs 1 and 0. If there are no
canalyzing inputs the second part is not shown.

A . . . The Post function class, e.g. A[1]i (section 14.12). 0 is shown if there are no
Post functions.

The examples of network data below as shown in the terminal (xterm) are for small networks,
though the (hex) rule-table itself can be very lengthy for larger v, k and n. However, the rule-table
here is restricted to a maximum of about 80 hex characters4 whatever the size of the rule5.

4This relates to the number of hex characters that would fit in the default rule window (section 16.19), which
depends on the size of the DDLab screen itself (sections 6.3.1, 6.3.2), and also on the font size (section 6.4).

5There is no restriction on the size of the rule-table when printed to the terminal in section 16.18.

253

v2k5, 1d n=7

cell. wiring(4-0), kcode(hex) rcode(hex) ld ld-r Z C A

6. 1 0 6 5 4, 33 e8818117 0.375 0.75 0.5 0/5 0

5. 0 6 5 4 3, 20 80000000 0.0312 0.0625 0.0625 5/5 43210 A[1]i

4. 6 5 4 3 2, 1c 7ffefee8 0.781 0.438 0.312 0/5 0

3. 5 4 3 2 1, 3e fffffffe 0.969 0.0625 0.0625 5/5 43210 A[0]i

2. 4 3 2 1 0, 31 e8808001 0.219 0.438 0.312 0/5 0

1. 3 2 1 0 6, 21 80000001 0.0625 0.125 0.125 0/5 0

0. 2 1 0 6 5, 3d fffefee9 0.844 0.312 0.312 0/5 A[0]3

average:ld-r=0.3125 Z=0.241071 average network parameters
weighted average:ld-r=0.3125 Z=0.241071 weighted according to the proportion of cell outputs

The example above is for kcode in the context of full rule-tables (not in TFO-mode) so both
kcode and rcode are listed. The rule parameters (ld ld-r Z C A) follow the rcode. The data
ends with a summary of average network parameters and the weighted average according to the
proportion of cell outputs.

The example below is a k-mix and kcode in TFO-mode. Rule parameters (ld ld-r Z C A) do
not apply in TFO-mode.

v3kmix(7-1), 2d 3x3 n=9

cell. k, wiring(6-0), kcode(hex)

8. 3, - - - - 6 8 7, 041061

7. 1, - - - - - - 7, 15

6. 5, - - 0 7 6 8 3, 028295984826

5. 7, 6 8 3 5 4 0 2, 41a402145666095140

4. 3, - - - - 5 4 3, 020a60

3. 2, - - - - - 4 5, 080a

2. 7, 5 4 0 2 1 8 7, 09625a59582169504a

1. 5, - - 4 2 1 0 7, 0141051129a0

0. 4, - - - 3 1 2 6, 02551448

Chapter 20

Interactive Graphs: network, ibaf,
jump
Since 2002 DDLab included two types of interactive graphs: the “network” and “jump” graphs
— a third type was added in the 2023 update, the “interactive basin of attraction field”-graph
(“ibaf-graph”). The three types, summarised below and in ”Interactive Graph Visualization in
DDLab”[57], have very similar on-the-fly functionality whereby nodes linked by directed edges
can be dragged/dropped and modified together with their defined components/fragments. Many
other options were updated and enhanced (section 0.5) including arbitrary text labels in addi-
tion to the range of default node displays, so this chapter 20 was largely rewritten, and related
revisions were made throughout the book. The 2024 DDLab update includes further minor revi-
sions/inprovements (section 0.6) covered in this chapter.

graph type . . . summary

network-graph 20.5 . . . represents the wiring scheme of a CA, RBN or any discrete dynamical
network with n nodes (displayed as discs or numbers) where each node has
k≥1 inputs (its neighborhood, chapter 9) and a variable number of outputs.
There may be a k-mix and random wiring. The weight of discs/links can
toggle between inputs or outputs. Links can be omitted to run space-time
patterns within a network-graph layout (sections 20.20, 32.19, figures 32.42,
32.43) which can also be scrolled (figures 4.10, 20.27).

ibaf-graph 20.6 . . . is an interactive image of the usual basin of attraction field as specified and
drawn (chapters 25, 26) with the exhaustive algorithm (section 29.7) so the
method works equivalently for null boundaries (section 26.1), random maps
(section 29.8) and sequential updating (section 29.9). The ibaf-graph has
vn nodes (displayed as discs, numbers or patterns) — state-space — and is
essentially a network-graph but with out-degree=1 and variable in-degree≥0
— pre-images — which sets the weight of discs/links. Just one basin can be
isolated while all others are suppressed.

jump-graph 20.7 . . . shows the probability of jumping between basins due to perturbations of
attractor states. Nodes/edges are scaled by basin volume/jump probability.
The jump-graph is based on either the basin of attraction field “f-jump” or the
attractor histogram “h-jump” (section 31.7.8). For f-jump, edges can be omit-
ted and basins can be drawn at node positions (section 20.14, figures 20.21,
20.23) and their layout loaded back into the ibaf-graph.

254

255

24

(a) circle layout, one node dragged with its 2-step inputs

86

53

48

24

5

(b) spiral/rank/unscramble

Figure 20.1: Two versions of the network-graph for the same network with a power-law wiring
distribution, both inputs (k=1 to 10) and outputs, n=100. To set up power-law wiring see sections 9.7.2
and 17.9.5. Nodes are scaled according to k. (a) A circle layout, but with one node dragged, together
with its 2-step inputs. (b) the same network with spiral layout, then ranked and unscrambled — as in
figure 20.12.

Figure 20.2: The ibaf-graph (v2k3, n=10 1d CA rcode 110). Initially nodes are shown as discs and
discs/links are scaled by inputs (in-degree). The basin of attraction field is automatically uncompressed
(section 26.2) when the ibaf-graph is selected. The layout follows defaults set in chapter 25, but
then the basins, independent components of the graph, where dragged to avoid overlaps. The ibaf-
graph can be interactively rearranged with the mouse and keyboard for dragging/rescaling/relabeling
nodes/fragments/components.

256 CHAPTER 20. INTERACTIVE GRAPHS: NETWORK, IBAF, JUMP

15
13

12

11

10

8

7
5

4

3

2

Figure 20.3: The jump-graph, with basins redrawn within its nodes (RBN v2k3, n=13, as in
figure. 2.5). The jump-graph shows the probability of jumping between basins due to single bit-flips
to attractor states. Nodes representing basins are scaled according to the number of states in the
basin (basin volume), and can be rearranged and dragged. Links are scaled according to both basin
volume and the jump probability. Arrows indicate the direction of jumps. Short stubs are self-jumps.
When jump-graph links are eliminated this becomes a layout-graph, providing a method for arbitrarily
arranging the basin of attraction field.

20.1 Interactive graphs

The steps for selecting/activating interactive graphs, and the option reminders themselves are
covered in sections 20.5 for the network-graph, 20.6 for the ibaf-graph, and 20.7 for the jump-
graph. The option reminders differ somewhat between the three types despite a strong overlap.

The graphs and options are presented at two interchangeable stages with distinct top-right
reminders: the initial-reminder where options apply to all nodes simultaneously, and the drag-
reminder where options generaly apply to a single node, a geometric range of nodes (blocks),
or most significantly to the selected node and its linked fragment. Exmples below are for the
ibaf-graph — the network-graph and jump-graph reminders are similar.

Once an interactive graph is selected, the initial-graph and its initial-reminder appear first,
with options that apply to the whole graph.

257

initial-reminder applies to whole graph (this example for the ibaf-graph)
IBAF-graph: drag-(def) PScript-P net-# ant-a unscram-u win-w rank0-k
settings-S rot-x/X flip-h/v nodes-(/)/= links-{/} both-[/]
Unreach-U matrix-t/T nodes-n/N links-l Labels-+ arrows-A/</>
layout: file-f graph-g circle/spiral-o/O 1d/2d(tog)/3d-1/2/3 rnd-r/R quit-q:

Overviews of initial-graph options are given in sections 20.2 and 20.3, examples in sections
20.5.3 (network), 20.6.2 (ibaf), 20.7.3 (jump), and the decode list in section 20.9. Enter “q” to
quit the current graph.

Click the left or right mouse button with the pointer anywhere on the screen (or press return)
to change to the drag graph and the context dependent drag-reminder (ibaf example below) with
options that apply to a selected node (click to activate — initially node 0) and its linked fragment
by inputs, outputs, or either (the default), which would include the whole component given no
time-step limit (the default), but a time-step distance constraint can be applied (1 to 9).

drag-reminder applies to a node and its fragenent (this example for the ibaf-graph)
node 0, either, step=nolimit: leftb-drag PScript-P elstc/snap-d gap-g
not active?-rightb first, rot-x/X flip-h/v nodes-(/)/=/E links-{/} both-[/] just-j
Lnk0:cut/restore-c/r Lnks0-0:cut/add/restore-C/A/R net-#
step-(1-9) nolimit-0 single-s in/out/either-i/o/e all-a exit-q:

Overviews of the drag-graph are given in sections 20.2 and 20.4, examples in sections 20.6.3 (ibaf)
and 20.8 (network/jump), and the decode list in section 20.10. Left/right click on any node to
activate it, and drag with the left mouse button depressed. Enter “q” to return to the initial-graph
and initial-reminder.

20.2 Common themes between initial and drag graphs

By default, nodes (vertices) are displayed as colored discs (with a central number if the disc is
big enough) according to the network order, 0 to n-1 for the network-graph, 0 to vk-1 for the
ibaf-graph, and 1 to the number of basins for the jump-graph.

Successive discs are assigned different colors cycling through four colors. Centrally placed
black arrows indicate the direction of links (edges). Links are colored according to the parent node
and aligned asymmetrically clockwise relative to the parent to separate outgoing and incoming
links by a central gap to avoid mutual link overlap. Self-links are show as short stubs projecting
from a node. Both the initial and drag graph are displayed in a large central window, and for
both, “PScript-P” will save the current image as a vector PostScript file (section 20.15), and
net-# will redrawn the graph, restoring any link cuts or additions made in the drag-graph.

20.2.1 Common presentation options

The following presentation options feature in the both initial and drag graph. They apply to the
whole initial-graph, or in the drag-graph just to the active (single) node or the active fragment.

258 CHAPTER 20. INTERACTIVE GRAPHS: NETWORK, IBAF, JUMP

rot-x/X flip-h/v nodes-(/)/= links-{/} both-[/]
(only “nodes-(/)/=” apply for single node status in the drag-graph)

prompts . . . what they do

rot-x/X . . . lower-case “x” rotates clockwise, upper-case “X” rotates anti-clockwise.

flip-h/v . . . “h” flips horizontally, “v” flips vertically,

nodes-(/) . . . simple brackets: “(” to contract, “)” to expand the node display as discs,
numbers (figure 20.4), or patterns. The font size in the initial-graph will
also set the font of disc numbers in both the initial and drag graphs.

nodes-= . . . enter “=” (equals sign) to cycle through successive node displays
(figure 20.5) — 6-way for the ibaf-graph: discs/decimal/hexadecimal/1d-
string/2d-string/empty, 3-way for the network-graph and jump-graph:
discs/decimal/empty, and 2-way for a graph without links: discs/decimal.

links-{/} . . . curly brackets: “{” to contract, “}” to expand the length of links, or the
distance between nodes. Note that scaled link thickness follows disc size.

both-[/] . . . square brackets: “[” to contract, “]” to expand, both nodes and links
together.

The opertions for rotations, flips, and contract/expand link length, are made with reference to
the window center for the initial-graph, and the pointer position for the drap-graph.

9
8

76
5

4

3

2

1

0

Figure 20.4: A sample from the full range of font pixel sizes from min 6px to max 150px, made with a
network-graph in drag mode. Contract/expand with “(”/“)” by -/+ 1px 6-40, 2px 41-80, 4px 81-150.
Note that this does not apply to the DOS version where fonts sizes are constant.

259

disc > dec > hex > 1d > 2d > empty

815

605

01b2

232

Figure 20.5: Toggling between 6 successive node displays in the ibaf-graph — Lower Right: Examples
of 5 displays (“empty” is skipped). Upper Right: a created “label” (section 20.12) noting the 6
alternatives. A basin for 1d CA v2k3, n=10, rule 30.

20.3 Initial-graph overview

Options in the initial reminder apply to all nodes simultaneously. Scaled nodes/links is the initial
default — the scaling differs by graph type as follows,

graph type title . . . scaled according to . . .

NET-graph: . . . (section 20.5) . . . either inputs (default) or outputs, which can be
toggled with “in/out-z”. The prompt order “out/in-z” shows which
is active, though this should be evident from the graph — no change
indicates that inputs=outputs. “z” also turns on scaling nodes/links
in case it was off.

IBAF-graph: . . . (section 20.6) . . . in-degree (inputs)— the number of a state’s (node’s)
pre-images.

JUMP-graph: . . . (section 20.7) . . . basin volume for nodes— the number of states in
the basin, links by jump probability — the actual jumps comprising a
link divided by the total of possible jumps from the attractor. There
are two types of jump-graphs — f-jump from the basin of attraction
field, and h-jump from the attractor histogram.

Some significant options unique to the initial-graph are hi-lighted below,

• Nodes can be toggled between scaled/uniform with ”nodes-n”, and links between scaled/thin
lines with “links-l”. The size of link direction arrows can be altered with “arrows-</>”.

• The pre-programmed graph layouts1 include “circle/spiral-o/O”, “1d/2d(tog)/3d-
1/2/3”, and random “rnd-r/R”. “2d(tog)” toggles between square and triangulated
layout.

1These pre-programmed graph layout options would disrupt the ibaf-graph default presentation but are retained
because they demonstrate how components can be dragged out of an arbitrary network. The default ibaf-graph
layout is restored with “graph-g”.

260 CHAPTER 20. INTERACTIVE GRAPHS: NETWORK, IBAF, JUMP

• Any layout can be ranked “rank-k” by decreasing node weight, unscrambled “unscram-u”
to separate out weakly connected nodes, and shaken “rnd-r” to randomly reposition nodes
close to their current positions. The current graph layout can be saved/loaded with “file-f”.

• Nodes having a given number of inputs or less can be automatically cut (and displaced)
in the graph (“Unreach-U” section 20.18), which allows leaf nodes to be isolated such as
garden-or-Eden states in the ibaf-graph.

• An “ant” can be sent into the graph to trace a path according to link probabilities, keeping
track of the frequency of visiting nodes (”ant-a” section 20.13).

• The adjacency-matrix of the graph can be generated (“matrix-t/T” section 20.19),

• For the f-jump-graph (with or without links), basins of attraction can be drawn at or within
nodes (“basins-i/I/s” section 20.14).

• The graph window and its previous screen can be toggled with “win-w”, useful to revisit
the basins that were responsible for the ibaf-graph and jump-graph.

Examples of initial reminders are given in sections 20.5.3 (network), 20.6.2 (ibaf), 20.7.3 (jump),
and the decode list in section 20.9. Key “q” quits the current graph, and a left or right mouse
click switches to the drag graph/reminder in section 20.4 below. Most presentation changes in the
initial-graph are inherited by the drag graph.

20.4 Drag-graph overview

Options in the drag graph reminder apply to the “active node” (its number is always shown in
the title) and a node ensemble if active — the “active fragment” — which is dragged by dragging
the active node with the pointer and left mouse button depressed. As well as dragging, the active
node+fragment is subject to display/rescale/rotate/flip options (section 20.2.1), so the terms
“drag/dragging” also imply all these presentation options. There are four types of interchangeable
drag statuses listed below,

drag status in title . . . functions and selection

single: . . . (section 20.4.4) to drag a single node — enter “single-s” at any time.
Single node status allows a “block” (below), and also creating multi-
line node “labels” (section 20.12). Rotations and flips do not apply
to a singe node.

Block x-y: . . . (section 20.4.5) within single node status, enter “Block-B” to define
then drag a geometric block in 1d/2d/3d (section 20.11). The default
is set by the last two active nodes. To leave block status and resume
“single node” status, enter “exit-Block-B” or change status with one
of the options “s/i/o/e/a”.

inputs/outputs/either . . . one of these — refered to as “linked fragment” status.
. . . to drag a linked fragment (section 20.4.2) — a node and nodes linked

to it by inputs, outputs, or either (meaning irrespective of direction)
— enter one of the options “in/out/either-i/o/e” at any time. An
unlimited range “step=nolimit:”, the default, appears in the title
(or enter “nolimit-0”) — or set a shorter range by distance measured

261

in link-steps “step-(1-9)” — for example if “2” is entered “step=2:”
appears in the title. Linked fragment status allows link cuts/additions
(section 20.4.3).

allnodes: . . . enter “all-a” at any time to drag a node and the complete graph.

Some issues to note when operating the drag-graph,

• The terms “fragment” or “active fragment” refer to a “block”, “linked fragment”, or
“allnodes”. A single node identified as “single:” in the title is not a fragment — dragging
applies just to that node. However, in all circumstances there is an active node, identified
in the title, for example “node 92”. If a block is active, the active node, whether inside or
outside the block, will drag that block along with itself.

• The drag-reminder initially shows “node 0” as the active node, but any other node is ready
to be activated. To activate a node, click with the pointer at a node-disc center (or the
notional center for other node displays) — a right/left click may be required initially. For a
node shown as a number, point to the lower-left corner. For a 1d or 2d pattern in the ibaf-
graph, point to the upper-left corner. Activation is indicated by the node number appearing
in the drag-reminder title and possibly a momentary shake of the graph.

• To drag, click as above but hold down the left mouse button while moving — drag the active
node (+ fragment) to a new position which will stabilise on left-button release.

• A graph may comprise nodes with a mixture of node displays, some as decimal numbers (or
hex for the ibaf-graph), and also alphanumeric labels, in different font sizes (figure 20.19).
While in the actual dragging phase (left button depressed) all alphanumeric displays,
including labels, revert to the default font size, or the font size reset in the initial-graph, to
optimise animation — once dragging ends (left button released) the correct font sizes are
restored.

• For a graph with many nodes (more likely for the ibaf-graph) you will notice that drag-
ging vibrates the graph. This is a conseguence of the “elastic” option (the default) which
continually redraws nodes/links for graphical animation, but animation/vibration can be
suppressed by toggling to “snap” — enter “d” to toggle between the two — in the drag-
reminder “elstc/snap-d” or “snap/elstc-d” indicates which drag method is active. With
“snap” just the active node is dragged leaving a trail (figure 20.6). On release the active
fragment will snap into place. For large graphs this is a more efficient method.

• In linked-fragment status, links can be cut/added according to the link status
“inputs/outputs/either-i/o/e” with “Lnk8:cut/restore-c/r” for the active node,
and “Lnk8-5:cut/add/restore-C/A/R” between two nodes (section 20.4.2).

• Nodes that have only inputs or only outputs cannot transmitt information — such “gap”
nodes can be automatically (and recursively) disconnected with “gap-g”, which effectvly
prunes leaf nodes in the ibaf-graph, starting with garden-of-Eden states (section 20.4.8).

• For the ibaf-graph only, “just-j” will toggle to show just the single basin (component) with
the active node, to work on a basin in isolation. Enter “j” again to restore the complete
graph.

• A drag-graph will accept node type/size changes irrespective of the pointer position, but the
pointer acts as a reference to expand/contract links or flip/rotate a fragment. Note that
flip/rotate is active in fragment status only.

262 CHAPTER 20. INTERACTIVE GRAPHS: NETWORK, IBAF, JUMP

(a) dragging with “snap” leaves a trail

641

576

518

416

258

144

104

36

26
9

(b) on release the new layout snaps into place

Figure 20.6: Dragging with “snap” (instead of “elastic” — toggle with “d”). The ibaf-graph of an
isolated basin of attracction — the 4th basin in figure 4.3. (a) the default layout — dragging node 38
to a new position with “snap” active, and the left mouse button depressed. (b) On left button release
node 38 and its linked fragment by inputs snaps into place. This is an alternative to dragging with
“elastic” animation. (for a 1d CA v2k3, n=10, rule 9)

Examples of drag reminders are given in sections 20.6.3 (ibaf) and 20.8 (network/jump), and
the decode list is in section 20.10. Key q switches back to the initial-graph (section 20.3). Some
important drag choices and function are described further below.

20.4.1 drag graph: choices

The choice of options from line 4 of the drag-reminder . . .

step-(1-9) nolimit-0 single-s in/out/either-i/o/e all-a exit-q:

. . . effects drag behavior and the options in line 3. With “all-a” set, the whole graph can be
dragged irrespective of separate components, and commands apply to all node/links simultaneously,
much like the initial-graph. With one of “in/out/either-i/o/e” set, just the linked fragment is
dragged (section 20.4.2). With “single-s” set, just the active node is dragged, but a “Block” can
be activated within single node status (section 20.4.5). Line 4 options are described further below.

20.4.2 drag graph: linked fragment in/out/either

To set the link status and create a linked fragment rooted on the active node, apply one of
the options “in/out/either-i/o/e” where “in-i” traces inputs upstream, “out-o” traces outputs
downstream, and “either-e” traces any link irrespective of direction. Enter “nolimit-0” (zero) for
an unlimited distance from the active node. To set a limit in link-steps “step-(1-9)” — enter
a number between 1 and 9. For the ibaf-graph, link-steps are the same as time-steps in system
dynamics.

The title of the drag-reminder shows the active node, current linked fragment type, and step-
limit, for example,

263

node 14, inputs, step=nolimit:
node 14, outputs, step=1:
node 14, either, step=3:

35 34 33 32 31 30

29 28 27 26 25 24

23 22 21

20
19 18

17 16 15
14

13

12

11 10 9

8
7 6

5 4 3 2 1 0

35 34 33
32

31 30

29 28

27
26

2524

23

22
21

20
19

18
17

16
15

14
13

12

11

10
9

8
7

6

5 4

3
2

10

Figure 20.7: A regular network-graph 6x6x6 with a 2d fragment on active node 14, dragged, rotated,
nodes toggled to decimal, and font enlarged. Left: Step=1. Right: Step=3.

7

6
5

4

3

2
1

original

7

6
5

4

3

2
1

(a) in

7

6
5

4

3

2
1

(b) out

7

6
5

4

3

2
1

(c) either

cutting links to node 3

7

6
5

4

3

2
1

(d) in

7

6
5

4

3

2
1

(e) out

7

6
5

4

3

2
1

(f) either

cutting links between
nodes 3 and 6

Figure 20.8: Cutting links: Left: the original jump-graph for v2k3 rcode
194 n=10 with nodes shown as decimal numbers and links scaled by
jump probability. Below: cutting links to active node 3 by (a) inputs,
(b) outputs, (c) either. The self-link is cut in all cases. Bottom Row:
cutting links between a pair of nodes; the active node 3 and node 6 by
(d) inputs, (e) outputs, (f) either. The method to add links between a
pair of nodes is equivalent.

264 CHAPTER 20. INTERACTIVE GRAPHS: NETWORK, IBAF, JUMP

20.4.3 drag graph: cut or add links

The third line of the drag-reminder gives special options to cut or add links, but do not affect the
underlying network outside the graph functions2.

Lnk3:cut/restore-c/r Lnk3-6:cut/add/restore-C/A/R net-# (for example)

In options “cut/restore-c/r” for the active node 3, “cut-c” cuts its immediate links depending
on the link status in/out/either (figure 20.8 a — c), “restore-r” restores the previous cut.

In options “cut/add/restore-C/A/R” for the two nodes 3-6 with node 3 active (the defaults
are the two most recently activated) “cut-C” cuts an existing link to node 6 (figure 20.8 d — f),
“add-A” adds a missing link to node 6, in both cases depending on the link status in/out/either.
“restore-R” restors the original link status previously cut or added. In all cases “net-#” restores
the original network.

20.4.4 drag graph: single node

Enter “single-s” for single node status (as opposed to a fragment) and click a node — dragging
the node and its number appearing in the title of the drag-reminder confirms it is activated,

node 929, single: (for example)

While “single:” is active, drgging and changes apply to just the active node.
The third line of the drag-reminder gives special options to set a “block” or create a label.

block-B Label-set/tog-L/+ net-#

20.4.5 drag graph: block

35 34 33 32 31 30

29 28 27 26 25 24

23 22

21
20

19
18

17 16

15
14

13
12

11 10

9
8

7
6

5 4 3 2 1 0

69
68

67
66

6564
63

62
61

60
59

58
57

56
55

54
53

52
51

50

44
43

42
41

4039
38

37
36

35
34

33
32

31
3029

28
27

26
25

19
18

17
16

15
14

13
12

11
10

9
8

7
6

54
3

2
1

0

Figure 20.9: A regular network-graph with a block defined, dragged, rotated, nodes toggled to decimal,
and font enlarged. Left: 2d k=4 6x6 with a 3x3 block. Right: 3d k=6 5x5x5 with a 4x4x3 block.

A block is a sequence of node numbers (in 1d, 2d, or 3d) between two selected nodes. In single
node status, enter “Block-B” to open a window to set a block (section 20.11) — the defaults are
the two most recently active nodes. An active block will change the title of the drag-reminder,

node 21, Block 6-21: (for example)

2To change the underlying network see chapter 17

265

While the block is active any changes/manipulations apply to the whole block, and dragging
any node (whether inside or outside the block) will also drag the block. The 3rd line of the
drag-reminder becomes,

exit-block-B net-#

Enter “exit-Block-B” to exit the block and revert to single node status, or exit by changing the
status with one of “s/i/o/e/a”.

20.4.6 drag graph: label

In single node status, enter “Label-L” for a top-right window to create (or remove) a multi-line
node label (section 20.12) of up to 90 characters located at the active node. There may be multiple
labels at various nodes, in various font sizes, and set at various times, that overwrite the current
node displays (figure 20.19), and the labels are inherited when reverting to the initial-graph. Enter
Label-+ (the plus symbol) in both drag and initial-graphs, to toggle between showing active labels
(throughout the graph) and showing the current node displays.

20.4.7 drag graph: equalise node display

As well as the node display options “nodes-(/)/=” (section 20.2.1), in fragment status there is an
extra option “E” — so “nodes-(/)/=/E”. Enter“E” to “equalise” the node display/size of nodes
in the fragment (including allnodes if set) according to the active node, which can be outside a
“block” as well as inside.

20.4.8 drag graph: gap nodes

Figure 20.10: Pruning the graph’s gap-nodes with “gap-g”. In this example for the ibaf-graph, one
small basin is isolated with “just-j” then recursively pruned of its leaf states until only the attractor
remains, for a small basin in rcode 110, n=10.

In any drag status, enter “gap-g” to disconnect “gap nodes”, cutting off links to nodes which have
only inputs or only outputs, so cannot transmit information. Enter “gap-g” again to cut the next
layer of gap nodes and so on, to wittle down the graph into smaller components, finaly to reveal

266 CHAPTER 20. INTERACTIVE GRAPHS: NETWORK, IBAF, JUMP

cycles of directed links. At any stage, pieces of the graph can be dragged. Applies to the whole
graph, or to a single component (basin) isolated with “just-j”.

For the ibaf-graph “gap-g” will initially prune garden-of-Eden nodes, then successive newly
created “leaf” nodes until just the attractors remain — try this for a single basin isolated with
“just-j” as in figure 20.10. Enter “‘net-#” to restore the graph.

20.5 The network-graph

The network-graph, an alternative to the “wring graphic” (section 17.3), represents the wiring
scheme of a CA, RBN or any discrete dynamical network with n nodes (shown as discs or numbers)
where each node has k≥1 inputs (its neighborhood, chapter 9) and a variable number of outputs.
There may be a k-mix and random wiring.

Note that the alternative “wring graphic” has its own distinct and different interactive options
to review and amend network architecture (chapter 17), and a new option graph-g to generate
the network-graph, then toggle between the two, as described in section 20.21.

In the network-graph the weight of discs/links can toggle between inputs and outputs. As with
the other graph-types, links can be cut/added (section 20.4.2) allowing any arbitrary network-
graph, though the underlying network architecture will not be affected.

With links omitted, space-time patterns can be run within a network-graph layout
(sections 20.20, 32.19, figures 32.42, 32.43) which can also be scrolled (figures 4.10, 20.27).

For large networks where only the network itself is of interest, not the rules, it is best to select
TFO-mode at the first prompt (section 6.2.1). This allows a mixed-k network (chapter 9) with
large max-k, where a power-law k-distribution (section 9.7) may be applied.

The network-graph applies in any mode selected at the first prompt (section 6.1), TFO-mode,
SEED-mode, or FIELD-mode, and can be selected at various stages, at the start during the
main sequence of prompts, or during a pause/interrupt of attractor basins (section 20.5.1), or
when interupting space-time patterns (STP) where as well as all the normal functions of the
network-graph, an alternatine STP presentation can be simultaneously run and scrolled within
the network-graph (section 20.5.2).

20.5.1 Selecting the network-graph — general case

The network-graph can be activated with “graph-g” at the following stages,

• After setting wiring (sections 12.7,17.1).

• From the wiring graphic (section 17.3), which allows toggling between the two representations
(section 20.21).

• After the rule or rules have been set (chapters 14 or 16).

• Indirectly from the “attractor basin complete” prompt (section 30.4), — enter “net-n”, or
when basins are paused (sections 30.5, 25.3) enter “ops-o” then “net-n”.

In all these cases, entering “graph-g” gives this preliminary top-right prompt,

no links -N, show links -def:

Enter return to compute and launch the network-graph with links, or “no links-N” without
links. For a larger linked network, this top-right message appears during the computation interval,

‘computing network-graph, 723 nodes, quit-q, or wait... 33% (for example)

267

2. 1. 0. rcode(hex/dec)

3 9: 9 9 1 12981

2 8: 3 1 6 1589e

2 7: 9 0 5 1237b

1 6: 4 3 1 311f

3 5: 4 0 7 3321

2 4: 3 3 5 11977

6 3: 8 3 2 199c7

3 2: 8 7 3 7147

5 1: 2 1 2 199c7

3 0: 5 0 1 200c8

The network “wiring matrix” (section 17.2) of
the RBN v2k3, n=10, used in some of the
examples: the network-graph (figure 20.11),
the adjacency-matrix (table 20.1), the jump-
graphs (figure 20.23), ant-hits (figure 20.20),
and the jump-matrix (table 20.2). (the RBN
filename is n10RBN.wrs)

9

8

76

5

4

3

2 1

0

(a) default circle layout,
nodes/links scaled by (equal)

inputs, k=3

9

8

7

6

5

4 3

2

1

0

(b) nodes/links scaled by outputs
— and rearranged

9

8

7

6

5

4 3

2

1

0

(c) nodes as numbers, links as
simple lines and arrows expanded

Figure 20.11: Network-graphs of a small RBN (defined Above) showing alternative presentations
(a) The default circle layout with link width and node diameter scaled by inputs k=3, all equal in this
example. (b) Layout rearranged by dragging nodes with the mouse, and scaled by outputs. (c) Nodes
as numbers and directed links shown as thin lines with arrows.

138

107

67

52

31

(a) show as a spiral, and ranked

138

107

67

52

31

(b) automatically unscramble

138

107

67

52

31

(c) shake, then drag nodes

Figure 20.12: One possible method of unscrambling the network-graph of a scale-free RBN, n=150.
(a): enter “O” to show the network as a spiral, then “k” to rank the nodes, placing nodes with the
highest k near the center. (b): enter “u” to automatically unscramble the layout, possibly more than
once. (c): enter “r” to “shake” the layout, then make final adjustments by dragging single nodes or
fragments.

268 CHAPTER 20. INTERACTIVE GRAPHS: NETWORK, IBAF, JUMP

20.5.2 Selecting the network-graph — pausing STP

The network-graph can be activated while running space-time patterns (STP), and then act as a
separate template to run parallel simultaneous STP within the network-graph itself.

• While running STP (in 1d, 2d, or 3d) enter “q” to pause, giving a top-right window
(section 32.16) with multiple context dependent options, but always including “graph-g”.
Enter “graph-g” for the network-graph.

• A top-right preliminary prompt is presented, where the default “layout only” excludes links,

show links -L (caution for large networks), layout only -def:

Enter return to compute and launch the network-graph without links, or “show links --L”
with links, to run STP simultaneously in the network-graph. Usualy excluding links is
preferable. For a larger graph, especilally with links, this top-right message appears during
the computation interval,

computing network-graph, 723 nodes, quit-q, or wait... 33% (for example)

• Then the network-graph is shown in a large window occupying most of the screen together
with the initial-graph reminder (sections 20.5.3).

• At this point the main space-time patterns are paused and the network graph can be rear-
ranged in the usual way with the initial or drag graph reminder (sections 20.5.4). The shape
and position can be adjusted as required.

• From the initial-graph reminder, “q” will restore normal STP, and start parallel concurrent
STP within the latest (unlinked) network-graph layout — if links were selected before they
will be automatically excluded. Various on-the-fly options apply to the network-graph STP
(section 32.16.5) including diagonal scrolling.

• To diagonally scroll the network-graph STP, the normal STP must first be toggled to 2d
with on-the-fly keyhit “T”, then toggle scrolling on (and off) with key-hit “#” — the hash
sign. For more details see ‘Scrolling the ring” section 4.8.2.

• To pause both the normal STP and network-graph STP (ideally with scrolling off) enter “q”.
The top-right pause options (section 32.16) will reappear, with the option “graph-g/p”.
Enter “g” to exit network-graph STP, or “p” to save a PostScript snapshot (default filename
my sgPS.ps).

20.5.3 The network-graph initial reminder

The network-graph initial-mode reminder appears top-right with options depending on whether or
not links are included, The decode is in section 20.9.

network-graph initial reminder if links are included
NET-graph: drag-(def) PScript-P net-# ant-a unscram-u win-w rank0-k
settings-S rot-x/X flip-h/v nodes-(/)/= links-{/} both-[/]
Unreach-U matrix-t/T nodes-n/N links-l Labels-+ arrows-A/</> in/out-z
layout: file-f circle/spiral-o/O 1d/2d(tog)/3d-1/2/3 rnd-r/R quit-q:

269

network-graph initial reminder if links are excluded
NET-graph(nolinks): drag-(def) PScript- win-w
settings-S rot-x/X flip-h/v nodes-(/)/= links-{/} both-[/]
nodes-N Labels-+
layout: file-f circle/spiral-o/O 1d/2d(tog)/3d-1/2/3 rnd-r/R quit-q:

20.5.4 The network-graph drag reminder

Enter return or a left-mouse click in the initial-graph to switch to the drag-graph and top-right
drag-reminder, where the default is “single” node status (section 20.4.4). The network and jump
drag-reminders are identical, so both are described in section 20.8.

20.6 The ibaf-graph

The ibaf-graph is an interactive image of the usual basin of attraction field as drawn accord-
ing to settings in chapters 25 and 26. If the field is redraw within the nodes of a jump-graph
(sections 20.14, 24.3.1) the layout can be saved/loaded (a *.grh file — section 20.16) to provide the
initial ibaf-graph with arbitrary or special layouts including geometric — circle/spiral/1d/2d/3d.

The ibaf-graph itself is generated in two stages starting with the exhaustive reverse algorithm
(section 29.7) which computes “exhaustive pairs” — the outputs of the entire vn state-space
providing the data for directed links between states. The second stage computes and draws the
ibaf-graph with nodes/links scaled by inputs, and nodes depicted as discs (default), numbers or
patterns. The exhaustive algorithm limits network size according to table 29.1, but even smaller
sizes than those are preferable for practical graphics and computation time of both exhaustive pairs
and the ibaf-graph itself — the exhaustive data (*.exh file — section 29.8.1) and the ibaf-graph
data (*.grh file — section 20.16) can be saved/loaded to avoid re-computation.

The ibaf-graph is essentially a network-graph with out-degree=1 and variable in-degree≥0 —
pre-images — which provides the weight of discs/links. Just one basin can be isolated while all
others are suppressed.

As well as CA, RBN amd DDN, the exhaustive algorithm makes the ibaf-graph valid for
null boundaries (section 26.1), random maps3 (section 29.8) and sequential updating (section 29.9).

20.6.1 Selecting the ibaf-graph
FIELD-mode only - see also section 24.3 and 29.7.2

A quick-start example for selecting an ibaf-graph starting from the first DDLab prompt is given
in section 4.2.3. Here we assume a basin of attraction field has been selected and defined, and we
continue as follows,

• At the first basin parameters prompt (section 24.1) — enter “graph-g” to go directly to
the jump-graph prompts, or arrive there by viewing the output parameters in sequence. The
following top-right prompt is presented (section 24.3),

3For random maps, to insert basins of attraction into jump-graph nodes, the random map must first be saved
(a *.exh file) then re-loaded.

270 CHAPTER 20. INTERACTIVE GRAPHS: NETWORK, IBAF, JUMP

graphs: ibaf-graph-i, jump-graph-j no-edges+L:

Enter “ibaf-graph-i” — “compression” usually on by default for 1d CA, will be turned off
automatically with the message,

. . . -compression OFF: (for 1d CA, enter return to continue)

• Enter return until the final “basin field” prompt (section 29.4). If “ibaf-graph-i” was entered
above, “ibaf:” and its valid options appear in blue,

basin field (local) n=10, nonlocal-x ibaf: exh-e rmap-r seq-s nto-o
view ppstack-1: (valid options for “ibaf:” are shown in blue, and underlined here)

Enter “exh-e” for “exhaustive pairs” (section 29.7.1) — “rmap-r” for a random map or
“seq-s” for sequential updating are also valid for their respective ibaf-graphs.

• Then the following prompt is presented,

exhaustive pairs: compute-ret, and save-s, and prt-p/+p:

Enter return to compute the exhaustive list (section 29.7 — also describes the other options).

• A red progress bar will appear (section 29.7.1), lasting a brief moment for a small state-space,
but taking an exponentially longer time for larger state-spaces, thus the option “interrupt-q”,

setting up exhaustive pairs, interrupt-q:

• Then the basin of attraction field is drawn as usual in the main window — a green bar
monitors progress (section 30.1). Once finished, a top-right data window and a prompt
below the completed bar appear, to select the ibaf-graph (section 29.7.2),

draw interactive basin-of-attraction field graph, ibaf-i:

Entering return will skip the ibaf-graph and draw the next basin of attraction field according
to mutation settings in chapter 28.
Enter “ibaf-i” to compute and activate the ibaf-graph which is tracked showing the percentage
computed so far — enter “q” to abandon if the wait is too long,

computing ibaf-graph, 2048 nodes, quit-q, or wait... 23% (for example)

• For n=10 the elapsed time to compute the ibaf-graph is typically about two seconds4 and is
independent of k or the wiring/rule architecture, but very sensitive to the size of state-space
vn — for binary systems, the time roughly quadruples for each increase of n, a dramatic
exponential increase. Its advisable to limit n for this reason, but also because large n results
in an unmanageable ibaf-graph.

4For binary state-space=2n, approximate elapsed times to compute the ibaf-graph for increasing n, 10:2sec,
11:12sec, 12:32sec, 13:2min20sec. 14:11min, 15:50min (Dell XPS13 laptop).

271

20.6.2 The ibaf-graph initial reminder

Once computed, the ibaf-graph will be drawn according to the default presentation as in figure 20.13
below, or according to settings in chapters 25 and 26.

544

528

520

512
272

264
260

256

136

132

130

128

68
66

65

64

34

33

32

17

16

84

21

0

Figure 20.13: Default presentation of the ibaf graph.
For a dragged/rearranged version of the same system see figure 4.3 (1d CA
v2k3 n=10 rcode 9).

At the same time, the following top-right initial reminder is presented,

IBAF-graph: drag-(def) PScript-P net=# ant-a unscram-u win-w rank0-k
settings-S rot-x/X flip-h/v nodes-(/)= links-{/} both-[/]
Unreach-U matrix-t/T nodes-n/N links-l Labels-+ arrows-A/</>
layout:file-f graph-g circle/spiral-o/O 1d/2d(tog)/3d-1/2/3 rnd-r/R quit-q:

Basins of attraction are independent components and pre-separated in the default presentation,
but this would be disrupted by options ”unscram-u”, “rank0-k”, and non-separated layouts
“circle/spiral-o/O”, “1d/2d(tog)/3d-1/2/3”, and “rnd-r/R”. However these options are re-
tained because they demonstrate how components can be dragged out from non-separated layouts.
The default separated layout can be restored at any time with “graph-g”.

Note that the ibag-graph must include links — there are no “layout only” options (without
links) as with the network and jump graphs.

20.6.3 The ibaf-graph drag reminder

Enter return or a left-mouse click in the initial-graph to switch to the drag graph and top-right
reminder below. Left/right click to activate a node — the default is a “linked fragment” indicated
by “either, step=nolimit:”, which means that dragging the current active node will also drag
its linked component — the entire basin of attraction. The decode list is in section 20.10.

drag-reminder applies to a node and its fragenent, in this case the entire basin
node 230, either, step=nolimit: leftb-drag PScript-P elstc/snap-d gap-g
not active?-rightb first, rot-x/X flip-h/v nodes-(/)/=/E links-{/} both-[/] just-j
Lnk58:cut/restore-c/r Lnks584-640:cut/add/restore-C/A/R net-#
step-(1-9) nolimit-0 single-s in/out/either-i/o/e all-a exit-q:

The type of linked fragment is changed with “in/out/either-i/o/e”, and the time-step dis-
tance “step-(1-9)”. Links can also be cut/added. Enter “single-s” to change to single node
status, which allows labels and blocks (sections 20.4.5, 20.11) though blocks are not so useful for
the ibaf-graph.

272 CHAPTER 20. INTERACTIVE GRAPHS: NETWORK, IBAF, JUMP

“single” ibaf-graph drag reminder with links, for example
node 144, single: leftb-drag PScript-P elstc/snap-d gap-g
not active?-rightb first, nodes-(/)/= just-j
block-B Label-L/+ net-#
step-(1-9) nolimit-0 single-s in/out/either-i/o/e all-a exit-q:

A special ibaf-graph option is the toggle “just-j” to show and work on just the basin with the
active node — the other basins are still there but invisible, so might be reactivated by mistake.

20.7 The jump-graph

Perturbations due to noise or external signals are most likely to take affect once a system has relaxed
to its attractor because that is where the dynamics spends the most time. Taking single-bit or
single-value perturbations to attractor states as the simplest case, the jump-graph represents the
probabilities of jumping between basins, and gives some insight into the stability and adaptability
of the dynamics, which is especially relevant in attractor models of memory in neural networks
and of cell differentiation in genetic networks.

Two types of jump-graph can be created, the f-jump-graph — directly from the basin of at-
traction field (section 20.7.1), or h-jump-graph from the “attractor histogram” derived statistically
from space-time patterns (section 20.7.2).

To compute jump-graphs, algorithms track where all possible single-bit/value flips to attractor
states end up, whether to the same or to which other attractor. The information is presented as a
graph with weighed vertices and edges showing jump probabilities, and the data is also available
in the adjacency-matrix or jump-table (section 20.19).

The nodes in a jump-graph are numbered starting from node 1 as opposed to nodes in the
network or ibaf graphs where the start is node 0 (zero). For the f-jump-graph the number and
order of nodes follows the basin of attraction field. For h-jump-graph the number of nodes and
order follows attractor types discovered so far (bars in the attractor histogram) and the order of
discovery, but the order can sorted by frequency of each type which approximates basin volume,
by attractor period, or by average transient length for alternative h-jump-graph orders.

Some differences between the two jump-graph types are worth noting. The f-jump-graph
allows basins to be redrawn at nodes, and there are options for “layout-only” without links, either
uncompressed, or compressed for 1d CA. The h-jump-graph depends on attractors discovered
so far (there may be more as the sample grows) but allows much larger systems, though large
systems should be biased towards order, otherwise transients will be too long for the effective
accumulation of data. Otherwise the two jump-graphs and their options are very similar.

20.7.1 Selecting the f-jump-graph
FIELD-mode only - see also section 24.3 and 29.7.2

The f-jump-graph applies to any system where a basin of attraction field can be generated with
a suitable reverse algorithm, including CA (for 1d with or without compression), RBN or DDN,
synchronous or sequential updating, and random maps.

To select the f-jump-graph, proceed as follows,

• Set up a basin of attraction field — “quick start examples” are provides for CA (section 4.2)
and for RBN/DDN (section 4.12).

273

• At the first basin parameters FIELD prompt (section 24.1) enter graphs-g to go directly
to the “graphs:” prompts, or arrive there by viewing the output parameters in sequence.

• The following top-right prompt is presented (section 24.3),

graphs: ibaf-graph-i, jump-graph-j no-edges+L:

• Enter “jump-graph-j” to show the jump-graph with edges — “compression”, usually on by
default for 1d CA, will be turned off automatically with the message,

. . . -compression OFF: (for 1d CA, enter return to continue)

• Enter “jL” for “layout only” without edges. 1d CA compression can be off or on, so the
following prompt allows compression to toggle on/off as equired,

. . . -compression ON: tog-t: (or -compression OFF: tog-t:)

Enter “t” to switch, or return to continue.

• Then enter return for defaults at the next 3 prompts, or adjust as required for “mutation”
(chapter 28) and “final options for attractor basins” (section 29).

• After the basin of attraction is drawn (chapter 30), the f-jump-graph itself will be drawn
in a large central window. If the system is chaotic — a basin of attraction field with many
long period attractors — f-jump-graphs (with edges) may take some time to compute. The
following top-right message may be temporally displayed, with an inset monitoring progress,

computing jump-graph, 25 basins, quit-q, or wait . . . 44% (for example)

• To see a sequence of mutant basin of attraction fields and their jump-graphs — enter “q” to
exit followed by return. The required mutation is selected in chapter 28.

20.7.2 Selecting the h-jump-graph
SEED-mode or TFO-made only - see also sections 31.7, 31.7.8

The h-jump applies to any system running space-time patterns.
The attractor histogram (section 31.7) gathers data on attractors and their relative sizes statis-

tically, by automatically running space-time patterns from many random initial states, identifying
the different attractors types, and continuously building a histogram of the frequency of falling
into each type which approximates the relative basin size. The method, which works in both
SEED-mode and TFO-mode, can be applied to large networks, especially RBN/DDN — too large
to generate the basin of attraction field due to network size constraints (section 1.6.1).

The h-jump-graph is generated while pausing the attractor histogram. Space-time patterns
and the attractor histogram must have been selected. The steps are as follows,

• Select SEED-mode or TFO-mode (section 6.2). Then set up the CA, RBN or DDN.

• Enter return at the seed prompt (section 21.1). The initial state is of no consequence as
random seeds will be set automatically to generate the histogram.

• In SEED-mode, at the top-right output parameter prompt for basin parameters
(section 24.1),

. . . space-time patterns only-s, enter “s”.

274 CHAPTER 20. INTERACTIVE GRAPHS: NETWORK, IBAF, JUMP

In TFO-mode this prompt does not appear.

• At the next top-right prompt for space-time patterns (section (31.1),

. . . attractors-a, enter “a”.

• Enter return at the two next top-right prompts for other histogram options (section 31.7),

• Space-time patterns will run top-left from successive random initial states identifying each
attractor — each new type is added as a bar to the histogram (x-axis), or added to the bar
height/frequency (y-axis). As the histogram builds, rescaling automatically in a lower center
window, (section 31.7.2) — information is updated simultaneously top-right and at the top
of the of the histogram window (section 31.7.2.1),

19

18

17

16

1514

13

12

11

10

9

8

7

6

5 4

3

2

1

Figure 20.14: A sample of 254 random initial states captures 19 basins. Left: STP+attractor, Center:
unsorted attractor histogram, Right: h-jump-graph. 1d CA rcode 110 n=17.

• The reminder “. . . pause/reset-=” is present in the histogram window — at any time enter
“=” (equals sign) to pause/reset (section 31.7.3). giving a top-right prompt,

attractors histogram: hist-h stp-q, data:show-d print-p save-S
redraw-r sort-s data-d undo-pause-u next-ret jump-graph-j:

• Any of these options can be activated if required (“sort-s” is recommended), before entering
“jump-graph-j” to draw the h-jump-graph (section 31.7.8) in a central window — this top-
right message will show temporarily,

computing jump-graph, 20 basins, quit-q, or wait... 35% (for example)

Then the h-jump-graph will be drawn in a large central window and the initial reminder will
show top-right.

• Enter “quit-q” to quit the h-jump-graph/reminder and return to the histogram, then enter
“undo-pause-u” to continue hunting attractors from the last “. . . pause/reset-=”, which
can be done repeatedly.

• A larger sample can capture more attractors — toggle space-time patterns off with on-th-fly
with keyhit “S” (section 32.2) to drastically increase histogram sample speed. To reorder bars
by frequency (representing basin volume), during the “. . . pause/reset-=” enter “sort-s”
(section 31.7.7).

275

20

19

18

17

161514

13

12

11

10

9

8

7

6
5

4

3

2

1

Figure 20.15: A sample of 76477 random initial states captures 20 basins. Left: attractor histogram
sorted by frequency, Right: h-jump-graph with block 16 to 20 dragged. The same CA (rcode 110
n=17) as figure 20.14.

20.7.3 The jump-graph initial reminder

At the same time as the jump-graph is drawn the top-right initial reminder is presented, as be-
low. The h-jump-graph has the title “JUMP-graph(hist):” and the options “basins-i/I/s” for
drawing basins at nodes are omitted.

jump-graph initial reminder if links are included, basins-i/I/s for f-jump only
JUMP-graph: drag-(def) PScript-P net-# ant-a unscram-u win-w rank0-k
settings-S rot-x/X flip-h/v nodes-(/)/= links-{/} both-[/]
basins-i/I/s Unreach-U matrix-t/T nodes-n/N links-l Labels-+ arrows-A/</>
layout:file-f circle/spiral-o/O 1d/2d(tog)/3d-1/2/3 rnd-r/R quit-q:

For the f-jump-graph in “layout only” (no edges) options, “Unreach-U”, “matrix-t/T”, and
“arrows-A/</>” are omitted.

f-jump-graph initial reminder if links are excluded
JUMP-graph(nolinks): drag-(def) PScript-P win-w rank0-k
settings-S rotate-x/X flip-h/v nodes-(/)= links-{/} both-[/]
basins-i/I/s nodes-n/N Labels+
layout:file-f circle/spiral-o/O 1d/2d(tog)/3d-1/2/3 rnd-r/R quit-q:

The f-jump-graph options “basins-i/I/s” draw basins at nodes positions “basins-i” or inside
nodes “basins-I” — whereas “basins-s” resets the basin scale. A file of the basin coordinates
— of each state in state-space — can be saved and then loaded back into the ibaf-graph. See
section 20.14 for details.

20.7.4 The jump-graph drag reminder

Enter return or a left-mouse click in the initial-graph to switch to the drag-graph and top-right
drag-reminder, where the default is “single node” (section 20.4.4). The network and jump drag-
reminders are identical, so both are described in section 20.8.

276 CHAPTER 20. INTERACTIVE GRAPHS: NETWORK, IBAF, JUMP

20.8 The jump/network drag reminder

18

17

16

15
1413

12

11

10

9

8

7

6
5 4

3

2

18

17

16

15

14

13

12

11

10

9
8

7

6

5

4

3 2

Figure 20.16: The jump-graph for a 1d CA v2k3, n=10, rule (dec)141. Left: the default circle layout,
and Right: rearranged with the mouse to clarify the jumps.

The jump and network drag-reminders are identical, so are described together in this section.

Enter return or a left-mouse click in the initial jump/network graph to switch to the drag graph
and top-right reminder below — the default is single node status indicated by “node 8, single:”
(for example). Left/right click to activate a node — meaning that just this active node would be
dragged oramended, and rotation/flip does not apply. The decode list is in section 20.10.

“single” jump/network drag reminder with links, for example
node 14, single: leftb-drag PScript-P elstc/snap-d gap-g
not active?-rightb first, nodes-(/)/=
block-B Label-L/+ net-#
step-(1-9) nolimit-0 single-s in/out/either-i/o/e all-a exit-q:

Activating a block with “block-B” (section 20.11) or making a label with “Label-L”
(section 20.12) is only possible from “single” drag status. After setting a block the prompt
changes to show the block range, “rot-x/X” and “flip-h/v” are included, but “Label-L/+”
isexcluded,

“block” jump/network drag reminder with links, for example
node 2, Block 2-5: leftb-drag PScript-P elstc/snap-d gap-g
not active?-rightb first, rot-x/X flip-h/v nodes-(/)/=/E links-{/} both-[/]
exit-block-B net-#
step-(1-9) nolimit-0 single-s in/out/either-i/o/e all-a exit-q:

Enter “exit-block-B” or “single-s” to revert to “single:” drag status, or enter “in/out/either-i/o/e”
for a linked fragment — the prompt changes to show the type of linked fragment and the step
limit, and will include options to cut/add links,

277

“linked fragment” jump/network drag reminder, for example
node 8, either, step=nolimit: leftb-drag PScript-P elstc/snap-d gap-g
not active?-rightb first, nodes-(/)/=/E links-{/} both-[/]
Lnk8:cut/restore-c/r Lnk8-5:cut/add/restore-C/A/R net-#
step-(1-9) nolimit-0 single-s in/out/either-i/o/e all-a exit-q:

If “all-a” is entered the prompt will show node 8, allnodes: (for example) and options to
cut/add links will be excluded.

20.8.1 The jump/network drag reminder: no links

Graphs without links can be selected for the network-graph or the f-jump-graph as follows,

network-graph . . . with “no-links” section 20.5.1 or “layout only” section 20.5.2.

f-jump-graph . . . with “no-edges” section 20.7.1.

The drag reminders without links lack the options relating to a “linked fragment” but drag
status for “single”, “Block” and “allnodes” are present, examples below,

“single” jump/network drag reminder without links, for example
node 8, single(nolinks): leftb-drag PScript-P elstc/snap-d
not active?-rightb first, nodes-(/)=
block-B Label-L/+
single-s all-a exit-q:

“Block” jump/network drag reminder without links, for example
node 8, Block 3-7: leftb-drag PScript-P elstc/snap-d
not active?-rightb first, rot-x/X flip-h/v nodes-(/)/=/E nodes-(/)= links-{/} both-[/]
eit-Block-B
single-s all-a exit-q:

“allnodes” jump/network drag reminder without links, for example
node 8, allnodes(nolinks): leftb-drag PScript-P elstc/snap-d
not active?-rightb first, rot-x/X flip-h/v nodes-(/)/=/E nodes-(/)= links-{/} both-[/]
line 3 empty
single-s all-a exit-q:

20.9 Initial-graph options

A list of the options in the network/ibaf/jump-graph initial reminders (sections 20.5.3, 20.6.2,
20.7.3) is set out below in roughly the order they appear. Titles in red give the graph type —for
example “NET-graph:”, “JUMP-graphal (no links)” — described in “Initial-graph overview“
section 20.3. Key-hits usually take effect without entering return, but in some cases there are
suboptions as noted. Options that require a linked graph are indicated by “(linked only)”. All
initial-graph options apply to the whole graph.

278 CHAPTER 20. INTERACTIVE GRAPHS: NETWORK, IBAF, JUMP

options . . . what they mean

drag-(def) . . . enter return, or click the left or right mouse button, for the “drag”
options (section 20.10). The drag-reminder will replace the initial-
reminder — enter “q” to revert. Click on a node to activate it in the
drag-graph.

PScript-P . . . to save the current graph image as it appears — a vector PostScript
file — suboptions in section 20.15.

net-# . . . (linked only) to redraw the graph, restoring any link cuts or additions
made in the drag-graph.

ant-a . . . (linked only) to launch a projectile — a probabilistic “ant” — in the
graph to trace a (Markov chain) path according to link probabilities,
keeping track of the frequency of visiting vertices. Top-right subop-
tions appear — described in section 20.13.

unscram-u . . . (linked only) to automatically unscramble the graph, placing weakly
connected nodes on the outer edges, nearby their connections. This
works best in the circle or spiral layout (figure 20.12). For the ibaf-
graph the option is not so useful — it will scramble the basin layout
— but can nicely demonstrate dragging components.

win-w . . . to show what lies “below” the graph window, but including the top-
right inset restore graph -any key: — so toggling between. For
both ibaf and jump graphs, to see the original basin graphic and
its top-right data window (section 27.2.1). For the network-graph
initiated from the “wiring -graphic” (section 17.3), to compare the
two presentations (section 20.21).

rank0-k . . . to toggle between default and ranked node positions. rank0/rank1
shows which is current. The nodes are ranked (reordered) according
to scaled node size, which differs for graph type as follows,

network-graph: (linked only) node size based on inputs or outputs,
whichever is active.
ibaf-graph: node size based on in-degree (number of pre-images)
so inputs. A linear layout (in spiral form in figure 20.17) disrupts
the default basin layout, but becomes interesting if ranked because it
reflects the “in-degree frequency histogram” (section 24.6).
jump-graph: node size based on basin volume.

963 894

883

787

705

576

497

474

470

465

321

310

305

298 223

206

122

117

77

75

70

46

Figure 20.17: Far Left: Spiral layout
of the ibaf-graph in figure 20.22(b) with
210=1024 nodes, and ranked from the
center in descending node size based
on in-degree — garden-of-Eden states
with in-degree zero form the outer lay-
ers. Near Left: A component (basin of
attraction) dragged out of the spiral,
rearranged, with numbered nodes.

279

settings-S . . . to revise the default settings for the rotation angle, and the scaling
factors for nodes, links and arrows — suboptions in section 20.17.

rot-x/X . . . to rotate the graph about the window center by the default angle of
15 degrees, or a revised angle in “settings-S” (section 20.17). Enter
“x” to rotate clockwise, or “X” anti-clockwise.

flip-h/v . . . to flip the graph about the window center, enter “h” to flip horizon-
tally, or “v” to flip vertically .

nodes-= . . . (equals sign) to cycle (toggle) though successive node displays
(figure 20.5) as follows,

ibaf-graph: . . . 6-way, discs/dec/hex/1d/2d/empty.

linked network/jump graph: . . . 3-way discs/decimal/empty

unlinked network/jump graph: . . . 2-way discs/decimal.

nodes-(/) . . . (simple brackets) enter ”(” to contract, or “)” to expand the current
node display. For discs (and 1d/2d patterns in the ibaf-graph) by the
default factor (1.2), or a revised factor in “settings-S” (section 20.17).
For decimal/hexadecimal contract/expand by font pixel size between
6px and 150px (figure 20.4).

links-{/} . . . (curly brackets) enter “{” to contract, or “}” to expand the length
of links (or distance between nodes for unlinked graphs) by a default
factor (1.1), or a revised factor in “settings-S” (section 20.17).

both-[/] . . . (square brackets) enter “[”to contract, or “]” to expand both nodes
and links/distances at the same time by the default factors or revised
factors above.

basins-i/I/s . . . (f-jump-graph only) enter “basins-i” to redraw basins at jump-graph
nodes but without the graph itself (figure 20.21), or enter “basins-I” to
keep the graph and draw basins inside (or on top of) nodes (figure 20.3,
20.23, 20.24). Enter “basins-s” to change the basin scale — with sub-
options in section 20.14. This is an alternative method for a flex-
ible basin layout with geometric possibilities. Once drawn, basin
state-space coordinates can be saved, to reload into the ibaf-graph
(section 20.14.1).

Unreach-U . . . (linked only) to identify and separate unreachable or hard to reach
nodes in the graph, (section 20.18).

matrix-t/T . . . (linked only) to toggle between the graph and its corresponding
“jump-table” or “adjacency-matrix” — top right suboptions appear
described in section 20.19. For the network-graph and jump-graph,
“matrix-t” shows the numbers of links, “‘matrix-T” the fractions of
total links from each node. For the ibaf-graph, “matrix-t” shows the
matrix as an unnumbered pattern (section 20.19.3) and “matrix-T”
shows the list of exhaustive pairs in the terminal as in section 29.7.4.

nodes-n . . . (any graph-type, but network-graph linked only) to toggle between
scaled and unscaled nodes.

nodes-N . . . to toggle node numbers on discs. Numbers only appear on discs that
are big enough with a diameter ≥ 1.4 of the current text height. Disc
number size corresponds to the font size set with “nodes-(/)” above.

280 CHAPTER 20. INTERACTIVE GRAPHS: NETWORK, IBAF, JUMP

links-l . . . (linked only) to toggle between scaled links/edges and thin lines
(figure 20.11).

Labels-+ . . . to toggle between existing “Labels” and the current node display.
Labels can be created/deleted in the drag-graph (section 20.12).

arrows-A/</> . . . (linked only) enter “arrows-A” to toggle showing arrows. Enter
“arrows-<” to decrease, or “arrows-> to increase, the arrow size by
10%. The default arrow start size can be changed in “settings-S”
(section 20.17).

in/out-z . . . (linked network-graph only) to toggle scaling based on inputs or out-
puts. “in/out” or “out/in” shows which is current. Nodes/links will
be scaled if curently unscaled.

layout: options . . .

file-f . . . to save node coordinates of the current graph layout, or load an exist-
ing file of the same system — a .grh file — suboptions in section 35.3.

graph-g . . . (ibaf-graph only) to reset the default ibaf-graph layout of separate
basin components, useful if it was rearranged with the other layout
options below.

circle/spiral-o/O . . . enter “circle-o” to show the graph as a circle, or “spiral-O” as a spiral.
Circle layout is the default (except for the ibaf-graph and the 2d or
3d network-graph). Spiral layout requires at least 30 nodes to look
right.

1d/2d(tog)/3d-1/2/3 . . . enter “1”, “2” or “3” to show the graph arranged in 1d, 2d or 3d
(examples in figures 10.5 - 10.7). This is especially relevant for a
network-graph where the underlying network is 2d or 3d — then the
graph in 2d or 3d is the default. The initial 2d network-graph is
either square or hexagonal according to the underlying network —
thereafter key “2d(tog)-2” toggles between square and hexagonal (as
in figure 10.6).

rnd-r/R . . . enter “rnd-r” to “shake” the layout, repositioning nodes randomly
nearby their current position. Enter “rnd-R” for a completely random
layout.

quit-q . . . to quit the initial-graph, returning to a point where the graph was
selected. For example, the network architecture prompt (section 17.1)
for the network-graph, and the “Attractor basin complete prompt”
(section 30.4) for the ibaf-graph and f-jump-graph, where return
would generate the next mutant.

20.10 Drag-graph options

A list of the options in the network/ibaf/jump-graph drag reminders (sections 20.8, 20.6.3) is set
out below in roughly the order they appear. The titles in red start with “node x:” giving the
active node’s number followed by the drag status described in “Drag-graph overview” section 20.4.

281

15

14 13 12 11

10
9

8
7

6

5 4

3

2 1

0

15

14

13

12
11

10

98
7

6

5

4

3

2

1

0

Dragging network-graph nodes and fragments of a 1d CA n=16, k=3, starting with Left: a
network-graph with 1d layout and Right: circle layout. Single nodes have been dragged,
and in both cases node 8 and its 2-step neighbors have been dragged and rotated.

35 34

33

32 31 30

2928 27 26 25 24

23
22

21
20 19 18

1716 15 14 13 12

11 10 9

8
7

6

5 4 3

2
1

0

35 34 33

32

31 30

29
28

27 26 25 24

23
22

21
20 19 18

17
16

15 14 13 12

11 10 9

8
7

6

5 4 3

2
1

0

Dragging network-graph nodes and fragments starting with Left: a regular 2d network-graph of
a 2d CA 6×6, square k=5, and Right: hexagonal k=6 network. In both cases, a node has been
dragged from the top row, node 22 and its 1-step neighbors have been dragged and rotated, and a
2d block (0 — 8) has been dragged and rotated from the lower right hand corner.

59 58 57 56 55

54

53

52 51 50

49 48 47

46

45

44

43

42 41 40

39 38 37

36 35

34

33

32 31 30

29 28 27 26
25

24

23

22
21

20

19 18 17

16
15

14 13 12 11
10

9 8 7
6

5

4 3 2

1
0

Dragging network-graph nodes and fragments starting with a regular 3d network-graph
5×3×4, k=6. Node 46 was dragged from the top level, node 38 and its 1-step neighbors
were dragged and rotated, and a fragment (0 — 26) was dragged and rotated from the
lower right hand corner.

Figure 20.18: Examples of dragging nodes and fragments for 1d, 2d, and 3d network-graphs, including
single nodes, linked fragments and blocks.

282 CHAPTER 20. INTERACTIVE GRAPHS: NETWORK, IBAF, JUMP

Keyhits usually take effect without entering return, but in some cases there are suboptions as
noted. The options apply to the active (single) node, or to the active “fragment” which can be a
“block”, a “linked fragment”, or “all nodes” (section 20.4) . Options that require a given context
are indicated — for example “(linked only)”, “(fragment only)”, “(single only)” . Note that the
active node can be outside a “block” as well as inside. As a check, drag any node to see which
nodes move — these make up the currently active fragment.

options . . . what they mean

drag-leftb . . . click the left mouse button on a node to activate it and hold down to
drag the node or fragment — then release in a new position. Initially,
to activate a node it may be necessary to click the right button first,
then the left, possibly a few times. Hence the reminder,

not active?-rightb button-first

PScript-P . . . to save the current graph image as it appears — a vector PostScript
file — suboptions in section 20.15).

elstc/snap-d . . . to toggle between two methods of dragging nodes or fragments. By de-
fault, a node (+fragment) is dragged with “elastic” links and graphi-
cal animation Alternatively, animation can be suppressed and the ac-
tive node dragged leaving a trail — on release, the node (+fragment)
and links “snap” into place and the trail disappears (figure 20.6). For
large graphs “snap” is a more efficient method. Enter “d” to toggle
between the two — the order of “elstc/snap” and “snap/elstc”
shows which is active,

rotate-x/X . . . (fragment only) to rotate the active fragment about any position
pointed to by the cursor, by the default angle of 15 degrees, The
default can be revised in the initial-graph (section 20.17). Enter “x”
to rotate clockwise, or “X” anti-clockwise.

flip-h/v . . . (fragment only) to flip the active fragment about any position pointed
to by the cursor, enter ‘h” to flip horizontally, or “v” to flip vertically.

gap-g . . . (linked only, applies the whole graph in any status) to recursively dis-
connect “gap nodes” which have only inputs or only outputs, so cannot
transmit information (section 20.4.8). Applies to the whole graph in
any drag status, or to the ibaf-graph as a single basin isolated with
“just-j” (section 20.4.8).

nodes-= . . . (equals sign) to cycle (toggle) though successive node displays
(figure 20.5) as follows,

ibaf-graph: . . . 6-way, discs/dec/hex/1d/2d/empty.

linked network/jump graph: . . . 3-way discs/decimal/empty

unlinked network/jump graph: . . . 2-way discs/decimal.

nodes-E . . . (fragment status only) to equalise the display/size of all nodes in the
fragment according to the active node, which can be outside a “block”
as well as inside.

283

nodes-(/) . . . (simple brackets) enter “(” to contract, or “)” to expand the cur-
rent node display by default factors5. For decimal/hexadecimal, con-
tract/expand by font pixel size between 6px and 150px (figure 20.4).

links-{/} . . . (curly brackets) enter “{” to contract, or “}” to expand the length of
links (or distance between nodes for unlinked graphs) by the default
factor5.

both-[/] . . . (square brackets) enter enter “[”to contract, or “]” to expand both
nodes and links/distances at the same time by the default factors5.

just-j . . . (ibaf-graph only) to show just the basin with the active node, which
is a separate component, to work on it in isolation. The other basins
(components), are still there but invisible, so clicking in an emply
space could switch to a different isolated basin. Enter “just-j” again
to toggle between the isolated and all basins.

block-B . . . (“single” status only) to define a block — suboptions in section 20.11.
The outer edges of the block can be set, or defaults accepted — the
last two nodes that were activated. For a linked network-graph in 2d
or 3d the outer edges can be the outer corners of a 2d or 3d block —
Block 6-21 (for example) appears in the title.

exit-block-B . . . (in block status) enter exit-block-B to exit a block and revert
to “single” status, or exit by changing status with “single-s”,
“in/out/either-i/o/e”, or “all-a”.

Label-L/+ . . . (“single” status only) to create (or remove) a multi-line label at the
active node — suboptions in section 20.12. Enter “Label-+” (plus
sign) to toggle between all labels and the current node display. Labels
persist if reverting to the initial-graph where all labels can also be
toggled with “Label-+”.

Lnk23: cut/restore-c/r . . . (linked-fragment only, for example) enter “cut-c to cut (discon-
nect) the active node from its immediate links, depending on which
option, inputs, outputs or either is active. Enter “restore-r to undo
the cuts.

link 23-19: cut/add/restore-C/A/R . . . (linked fragment only, for example) The active
and previously active node numbers appear in the prompt. Enter
cut-C to cut or add-A to add a link (or links) between the pairs, or
restore-R to restore — depending on which option, inputs, outputs
or either is active.

net-# . . . to restore the original links in the graph, undoing any cuts or addi-
tions. Existing cuts/additions are conserved when reverting to the
initial-graph, but can be restored with the initial option “net-#”.

step-(1-9) . . . enter a number between 1 and 9 to limit a linked fragment by the
distance from the active node. measured in link-steps (time-steps for
the ibaf-graph) — a continuous chain of directed edges depending on
which option — inputs, outputs or either — is active. For example,

5Default contract/expand factors, for discs (and 1d/2d patterns in the ibaf-graph), and also for links, can be
reset with setting-S in the initial-graph (section 20.17).

284 CHAPTER 20. INTERACTIVE GRAPHS: NETWORK, IBAF, JUMP

enter “1” for immediate links, “2” up to 2 steps away, etc., up to 9
steps. The current status is shown in the drag reminder, for example
step=1. For unlimited enter “0” (zero) as below. This can be set in
any drag-status but appies for a linked fragment.

nolimit-0 . . . enter “nolimit-0” (zero) for an unlimited linked fragment, a continious
chain of links relative to the active node, depending on which option
— inputs, outputs or either— is active. Gap nodes would interrupt
such a chain. step=nolimit is shown in the drag reminder. This can
be set in any drag-status but appies for a linked fragment.

single-s . . . to set “single” drag status for dragging just the active node. The title
changes to single node 23: (for example). Single status also allows
“blocks” and “labels”.

in/out/either-i/o/e . . . enter “in-i”, “out-o” or “either-e” to define the type of link —
inputs, outputs or either (shown in the title) for dragging linked
fragments.

all-a . . . enter “all-a” to drag all nodes, the whole graph. The title changes to
all nodes:.

exit-q . . . Enter “q” to exit the drag-graph and return to initial-graph and re-
minder. (sections 20.9). Its easy to flip between the two reminders to
implement alternative functions.

20.11 Defining a block
drag-graph — see also section 20.4.5

If “single:” status is active in the drag reminder (section 20.4.4) enter block-B to define a block6

in 1d, 2d or 3d. For a 2d or 3d network-graph, a block can be defined according to its 2 outer
corners. For a jump-graph or a 1d network-graph, the block is simply a range of nodes between an
upper and lower limit (as in section 17.6.3). The easiest way to set the block is to click (activate)
the outer corners to set the defaults. Make sure these are really activated by checking that the
node number appears in the drag reminder, for example “node 301”. Any pair of opposite
corners can be defined by clicking in any order, which will be converted automatically to the lower
right and upper left corners in the following top-right prompts, where defaults can be accepted or
the block set by hand depending on the type of graph.

for a 1d network n=62, or ibaf-graph or jump-graph
define 1d block:
1d block (0-61, def 49-59), (values shown are examples)

low:
high:

6The block methods are similar in chapter 17 “Reviewing network architecture” (sections 17.6.3, 17.7.5, 17.8.5).

285

for a 2d network-graph, 22x22
2d network: define block: 1d-1, 2d(def):
2d block (this=5,2 max=21,21), (values shown are examples)

low corner (def 5,2) i: j:
high corner (def 7,5) i: j:

for a 3d network-graph, 6x6x6
define 3d network 1d-1 3d-(def):
3d block (this=0,3,0 max=5,5,5), (values shown are examples)

low corner (def 0,3,0) i: j: h:
high corner (def 5,3,5) i: j: h:

Enter return to accept each default, or enter new coordinates. Enter “q” at any point to
abandon the block and reveret to “single:” status. Once a block is activated,

node 700, Block 267-700: (for example)

appears in the title, and “exit-block-B” in the drag-reminder. For a network-graph, a 1d block
can apply for a 2d or 3d if “1d-1” is selected first, otherwise the coordinates of the opposite (low
and high) corners define the block.

Once the block is defined, dragging any node (whether inside or outside the block) will also drag
the block, and “rotate-x/X”, “flip-h/v”, will apply just to the block, centered on the cursor.

Enter “exit-Block-B” to exit the block and revert to single node status, or exit by changing the
status with one of “s/i/o/e/a”.

20.12 Labels at nodes
drag-graph — see also section 20.4.6

Arbitrary labels of up to 90 characters and multiple lines can be made at graph nodes on top of
(or below) the current automatic node display. This is done from the drag-graph in “single:”
status where “Label-L/+” appears in the drag-reminder — enter “L” to set a label at the active
node. All existing labels are toggled on/off with “+” (plus key) in any situation including the
initial-graph which inherits labels from the drag-graph. A reminder “Label-+” is included in the
initial-reminder. Current node displays, with or without labels, appear as usual and are toggled
to alternative displays with key “=”(equals key).

To set a label make sure “single:” status is active, or reset with “single-s”, then click to
activate the selected node — top-left “node 926, single:” (for example) will appear in the title,
then enter “label-L” for the following top-right label-prompts presented in sequence below — for
example, the ibaf-graph in figure 20.19,

node=287 (0-1024) Label: empty (if a label has not been set, or was deleted)

accept-ret new-n:
or
node=509 (0-1023) Label: ”My special\node is\HERE” (the current label, for example)

accept-ret delete-d new-n:

Enter return to accept the empty or current label or “delete-d” to delete a current label. For
a new label enter “new-n” giving further reminders below, together with a flashing cursor on the
4th empty line to enter the new label.

286 CHAPTER 20. INTERACTIVE GRAPHS: NETWORK, IBAF, JUMP

node=287 (0-1024) Label: empty (for example)

accept-ret, new-n:n enter new Label max 90 chars (if “new-n” was selected)

back-backspace, linebreaks-”\”, complete/exit-ret (reminder notes)

(flashing cursor for input)

At the flashing cursor, an immediate “return” will also delete an existing label. Type the
new label characters (max 90) using the “\” (backslash) key for line breaks and the space bar for
spaces. A leading backslash will start text one row down for a numbered node (in dec or hex) to
remain visible, as in some labels in figure 20.19. To backtrack use the “Backspace” key, not lower
case “q” which can be part of the label7, together with most items on the keyboard’8 including
punctuation and the space-bar, but “\” (backslash) is reserved for line breaks.

Enter return to complete the label and exit the label-prompts. The label appears immediately
in the graph with the bottom-left of the first character at the node center if not displaced by
linebreaks or spaces. A label will stay attached to its node when nodes or fragments are dragged
or the graph rearranged. The current image including labels can be saved as a PostScript file
(section 20.15) as usual, but there may be small differnces in text size between the screen and the
PostScript images, which can be examined in GhostView (chapter 36).

The default label text size can contract/expand (not for DOS) by applying “(” or “)” to the
active node while in numbered node display — the label font size will correspond, so its a good
idea to toggle the node display to numbers prior to setting a label. During the actual dragging
phase (left button depressed, drag) all alphanumeric displays — numbered nodes and labels —-
revert to the default font size, or the font size reset in the initial-graph — once dragging ends (left
button released, drop) the correct font sizes will reappear, though a repeat of drag/drop, just a left
click, is sometimes required. Note that “nodes-E” to equalise text size in a fragment will include
labels.

03dfMy special
node is
HERE

943

039e
state 926 in this
basin of attraction
v2k3 n=10 rcode=146

775

736

651

509
"Garden of Eden" state
a "leaf" of the
subtree

0175testing my keyboard
querty 1234567890
!"%^&*()+=
{}[]:@~;’#<>?,./|

216
subtree as

2d bits

168
subtree as
1d bits

81
SUBTREE
DISPLAYED AS
NUMBERS

58

Figure 20.19: An example of arbitrary labels in the ibaf-graph with “Label-L”, in various text sizes.
The methods apply equally to the network-graph and jump-graph. In this example the ibaf-graph (v2k3
n=10 rcode 146) has unscaled nodes and edges, and the basin was isolated with “just-j”. The default
label starts over its node, but can be lowered with a leading line break to display the node number if
active. Nodes can still be toggled (key ’=’) for single states or fragments.

7In other contexts in DDLab lower case ’q’ is used to backspace, and backtrack in the prompt sequence
(section 4.1.2, 4.1.1).

8The ’£’ (UK pound sign) may not work.

287

20.13 Probabilistic “ant”
initial-graph

Enter “ant-a” in the initial-graph (section 20.9) to launch a projectile or probabilistic “ant” in the
graph. The ant has a red body and leaves a black trail as it moves along the directed links between
nodes. The default path starts at a random (or selected) node and traces a continuous Markov
chain, a path that targets the next link according to jump probabilities. Alternatively each step
can restart at a biased random node. The “ant” keeps track of the frequency of visiting/hitting
nodes for an arbitrary sample9 of hits.

20.13.1 Active ant options

While active, a number of ant options are presented in a top right prompt as follows,

probabilistic ant: quit-q speed-</> pause-p
rndnode-r redraw-d
showhits/options-h showant(ON)-a rndant(OFF)-s:

options . . . what they mean

quit-q . . . quit the ant routine and return to the options in section 20.9.

speed-</> . . . enter “<” to slow the ant down, or “>” to speed it up.

pause-p . . . to pause the ant — a top-right inset will appear, for example
node=7, new: xxx showing the current node hit, and the
chance to enter a new start node — enter return to resume.

rndnode-r . . . restart the ant at a node selected at random — continue to keep
track of node visits.

redraw-d . . . redraw the graph to delete the ant trail — continue to keep track
of node visits.

showhits/options-h . . . pause the ant to show the frequency of ant-hits so far, and other
options — see section 20.13.2 for more details.

showant(ON)-a . . . toggle the display of the ant and its trail. The current status (ON
or OFF) is indicated. If the ant graphics are off, the statistics of
hits are gathered much faster.

rndant(OFF)-s . . . toggle between a continuous ant (the default) and restarting at
random nodes for each step. The current status, ON or OFF, is
indicated — see below for more details.

With rndant(ON) a different kind of sample is produced; at each step the ant is re-started
at a random node, but biased by node-weight. Thus the ant can hit all reachable nodes even
in separate components. By contrast, the default rndant(OFF) starts at a random node and
follows a Markov chain, a continuous path according to the output probabilities in the graph.
Some graphs are fully interlinked, but in a graph consisting of distinct components the ant will be
trapped inside10 one of the components.

9The maximum sample of ant-hits is the maximum size of an unsigned long int -1 = 4294967295. If this is
reached “Show ant-hits” (section 20.13.2) is activated automatically.

10Note that the eigenvectors of the jump table of a component (which may be the whole graph) should be the
same as the list of hit frequencies of the component.

288 CHAPTER 20. INTERACTIVE GRAPHS: NETWORK, IBAF, JUMP

With rndant(OFF) the ant can become stuck at a node with just one output to itself, or
a node with zero outputs. In the latter case the hit-promp, section 20.13.2 below, will activate
autmatically, with the added message - no targets, and stuck at node 3 — for example.

20.13.2 Show ant-hits

(a) The ant has a red body and leaves a black trail.
Soon after launch the ant was paused while moving (in
slow motion) from node 4 to 9. The default animation
speed is very fast but can be controlled with “</>”.

(b) The percentage of ant hits at each node after 5
million moves — with ant animation disabled this took
a few seconds. Node 7 indicated by 0 is unreachable
from other nodes so has zero hits.

Figure 20.20: (a) A probabilistic ant moving along directed links between nodes. (b) Ant hits, or node
visits (enter “h” followed “n”). Ant hits can be compared with basin (node) volume in (a) and the
jump-table in section 20.2. This example is for the jump-graph of the RBN v2k3, n=10, defined in
figure 20.11.

Enter “h” in section 20.13.1 while the probabilistic ant is active (or stuck) to show the number of
hits so far and the percentage at each node. The nodes will be redraw and scaled according to hit
frequency — edges, and nodes with zero hits are not shown. The following top-right options are
presented, for example,

showing % hits on each basin (or each node for a network or ibaf graph)

total hits so far=1453697 rndnode-r rndant(OFF)-s
show % frequency-n noNodes-N quit-q cont-ret:

options . . . what they mean

total hits so far . . . total hits when pausing “h” or autmatically if hitting a node
with zero outputs with “rndant(OFF)”.

rndnode-r . . . restart the ant at a node selected at random — continue to keep
track of node visits.

289

rndant(OFF)-s . . . toggle between a continuous ant (the default) and restarting at
a random (biased) node for each step. The current status, ON
or OFF, is indicated as described in section 20.13.

show % frequency-n . . . to add the frequencies of hits (as a percentage of total hits so
far) to the scaled nodes (as in figure 20.20).

noNodes-N . . . to show just the frequencies without showing the nodes, which
might be necessary if large nodes obscure the data.

quit-q . . . quit the ant routine and return to the initial-graph options
(section 20.9).

cont-ret . . . enter return to exit the ant-hit-options and continue ac-
cumulating ant-hits, returning to the active ant-prompts
(section 20.13.1).

20.14 Redraw basins at jump-graph nodes
initial options, f-jump-graph only — see section 20.7.1

When drawing the basin of attraction field, the number of basins, their attractor periods, transient
lengths, in-degree — so the sizes and shapes of basins — are hard to predict. A compact layout in
the main window without overlaps can be somewhat difficult using the methods in chapter 25. This
is solved by the ibaf-graph, but a previous method, to draw basins at the nodes of the f-jump-graph
(with or without edges) retains some advantages. It allows geometric (circle/spiral/1d/2d/3d) or
any other layout, which can be saved as a PostScript file if this option was set in section 24.2. The
detailed basin layout can also be saved — the positions of each state in the uncompressed basin
of attraction field — for loading back into the ibaf-graph (section 20.14.1).

The options for drawing basins at nodes with “basins-i/I/s” in the f-jump-graph initial
reminder (section 20.7.3) are explaned below.

prompt . . . what it means

basins-i . . . to redraw the basins centered at the jump-graph nodes positions, but without
the jump-graph itself — suppressing nodes and/or edges, as in figure 20.21.

basins-I . . . to keep the jump-graph, drawing basins within the nodes as in figures 20.22(a)
and 20.23.

basins-s . . . to rescale the basins to be redrawn in the jump-graph, the following top-right
prompt is presented, for example,

change basin scale for graph (rad main window=38.9
select attractor rad (min 0.24 def 19.0): (if the default was changed)

Enter return to accept the default, or enter a new attractor radius which up-
dates the default for the current jump-graph session. This can be estimated in
relation to “rad main window” set in section 25.2 which is not affected (check
with “win-w”), or the current jump-graph default.

290 CHAPTER 20. INTERACTIVE GRAPHS: NETWORK, IBAF, JUMP

(a) all 73 basins — nodes and fragments were dragged starting from a circle layout.

(b) the 11 prototype basins, from a square layout.

Figure 20.21: Inserting basins in the jump-
graph for a 1d CA v2k3, n=10, rule (dec)133,
(a) uncompressed, (b) compressed. For a 1d
CA, if edges were omitted in the f-jump-graph
(section 20.7.1) the basin of attraction field
can be compressed (section 26.2) to include
just the prototype (non-equivalent) basins —
otherwise all basins are shown. This pro-
vides an alternative layout method to the ibaf-
graph, which does not allow compression.

20.14.1 Saving jump-graph basins to reload in ibaf-graph

For an uncompressed basin of attraction field, state-space coordinates (drawn in the f-jump-graph)
can be saved, to reload into the ibaf-graph. Once basins are drawn, the top-right basin data window
(section 27.2.1) will pause, with the following prompt in red,

PBC basin types=15 total basins=15 (for v2k3 1d CA rcode 110, n=10)
n=10 field=1024 g=442=0.42 0.033sec cont-ret, savelayout-s:

Enter savelayout-s to record the coordinates of each state in state-space (a .grh file —
section 20.16) — which can later be loaded back into the ibaf-graph of the same system, with its
inital option file-f (section 20.6.2) to reproduce exactly the same layout (figure 20.22).

291

15

14

13

12
11

10

9

8

7

6

5

4
3

2

1

(a) circle layout jump-graph
with basins drawn inside nodes.

(b) ibaf-graph with the jump-graph basin data loaded
from (a) has exactly the same layout as (a).

Figure 20.22: Reloading jump-graph basins coordinates (.grh file) into the ibaf-graph for an exact
copy of the state-space layout, in this case ibaf basins in a circle. 1d v2k3 CA rcode 110, n=10

A file state-space not equal to ibaf-graph state-space will givae a top-right warning,

can’t load: file nodes=1025, graph nodes=2049, cont-ret: (for example)

Whereas a matching state-space but for a different system will load, but produce scrambled
links.

20.14.2 PostScript of jump-graph basins

Creating a vector PostScript file of attractor basins, whether drawn in the main windows or in
the jump-graph, is activated in the “basin parameters” sequence of prompts, option “PScript-P”
in section 24.1. To go directly to the PostScript prompt enter “P” at the first output parameter
prompt, or arrive there by viewing the basin parameters in sequence.

The following top-right prompt is presented (see also section 24.2),

if saving to PostScript is currently active
save basin to postScipt (now p): greyscale-P color-p cancel-0: (for example)

if saving to PostScript is currently inactive
save basin to postScipt (now OFF): greyscale-P color-p: (for example)

Enter “0” to deactivate, “P” or “p” to activate — a filename prompt will be presented
(section 35.3). If saving to PostScript is active, a new file will be created and overwritten to
the selected filename each time an attractor basin is drawn (default filename my bPS.ps). To
conserve the file of the basins in the jump-graph, the default filename should be renamed with
utilities11 outside DDLab before a new attractor basin is generated.

11For example, rename in a terminal, look at the PostScript file in “GhostView”.

292 CHAPTER 20. INTERACTIVE GRAPHS: NETWORK, IBAF, JUMP

9

8

7

6
5

4

3 2

1

Figure 20.23: Basins of attraction redrawn at the jump-graph nodes, retaining the jump-graph itself.
In this example one state in each attractor is also displayed. To create this figure as a vector PostScript
file, the separate jump-graph and basin PostScript files were combined. This example is for the RBN
v2k3, n=10, defined in figure 20.11.

The PostScript files of the attractor basin and the jump-graph (section 20.15) are two separate
ASCII files, but can be combined (as in figure 20.23) by appending the basin file (without
headers) at the end of the jump-graph file in an external editor. Alternatively, concatenate the
files in the terminal — “cat my jgPS.ps my bPS.ps > combined file.ps” — for example. .

20.15 PostScript of interactive-graphs
both initial and drag graphs

Enter “P” at either the initial-graph or drag-graph to save the current graph image as it appears
— a vector PostScript file (chapter 36). The following top-right prompt is presented,

PostScript: greyscale-P color-p:

Enter “P” for greyscale or “p” for color. A filename prompt will be presented (section 35.3).
The default filenames are my ngPS.ps/my bgPS.ps/my jgPS.ps for network/ibaf/jump graphs.
Once saving is complete the program reverts to the graph reminders.

The PostScript image can be viewed in GhostView — enter “gv &” in the terminal (chapter 36).
For nodes as numbers or labels, there may be small differnces in text size between the screen and
the PostScript images.

293

20.16 Graph layout file
initial-graph

It is sometimes useful to save a graph layout where time and effort have gone into a particu-
lar arrangement such as an unravelled network-graph, a rearranged ibaf-graph, or a jump-graph
designed for redrawing basins at node positions (section 20.14).

Enter “file-f” at the initial-graph reminder (sections 20.5.3, 20.6.2, 20.7.3) to save the current
graph layout, or load a layout where the number of nodes in the file and current graph must
correspond. The following top-right prompt is presented,

graph layout file: save-s load-l:

Enter “s” or “l” to save or load. A filename prompt will be presented (section 35.3). The
default filename is my grh.grh. When loading, if the number of nodes in the file and current
graph do not correspond, the following top-right message is shown,

can’t load: file nodes=10, graph nodes=17: (for example)

If the file is successfully loaded, the current graph will snap into the new layout. The program
reverts to the initial graph reminder.

20.17 Revise settings
initial-graph

Enter “settings-S” at the initial-graph reminder (section 20.9) to change the default settings for
the rotation angle, the expand/contract factors for both nodes and links, and the arrow size on
links. The following top-right prompts are presented in sequence,

settings:rotation angle (start=15), now 15.00 degrees:
expand/contract nodes: factor (1 to 2, start=1.2), now 1.20:
expand/contract links: factor (1 to 2, start=1.1), now 1.10:
change arrow size: (.03 to 1.0, start=0.07), now 0.07:

If required enter the new settings where “start=x” are reasonable initial values when starting
interactive graphs. The allowed expand/contract factors for nodes and links range between 1.0 to
2.0. The current arrow size can be reset between 0.03 (tiny) and 1.0 (huge), which will take effect
at the next contract/expand keyhit with “arrows-</>” — the expand/contract factor is constant
at 10%, and arrows are toggled off/on with ”arrows-A” (section 20.9).

20.18 Unreachable nodes
initial options

Enter “Unreach-U” in the initial-graph to show up unreachable or hard to reach nodes by discon-
necting and/or isolating these node from the rest of the graph. A node is unreachable if it has
no input links from other nodes in spite of possible output links — in the adjacency-matrix or
jump-matrix (section 20.19), apart from self-links, there would be a blank column.

294 CHAPTER 20. INTERACTIVE GRAPHS: NETWORK, IBAF, JUMP

19

17

15

11

8 6
5

4

3

2

1

1:90
2:14
3:14
4:14
5:14
6:14
7:0
8:14
9:0
10:0
11:14
12:0
13:0
14:0
15:14
16:0
17:14
18:0
19:14
10:0
11:14
12:0
13:0
14:0
15:14
16:0
17:14
18:0
19:14
20:0
21:0
22:0
23:0
24:0
25:0
26:0
27:0

Figure 20.24: Disconnecting and isolating unreachable nodes. The disconnected nodes can be reposi-
tioned randomly on the far left side of the graph window, in this case with the default unreachability
threshold of zero. This example is for a jump-graph of a 1d CA, v2k3 rcode 104, n=10. The basins of
attraction were redrawn at the nodes (section 20.14). Right: The list of the number of jumps (inputs)
to each basin (node) — shown in the terminal by entering “xterm-x”.

An unreachability threshold of zero is the default for the jump-graph, and also for the ibaf-
graph to isolate garden-of-Eden states, but for the network-graph the default is one because in
DDLab each network node has at least one input. The unreachability threshold can be reset to
a higher value, so that a node is considered “unreachable” if it has x or fewer input links. The
following top-right prompts are presented in sequence,

unreachable nodes: xterm-x suppress-u restore-(ret):

if “suppress-u” is entered, the following further prompts are presented
isolate unreachable -i:
change unreachable threshold (now 0): (for the network-graph (now 1))

Enter “xterm-x” to list in the terminal the number of inputs to each node, to help select a
threshold. Enter “suppress-u” to suppress all links to nodes whose input links are at or below
the current threshold, or return to restore the links. If “suppress-u” was entered, at the next
prompt, enter ”unreachable-i” if you wish to isolate the unlinked nodes, repositioned randomly on
the left side of the window. At the next prompt a new unreachability threshold can be set. In the
resultant disconnected graph, invisible links are still functionally present so dragging fragments is
not affected by the disconnect. The original graph can also be restored with “net-#”.

295

20.19 The adjacency-matrix
initial options

Enter “t” or “T” in the initial options to toggle between an interactive-graph and its corresponding
square adjacency-matrix (also termed a “jump-table” for the jump-graph) where rows give outputs
and columns inputs, with the origin top-left. For the network-graph and jump-graph “t” shows
the numbers of links and “T” the fractions of total links from each node (sections 20.19.1 and
20.19.2).

For the ibaf-graph (section 20.19.3) enter “t” to shows a pattern (of pixels or blocks) where
rows show the single sucessor of each state (output), and columns show each state’s pre-images
(inputs) — there can be zero or more inputs. Enter “T” to show a list of exhaustive pairs in the
terminal as in section 29.7.4.

The adjacency-matrix is presented in the graph window with various top-right options to
amend/scan/save the presentation. Enter “t” or “T” again, or return to revert back to the
interactive graph. The following sections give further details for each graph type.

20.19.1 adjacency-matrix — network-graph

(a) rows show the numbers of outputs to other nodes.

(b) rows show the fraction of outputs to other nodes — the decimal point is omitted and the precision
depends on the column spacing which is adjustable. If all the outputs of a node are to just one other
node, this is indicated by 1, as for node 6 with all its outputs to node 8.

Table 20.1: The adjacency-matrix of the RBN v2k3, n=10, defined in figure 20.11. (a) The rows
(0 to n-1) outputs, columns (0 to n-1) show inputs. Zero values ar shown as dots. (b) This can also
shown as the fractions of each node’s total outputs. The last two columns show the total outputs and
inputs (k) for each node.

In an adjacency-matrix for the network-graph (table 20.1), rows (0 to n-1) show the numbers (or
fractions) of output wires from each network element (node) to each node (columns 0 to n-1),
so inputs can be read off columns. Two further columns headed “out” and “k” show the total
outputs and inputs from/to each node.

296 CHAPTER 20. INTERACTIVE GRAPHS: NETWORK, IBAF, JUMP

20.19.2 adjacency-matrix — jump-graph

(a) rows shows the number of jumps from each basin (rows) to each basin (columns).

(b) rows show the fraction jumps to other nodes — the decimal point is omitted and the precision

depends on the column spacing which is adjustable. If all the jumps from a node are to just one

other node, this is indicated by 1,

Table 20.2: The jump-matrix for figure 20.23 and defined in figure 20.12. There are n=9 basins of
attraction. (a) The rows (1 to 9) show the number of jumps from each basin to other basins (columns
(1 to 9)). Zero values are show as dots. (b) Shows the fractions of each basins’s total jumps.

In an adjacency-matrix (jump-matrix) for the jump-graph (table-20.2) with N basins in the basin
of attraction field, rows (1 to N) show the numbers (or fractions) of jumps (outputs) from each
basin to each basin (columns 1 to N), so incoming jumps (inputs) can be read off columns. Four
further columns provide additional data as follows,

label . . . what it means
P . . . the period of the attractor.
J . . . the total number of possible 1-bit flips or jumps, which equals the

network size multiplied by the attractor period, n× P .
Volume . . . the total number of states in the basin of attraction, and its percentage

of state-space, for example 110=10.74%.
Self . . . the percentage of total jumps J that are self-jumps.

20.19.3 adjacency-matrix — ibaf-graph

For the ibaf-graph, enter “T” to show the list of exhaustive pairs in the terminal as in section 29.7.4.
Enter “t” for the adjacency-matrix displayed as a pattern of E=vn unique successors (outputs)
of each state in state-space within an E×E unnumbered matrix with the 0-0 origin top left —
growing exponentially with system size n. Initially the matrix is confined within a fixed sized frame
that fits comfortably within the matrix window, but where pixels might overlap, but this can be
expanded to exclude overlap (stage +1) giving a non-overlapping pixels pattern. Further stages
(+2, +3, etc) give square bars — 2×2 pixels, 3×3, etc. The non-overlapping patterns will escape
the matrix frame, but there are options to jump to a new origin or move the pattern up/down and
left/right, or to contract back.

297

(a) initial ibaf-matrix in a fixed frame.

(b) expanded +1: output is one pixel.

(c) expanded +4: output is 4 pixel block.

Figure 20.25: The ibaf-matrix of the ibaf-graph for the v2k3 CA rcode 30 n=10 with E=vn=1024
states in 6 basins (ibaf-graph figure 20.26). Compare the pixel-pattern with the return map for the
same rule (figure 31.5). (a) The initial E×E matrix is confined within a fixed size frame. The matrix
can be expanded, showing as much as will fit. (b) The expanded matrix, still with single pixels — top
left area. (c) Expanded to 4-pixel blocks — top left area.

1023

1022

1021

1020

1019

1018

1017

1016

1015

1014

1013

1012

1011

1010

1009

1008

1007

1006

1005

1004
1003

1001

1000

999

998

997

996

995

994

993

992991

990

989 988

987

986

985

984

983

982

980

979

978

977

976

975

974

972

971

970

969

967

966

965

963

960

959

958

957

956

955

954

953

951

950

949

948

947

946

943

942

941

939

938

936

935

932

931

930

928

927

926

925

924

922

921

920

919

918

916

915

914

911

909

908

907

904

903

902

901

900

898

897

896
895

894

893

891

890

889

888

887

886

885

884

883

882

881

880

879

878

877

876

875

874
873

872

871

870

869

868

866

865

864

863

862

861

860

858

856

855

854

853

852

850

848

847

844

841

840

839

838

837

836

834

833

831

830

829

828

827

825

824

823

822

821

820
819

818

816

815

814

813

812

810

809

808

807

806

805

804

802

800

799

798

797

796

795

793

792

791

790

787

786

785

784

783

781

780

779

778

777

776

775

774

773

772

771

770

769
767

766

765

764

762

761

760

759

758

755

754

753

750

749

748

747

746

745

744

743

742

741

740

739

737

736

735

734

733

732

731730

729

728

727

726

725

723

721

719

717

716

715

714

713

712

710

708

707

705

704

703

702

701

699

698

697

694

693

692
691

690

689

688

687

686

685

684683

682

681

680

679

676674

673

672

671

669

668

667

666

665

661

660

659

658

657

656

655

654 653

652 651
650

648

646
645

644

643

642

640

639

638

637

636

635

632

631629

628

627

626

625

624

623

621

620

619

617

614

613

612

610

608

607

606

605

604

603

601

599

598

597

596

595

594

593

592

591

590

589

588

587

586

585

584

583

582

581

580

578

577

576

575

574
571

570

569

568

567

566

564

563

562

561

560

558

557

556

554

552

551

549

548

547

546

545

544

543

542

540

539

538

537

536

535
534

533

532

531

530

529

528

527

526

525

524
523

521520

519

518
517

516

515

514

512
511

510

509

508

507

506

505

504

502

501

500

499 498

497

496

495
494

493

492

490

489

488

487

486

485

484

483

482

480

478

477

475

474

473

471

469

468

466

465

464

463

462

461

459

458

457

456

454

453
452

451

450

449

448

447

445

444

443

441

440

439

438

437

436

435

434

433

432

431

430

429

428

427

425

424

423

422

420

419

418

417

415

414

412

411

410

409

408

407

406

405

404

403

402

401

400

399

397

396

393

392

391

387

386

385

383

382

381

380

379

376

375

374

373

372

371

370

368

366

365

363

361
359

358

357

356

355

354

352

351

349

348

347

345

344

343

342

341

340

338

337

336

335

334

332

330
329

326

325

324

323

322

321

320

319

318

316

315

314

313

312

311

310

309
308

307

306

304

303

302

301

299

298

297

296

295

294

293
292

291

290

289

288

287

285

284

283

282

281

280

279

278

277

276

274

273

271

270

269

268

267

265

264

263

262

261

258

257

256
255

254

253

252

251

250

249

247

245

242

241

240

239

238

233

232

231

229

228

227

226

225

224

222

220

219

218

217

216

215

214

212

211

210

208

206

205

203

202

201
200

198 197

196

194

193

191

190

188

187

186185

184

183

180

179

178

177
176

175

174

171

170

169

168

167

166

165

163

162

161

160

159

158

157

156

155

154

153

152

151

150

149

148

147146

145

144

143

142

141

140

139

138

137

135

134

132

131

129

128

127

126

125

124

120

119

118116

113

112

111

110

109

108

107

106

105

103

101100

99

98

97

96

93

92 90

89

88

85

84

83

81

80

79 78

77

76

75

74

73

72

71

69

68

67

66

65

64

63

62

60

59

58

56

55

54

53

50

49

46

45

44

42

41

40

39

38

37

36

34

33

32

31

30

29

28

27

25

23

22

20

19

18

17

16

15

14

13

11

10

9

8

7

6

5

4

321

0

Figure 20.26: The ibaf-graph showing numbers, v2k3 rcode 30 n=10. Its ibaf-matrix is shown in
figure 20.25.

298 CHAPTER 20. INTERACTIVE GRAPHS: NETWORK, IBAF, JUMP

In figure 20.25 (of the ibaf-graph in figure 20.26) unnumbered rows (0 to E-1) show a state’s
single sucessor (output) to unnumbered columns (0 to E-1). Pre-images (inputs) can be read off
columns and their absence in a column denotes a garden-of-Eden state.

The resulting pattern has fractal characteristics — — a signature of the dynamical system,
very similar if not identical to the “return map by value” (figure 31.5) constructed from space-time
patterns running forward (section 31.2.2.2).

20.19.4 adjacency-matrix options

For all three graph types, when the adjacency-matrix is visible, the following top-right options
allow the matrix to be scanned to see all parts of a large table where the data does not all fit inside
the window, or to printed the data in the terminal,

adjacency-matrix: exit-ret xterm-x exp/cntr(2)-e/c
jump(0-1023)-j down/up/right/left-d/u/r/l origin-o

options . . . what they mean
exit-ret . . . exit the adjacency-matrix and return to the interactive graph and

prompts in section 20.9.
xterm-x . . . print to the terminal — for the network and jump graphs: the

adjacency-matrix, for the ibaf-graph: print the list of “state:
successor” — which is the same as the “exhaustive pairs” list
(section 29.7.4) but without state bits.

exp/cntr(0)-e/c . . . to expand/contract the matrix, where “(0)” indicates the initial
(minimum) scale, and thereafter shows the current scale, “(3)” for
example. For the network and jump graphs “e” expands the x
coordinate (columns) by 1 pixel up to a maximum of 9 pixels, “c”
contracts correspondingly. For the ibaf-graph and “t” selected in
the initial options, both the x and y coordinates expand/contract
by 1 pixel as well as the block representing the pattern of unique
sucessors, minimum 1 pixel, maximum 30 pixels.

jump-j . . . jump to place a given row and column in the top-left position of the
table. The following top-right prompt is presented,

jump: row: column:

down-d . . . move down, increase the first row index.
up-u . . . move up, decrease the first row index.

right-r . . . move right, increase the first column index.
left-l . . . move left, decrease the first column index.

origin-o . . . redraw the matrix with the top-left origin starting at the first row and
column.

299

20.20 Space-time patterns within the network-graph
initial options, f-jump-graph only (section 20.7.1)

Space-time patterns can be shown running within the network-graph layout (with links omitted)
simultaneously to the normal presentation described in chapter 32. Enter “g” at the space-time
pattern interrupt/pause prompt (section 32.16) to set up the network-graph while space-time
patterns are running — section 32.19 gives further details.

This allows enormous flexibility, as the network-graph has various default layouts: circle, spiral,
1d, 2d (square or hex), 3d, as well as allowing dragging nodes and components, and many other
options for rearranging the graph (figures 32.42 — 32.43).

Once the network-graph space-time patterns are running, and the normal space-time
presentation is in 2d, diagonal scrolling can be set with on-the-fly key “#”. To produce a scrolling
image as in figures 20.27 or 4.10, suppress normal space-time patterns with on-the-fly key “J”.

Figure 20.27: A 2d space-time pattern shown running within the network-graph layout, which has also
been set to scroll diagonally. The present moment is the 2d pattern at the bottom-right.
2d CA 40×40, v3k6, kcode(hex) 0a502804958100.

20.21 network-graph from wring graphic — toggle
wring graphic initial options)

The interactive network-graph can be directly accessed from the wiring graphic (section 17.3)
allowing toggling between the two. A new option graph-g is added to the (1d, 2d or 3d) wiring
graphic reminder (section 17.4) to activate the network-graph — then the option win-w showing
what was “below” the graph window provides a useful toggle between the two presentations as in
figure 20.28. To resolve conflict, the wiring graphic option that was all-g is now changed to all-a.

300 CHAPTER 20. INTERACTIVE GRAPHS: NETWORK, IBAF, JUMP

To test, from a wiring graphic, enter ‘graph-g” for the following preliminary top-right prompt,

no links -N, show links -def:

Enter return to launch the network-graph with links, or “no links-N” without links. After
an interval to compute, the network-graph and its iniitial reminder will appear, including the
prompt “win-w” — enter “win-w” to toggle back (and forth) between the two without the need
to recompute. Note that “win-w” is only active in the wiring-graphic initial-reminder. In the
wiring-graphic there is a top-right inset “restore graph -any key:”, so key w or any other key
will work.

(a) wiring graphic

.toggle←→

(b) network-graph

Figure 20.28: Toggling between the wiring graphic and network graph. This example is for a randomly
wired 3d 9x9x9, k=1, network, and shows the wiring graphic (a) — its many options (section 17.4)
now include “graph-g” which computes and initiates the corresponding interactive network-graph (b).
Once visible, all network-graph interactive options (chapter 20) can be exercised, including “win-w”
in the “initial reminder” to toogle back to see the wiring-graphic, where “restore graph -any key:”
toggles back (and forth) to the network-graph without the need to recompute — the network-graph
remains in control and active. To exit the network-graph and reactivate the wiring-graphic, enter
quit-q from the initial reminder.

Chapter 21

The Seed or initial state
n-1
i-1 0

Figure 21.1: A 1d seed (initial state) is indexed as in section 10.2.1. This example is for a random
seed, n=33, v=6.

To run a network forwards, or to generate a single basin or subtree (i.e. if s was selected in
section 6.2.2), or if in TFO-mode, an initial state or “seed” is required1. This chapter describes
how the seed is specified and amended2, including random “blocks”, drawing with the mouse,
moving, manipulating and editing the presentation, and saving and loading the seed, or the image
in vector PostScript. For 2d these methods can be applied to just a predefined “patch” – useful
for designing and editing particle collisions for universal computation. Saving/loading can also be
done in the “Golly” file format.

Section 10.2 described how the network is indexed and arranged in a regular 1d, 2d or 3d lattice
(figures 10.5 — 10.7). The seed is indexed in the same way, as illustrated in figures 21.1 — 21.3,
and these figures indicate the presentation while setting the seed at random in section 21.3 or as
bits/values in section 21.4. Specifying a seed will assign a value from 0 to v-1 to each cell in the
lattice, colored according to the default colors (chapter 7).

21.1 The seed prompt

To set the seed a lower left window is displayed in the main prompt sequence. When resetting
a seed while generating space-time patterns or basins, the window appears in the lower center-
right. The size of the window varies according to previous parameters, but can be resized. The
exact wording of the prompt depends on the context (see examples below). In general, when first
setting the seed the default is rnd-r — for a random seed or central block with a given density
(section 21.3). If a seed was previously set, the default is bits-b — for amending, or drawing the
seed (section 21.4), manipulating a 2d patch, or saving/loading seeds or sub-seeds (sections 21.7
and 21.8) and vector PostScript images.

1Note that a seed is not required to generate a basin of attraction field.
2The methods are similar to “setting a single rule” in chapter 16

301

302 CHAPTER 21. THE SEED OR INITIAL STATE

col
i-1

col
0

row j-1

row 0

............ square lattice

col
i-1

col
0

row j-1

row 0

..................... hex lattice

Figure 21.2: A 2d seed (initial state) is indexed as in section 10.2.2, showing both square and hex
layouts. Division lines between cells shown here are light blue — the alternative is black, white, or none
— where cells touch (figure 21.7). This example is for a random seed [i, j]=[10,10], v=8.

0

1

2

3

4

5

6

7

le
ve

l H
=h-1

, c
ol

 I=
i-1

row J=j-1
level H=h-1

co
l I

=0,
 le

ve
l H

=0

row J=0
level H=0

I

J

H

Figure 21.3: A 3d seed (initial state) is indexed as in section 10.2.3.
The seed is presented in two ways simultaneously (2d+3d). Left: The
2d view: 2d horizontal slices or levels stacked above each other, with
the levels indicated. Right: a 3d isometric viewed from below, as
if looking up into a cage. This example is for a random 3d block
[i, j, h]=[6,6,6] within the 3d space [i, j, h]=[8,8,8], v=8 (see also
figure 21.4.10). In the 3d isometric, the background grid appears
if [I, J,H]≤40, but can be toggled.

303

example for a 1d network
Select SEED (v6 1d n=33), win-w empty-e fill-f prtx-x ascii-v
rnd-r bits1d-b bits2d-B hex-h dec-d repeat-p load-l (def-r):

example for a 2d network. Golly-G for v=2 only
Select SEED (v2 2d ij=10,10), win-w empty-e fill-f prtx-x ascii-v Golly-G
rnd-r bits2d-b hex-h dec-d repeat-p load-l (def-r):

example for a 3d network
Select SEED (v8 3d ijh=8,8,8), win-w empty-e fill-f prtx-x ascii-v
rnd-r bits2d+3d-b hex-h repeat-p load-l (def-r):

21.2 Methods for setting a seed

The meaning of the prompts for setting a seed3 in section 21.1 are summarized below. Further
details are provided in the rest of this chapter.

options . . . what they mean

win-w . . . to resize the seed window, which may be too small for effectively setting the
seed in bits or hex, subsequent prompts are presented, for example,

change window size (max-m), width (now 480): height (now 550):

Enter the new window width and height (minimum 50×50), or enter m for the
maximum in each case to fit the screen.

empty-e . . . to reset all cells to 0.

fill-f . . . to fill the seed with any valid value with the top-right prompt,

fill with value 0-4 (def 4): (if v=5)

This allows a clean slate for setting bits or values in section 21.4.

prtx-x. . . to show the seed in the terminal, both in hexadecimal, and as a string of values.
The values are shown in the same order and layout as in figures 21.1, 21.2 and
21.3Left, so for 2d and 3d according to the dimensions as in table 21.1.

05d0697c89d20d8234169391d65f707cd2e441
5640645
7442351
0154043
2026447
1072627
6701746
4562101

0451eeb4821c69fb2d6bca2d6c0a7de1f570609465025e
21217
35322
02070
64773

13265
71213
26601
23736

07653
40602
24312
01136

Table 21.1: Examples of displaying
2d and 3d seeds in the terminal.
Left: 2d 7×7, v=8.
Right: 3d 5×4×3, v=8.

3These methods are similar to setting a rule in section 16.2.

304 CHAPTER 21. THE SEED OR INITIAL STATE

ascii-v . . . to save or load the seed as an ASCII value string, a *.see file, described in
section 21.10. This is useful for interchanging the seed between DDLab and
alternative software.

Golly-G. . . (for 2d binary networks) to save or load the seed as an ASCII string in the Golly
file format, a *.gly file, described in section 21.11. This allows interchanging
the seed between DDLab and Golly software (hppt://www.conwaylife.com).

note . . . After the prompts above the program reverts to the seed prompt in section 21.1.
The prompts below set a seed and the program continues.

rnd-r . . . to set the seed at random or as a central block, for 1d, 2d or 3d. There are
various further options described in section 21.3, including setting the density,
or the value bias — the proportions of different values.

bits-b . . . to set the seed as bits or values (section 21.4) by “drawing” using the mouse or
keyboard, and many other options depending on network dimensions as follows,
bits1d: on a 1d graphic array for 1d networks. Subsequent prompts allows just
a segment to be set (section 21.4.6).
bits2d: on a 2d graphic array for 2d networks. This includes options for defin-
ing a patch which can be independently moved and manipulated (section 21.4.1)
bits2d+3d: on a 2d view of the 3d array (shown simultaneously) for 3d net-
works, as in figure 21.3.

bits2d-B . . . (for 1d networks) to set the seed as bits or values as above, but on a 2d graphic
(section 21.4.7), where the i, j aspect ratio can be changed (figure 21.8).

hex-h . . . to set the seed in hexadecimal, in a mini “spread sheet” (section 21.5).

dec-d . . . (if applicable) to set the seed in decimal (section 21.6).

repeat-p . . . a repeat of the last seed that was set in the current session.

load-l . . . load a seed from a .eed file (section 21.7).

Enter one of the responses above at the prompt in 21.1 or accept the default. Some of these
methods are described in more detail in the rest of this chapter.

21.3 Setting the seed at random

If r is selected or accepted in section 21.1, a seed, or just a central block of any size or shape, can
be set at random, or with some bias. When resetting a seed or block on-the-fly in section 32.8.1,
the central block size and the density-bias (and the value-bias) set here are respected. Firstly, a
subsequent prompt is presented to revise the default block size or to set an entire seed,

for a 1d network, n=150)
central 1d block (def diam 30) all-a (max 150):

for a 2d network, 88×44
central 2d block (def diam 17) rectangle-s all-a (max 88):

for a 3d network, 60×25×40
central 3d block (def diam 12) cuboid-s all-a (max 60):

hppt://www.conwaylife.com

305

1d n=20, block=10 2d 20×20, block=14×14 3d 5×5×5, block=3×3×3

Figure 21.4: Examples of the graphic output when setting a seed at random (section 21.3), in this
case a central random block, for 1d, 2d, and 3d — which is a 2d view of a 3d isometric simi-
lar to figure 21.3 Left. Note that the “random” presentation is less versatile than “bits or values”
(section 21.4).

The default central block size depends on the size and dimensions of the network and is a square
or cube for a square or cubic lattice. Otherwise, for any network axis a, the default block axis b
is set thus: a ≤ 5 b=a, a≤20 b=a/2, a>20 b=a/5. Enter return to accept the default. Enter a
different size for the random block which applies to all axes for a square or cube, but otherwise
to the largest axis or axes only. Enter a for a random seed filling the whole network. For 2d or
3d, enter s to specify an exact size of a rectangle or cuboid – subsequent prompts are presented as
follows,

for a 2d network, 88×44
rectangle: x(max 88, def 17): y(max 44, def 8):

for a 3d network, 60×25×40
cuboid: x(max 60, def 12): y(max 25, def 5): z(max 40, def 8)

21.3.1 Seed at random — further options

The pattern is created at random and displayed in the seed window as a bit/value pattern4 in 1d,
2d or 3d as in figure 21.4 according to the current density-bias of non-zero values which appears
in a top-right window (section 21.3.2).

At the same time various changes and transformations5 can be made (repeatedly) until return
is entered to accept the seed. A subsequent reminder is shown in a small font,

example for 2d (for 1d rotate-l/r, for 3d rotate-l/r/f/b/u/d)
tog-gaps-g exp/contr-e/c rotate-l/r/u/d another-n density-s/v comp-m back-q accept-ret

4The bits/values options in section 21.4 provide many extra presentation possibilities.
5These option are similar to setting a rule at random (section 16.3).

306 CHAPTER 21. THE SEED OR INITIAL STATE

These options are summarized below — with more detail in the sections indicated.

options . . . what they mean

tog-gaps-g . . . to toggle gaps between successive blocks of 8 bits/values.

exp/contr-e/c . . . enter e to expand or c to contract the current scale of the bit/value
graphic.

rotate-l/r/f/b/u/d . . . for 1d enter l or r to rotate the seed left or right by one cell. For 2d
l/r/u/d rotates about the i, j axes, and for 3d l/r/f/b/u/d rotates
about the i, j, h axes. Rotation is subject to periodic boundaries, a ring
of cells in 1d, a torus in 2d, and a 3-torus in 3d.

another-n . . . for another random seed or block with the same density or value bias.

density-s/v . . . enter s to change the density-bias — initially values have equal proba-
bility (section 21.3.2). Enter v to set the value-bias (section 21.3.3) the
proportions of different values in the seed.

comp-m . . . to toggle/transform the seed into its complement. For binary this changes
1s to 0s and vice versa. For v >2 each value a is changed to its comple-
ment ac = (v − 1)− a (as in section 16.20 for rules).

back-q . . . to backtrack to the first seed prompt (section (21.1) — the latest seed is
remembered, and can be amended with bits-b or hex-h.

accept-ret . . . to accept the rule. Once accepted, the seed can be saved in section 21.8.

21.3.2 Non-zero seed density-bias

The density of non-zero values in the random seed and/or block (expressed as a percentage) is
displayed in a top-right density window. The default is an equal probability of each value, so 50%
1s for binary. The following density window example relates to figure 21.5(a),

density (7-1s)exact=171/400=42.750%, block=171/196=87.245%, bias-87.500%

where “density (7-1s)” indicates the non-zero values, “exact” the current method of setting the
density as opposed to “prob”, then the actual density of the seed and the block (if defined), and the
default bias or the bias requested. The bias applies to a block if defined in section 21.3, otherwise
to whole seed. Enter s in section 21.3, or S for a 2d network in section 21.4.2, to change the
density-bias6 There are two alternative methods, exact or prob (exact is the initial default).
The following two stage top-right prompt is presented, for example,

for v=2, 22% entered, with prob as the default method

bias-density: enter % (def 50.000% prob):22 exact-e: (enter e to change to exact)

for v=8, 33% entered, with exact as the default method

bias-density: enter % (def 87.500% exact):33 prob-p: (enter p to change to prob)

Enter the new density-bias as a percentage — the result updates the density window — this
example relates to figure 21.5(b).

6The methods for seed density-bias are similar to rule density-bias (section 16.3.1).

307

(a) default density-bias=87.245% (b) reset density-bias=33%

Figure 21.5: Setting the v=8 density-bias for a central block 14×14 within a 2d seed i, j=20×20,
showing the default and reset density. The graphic output would appear as in figure 21.4, but is
presented here from “Setting the seed as bits or values” (section 21.4).

density (7-1s)exact=64/400=16.000%, block=64/196=32.653%, bias=33.000%

For binary this is the probability of setting 1s. For v >2 it is the probability of setting non-zero
values — set without bias. The new density-bias becomes the new default. If the prob method is
active the density-bias requested is applied as a probability, whereas the exact method will apply
the requested bias as closely as possible. To change the default method between prob to exact,
enter e or p as indicated. The density-bias and method will be maintained for further random
seeds or blocks generated with another-n in section 21.3, updating the density window, and when
re-setting random seeds for space-time patterns on-the-fly (section 32.8.1).

21.3.3 Seed or block value-bias 2 35 65
3 18 65 17
4 12 12 65 11

.................................... value-range v 5 9 9 65 9 8
6 7 7 7 65 7 7
7 6 6 6 65 6 6 5
8 5 5 5 5 65 5 5 5

0 1 2 3 4 5 6 7
% of each value

Table 21.2: The default seed value-bias if not reset. The current seed value-bias can be randomly reset
when running space-time patterns with on-the-fly keys \ (backslash) for the whole seed or / (forward-
slash) for a central block.

The frequency of values randomly assigned to a seed can be set for any distribution. If the frequency
has not been set by the methods below, a default frequency will apply based on percentages of
each value as in figure 21.2. The bias applies to the whole seed, but if a central block was defined
in section 21.3, only that part of the biased seed is assigned.

308 CHAPTER 21. THE SEED OR INITIAL STATE

Enter v in section section 21.3, or V for a 2d network in section 21.4.2, to set the proportions
of different values in the seed or block, either as whole number percentages, or as actual numbers
of each value if the seed size n ≤ 255. The following series of prompts are presented in a top-right
window7,

if S ≤ 255

bias random seed, %/value-p/v keep-k:

if S > 255

bias random seed, value-p keep-k:

if p was selected

0(100:45 1(55:4 2(51:4 3(47:4 4(43:9 5(34:9 6(25:18

if v was selected

0(120:56 1(64:7 2(57:7 3(50:7 4(43:12 5(31:12 6(19:15

Enter k to keep the last setting, otherwise enter p or v — then for each value, from 0 to
v-2, enter the percentage or number — the value for v-1 is set automatically. The availability for
successive allocations of each value is shown with a bracket, for example at 3(50: (for v=3) enter a
number ≤50. If exactly 50 is entered the allocation will halt as complete. Entering a number >50
or return results in allocating 50 divided by the number of remaining values, so entering return
repeatedly gives an even distribution.

A lower top-right window shows the resulting value-bias distribution for the example above,
where “0–7” (for v=8) indicates the order of values,

if p was selected

seed-bias: percent(100) 0-7: 7 18 9 9 4 4 4 45

if v was selected

seed-bias: numbers of values(120) 0-7: 56 7 7 7 12 12 15 4

If set, the value-bias will be maintained for further random seeds generated with another-n in
section 21.3 updating the density window, and when re-setting random seeds for space-time pat-
terns with on-the-fly keys \ (backslash) for the whole seed or / for a central block (section 32.8.1).

21.4 Setting the seed as bits or values

If b or B is selected in section 21.1 the seed can be set as bits/values in 1d, 2d or 2d+3d. 1d
networks can be displayed in both 1d (enter b) and 2d (enter B). Bits/values are set with the
keyboard or drawn with the mouse on the seed graphic, similar to figures 21.1—21.3. The default
scale of the bit/value pattern varies according to the dimension and size of the network, but can
be changed. The current position on the grid is indicated by a small flashing cursor, and in a
top-right inset window.

The colors correspond to the value colors (chapter 7) but 0s are initially colored light green.
The seed can be reset to all-0s with empty-e or to any uniform value with fill-f in section 21.1 to
provide a clean slate for setting new patterns. Alternatively, use this bit/value setting method for
fine adjustments to a seed set by other methods.

7The methods for the rule value-bias in section 16.3.2 are similar.

309

Figure 21.6: Playing with a 2d 10×8 active patch in a 2d seed [i, j]=[88,22]. The patch was set by
the last two mouse clicks when inactive, and activated with patch-p. Many options (colored red in
section 21.4.2) apply only to the patch, such as the presentation including the grid line color. Moving
the patch with l/r/u/d leaves a blank trail with the current grid line setting/color, and stops at an
edge. The patch has been jumped/copied with j to new pointer positions, and filled with colors and
random patterns — if the jump would cross an edge it is truncated, and the smaller size is retained.
Drawing with the mouse pointer or keyboard applies to the whole seed but can cross a patch. This
example is a bitmap image to capture the grid line colors and presentations, which remain distinct while
a patch is active, but become unified according to the last settings once the patch is deactivated with
stop-patch-p.

21.4.1 2d patch options

New options have been added for 2d networks where a “patch” of any size can be defined and
activated (enter patch-p in section 21.4.2) — thereafter many options (colored red in the prompt
in section 21.4.2) apply only to the patch rather than the whole seed, for example the patch can
independently moved, edited, manipulated, filled with colors or random patterns, jumped/copied
to any pointer position, saved/loaded as a *.eed file, or saved as a *.ps PostScript image.

These features have been added in order to make it easier to design, edit and test spacial
patterns for rules such as the game-of-Life [10], the spiral-rule [48], and the X-rule [14], where
particle collisions, gliders and static structures can combine to create glider-guns and emergent
configurations of greater complexity to implement logical gates for universal computation.

21.4.2 Seed: bits/values reminder window

Once the seed is displayed as bits or values, many possibilities become available for amending
the seed, including drawing with the mouse and keyboard8. A top-right reminder window, and
an inset, show the various options and current settings (summarized below) which are context
dependent and differ between 1d, 2d and 3d seeds, for example,

1d seed, v=2, n=150

the inset while drawing with the mouse→ left button: set 1s width=1

the inset with current settingsց
keys: val/draw-(1-0) vert-v move-arrows 1d I=149, v=2 scale=5 rot=1

mouse: move-click draw-drag width-w PScript-P file-F
tog: gaps/0color/dots/divs/divcolor-g/∧/./i/! exp/contr-e/c xaxis-[/]
rotate-l/r/+/- flip-X comp-m back/cont-q/ret

8Similar methods apply for the rule in section 16.4

310 CHAPTER 21. THE SEED OR INITIAL STATE

2d seed, v=8, i, j=44×44
togpatch inactive — define a patch here with the last 2 mouse clicks

keys: val/draw-(7-0) vert-v move-arrows 2d IJ=44x44 val=7 scale=5 rot=1

mouse: move-click draw-drag width-w pan-U/D PScript-P file-F
tog: gaps/0color/dots/divs/divcolor-g/∧/./i/! redef-S/V exp/contr-e/c
patch-p rot-l/r/u/d/+/- spin-s flip-X/Y comp-m toghex-x back/cont-q/ret

2d seed with patch activated, v=8, i, j=44×44
options in red apply to the patch only — deactivate with stop-patch-q to redefine the patch

keys: val/draw-(7-0) vert-v move-arrows 2d IJ=44x44 val=7 scale=5 rot=1

mouse: move-click draw-drag width-w patch active: 22,22-29,26

tog: 0color/dots/divs/divcolor-∧/./i/! fill-f rnd-S/V PScript-P file-F exp/contr-e/c
stop-patch-q move-j/l/r/u/d/+/- spin-s flip-X/Y comp-m toghex-x cont-ret

3d seed, v=8, i, j, h=15×15×15
keys: val/draw value 7-0, vert-v 3d IJH=14x14x14, scale=5 rot=1

mouse: move-click draw-drag width-w move-arrows pan-U/D PScript-P file-F
tog: gaps/0color/dots/divs/divcolor-g/∧/./i/! exp/contr-e/c/E/C
rotate-l/r/b/f/u/d/+/- spin-s flip-X/Y comp-m grid3d-t back/cont-q/ret

21.4.3 Seed: bits/values options summary

The bit/value options are summarised below, and some are described in detail in later sections. If
a patch is active in 2d, options colored red apply just to the patch, otherwise to the whole seed.
To redefine a 2d patch the patch must be inactive.

options . . . what they mean

keys: val/draw 7-0 . . . enter a valid number to select the value/color between 0 and the
v-1. Keep the key pressed to draw a horizontal line.

vert-v. . . keep v pressed to draw a vertical line downwards in the selected
value/color.

move-arrows . . . all four arrow keys move the cursor around the seed (up/down arrows
for multiple rows).

mouse: move-click . . . left click on the bits/values pattern to reposition the small cursor
and activate drawing — sometimes the right button also needs to be
clicked (or right-left a few times) to activate.

draw-drag . . . draw the selected value/color by dragging the pointer with the left mouse
button pressed — release the button to stop. The right mouse button
draws the complementary value/color (section 16.20) in the same way.

width-w . . . enter w to change the width (initially 1 cell) of the line to be drawn,
where the max width is the number of rows for 1d, or the smallest axis
for 2d, including 1d shown as 2d, and the 2d view of 3d. The following
top-right prompt is presented (for example),

reset line width (now 1) max 15:

311

The width is shown in the drawing inset, and stays for the current draw-
ing session until revised (figure 16.6, for rule patterns, gives examples).

U/D . . . (for 2d and 3d only) to pan a 2d seed graphic up and down. 2d will pan
by 1/10th of the total height j. The 2d view of 3d (figure 21.3) will pan
by 1 level. This allows different parts of large seeds to be brought into
focus for setting bits.

PScript-P . . . to save the seed or 2d patch as a vector PostScript image (sections 21.4.8,
21.4.11).

file-F . . . to load/save the seed or 2d patch (section 21.4.8).

tog: gaps-g . . . (not if a 2d patch is active) enter g to toggle gaps between successive
blocks of 8 bits/values (as in figure 16.3 for rules). Active gaps prevent
a 2d patch from activating.

tog: 0colr-∧ . . . to toggle the zero value color between light green and white for the seed
or 2d patch (figure 21.9).

tog: dot-. . . . enter a dot to toggle a dot at the center of each zero cell for the seed or
2d patch (figure 21.11).

tog: divs-i/! . . . enter i to toggle division lines on/off between cells for the seed or 2d
patch. Enter ! (exclamation mark) for a 3-way toggle of the division
line color — white, black, and light blue (figure 21.7).

a) b) c) d)

Figure 21.7: Changing the division line presentation/color between cells: a) no lines — cells
touch. b) white. c) black. d) light blue. 2d hex layout 6×3 (for a square layout see figure 32.14).

fill-f . . . (for a 2d active patch only) enter f to fill the patch with the selected
color, which can be reselected first if necessary by first entering a valid
number between 0 and the v-1.

redef-S/V . . . (for 2d and inactive patch) enter S or V redefine the density-bias or
value-bias (for the next patch) with prompts as in sections 21.3.2 and
21.3.3.

rnd-S/V . . . (for 2d and active patch) fill the patch with a random pattern by two
methods: S according to the current density-bias (section 21.3.2), or V
according to the current value-bias (section 21.3.3).

exp/contr-e/c/E/C . . . enter e to expand, c to contract the scale by one pixel for 1d and
2d. Similarly, for 3d E/C for just the 3d presentation, and e/c for the
2d view of 3d, which are treated separately.

xaxis-[/] . . . (for 1d only) to change the aspect ratio presentation, enter [to halve the
x-axis,] to double the x-axis, the y-axis will change accordingly.

Figure 21.8: Changing the 1d seed aspect ratio presentation with keyhits xaxis-[/], n=150.

312 CHAPTER 21. THE SEED OR INITIAL STATE

patch-p . . . (for 2d only) enter p to activate the patch — the last two mouse clicks
(in any order) will define the top-left and bottom-right corners of a new
patch. The seed reminder window (21.4.2) will change accordingly.

stop-patch-q . . . (for a 2d active patch only) enter q to deactivate the patch. The seed
reminder window (21.4.2) will change accordingly.

rot-l/r/b/f/u/d/+/- . . . The seed can be “rotated” about the periodic axes in 1d, 2d
and 3d by the current rotation interval — default one cell. l/r rotates
left and right on the i axis, For 2d u/d rotates up and down on the j
axis. For 3d u/d rotates levels up and down on the h axis, and b/f
rotates backwards and forwards on the j axis. Enter + or - to increase
or decrease the rotation interval — shown in the current settings inset.

move-j/l/r/u/d/+/- . . . (for a 2d active patch only) move-j jumps/copies the patch, see
below. l/r/u/d moves the patch left/right/up/down by the current
move interval — default one cell. The patch will leave a trail of empty
(zero) cells with the current cell presentation, and will stop at an edge.
The current active patch position, top left and bottom right coordinates,
are shown in a top-right inset. Enter + or - to increase or decrease the
move interval — shown in the current settings inset.

move-j . . . (for a 2d active patch only) Enter j to jump/copy/activate the patch to
the current cursor position — which will be the bottom-right corner. The
pre-active patch remains in place. If the jump would cross an edge it is
truncated, and the smaller size is retained for future jumps or moves.

spin-s . . . (for 2d and 3d only) For 2d where i = j the seed or patch is spun
clockwise by 90◦ so 4 spins returns to the start. Similarly for 3d where
i = j, each level h is spun clockwise by 90◦. If i 6= j a square part
including [I, J]=[0,0] will be spun.

flip-X/Y . . . enter X for a horizontal flip or reflection of the seed or 2d patch. For
1d this reflects the i axis (figure 18.2), 2d and 3d each i axis is reflected.
For 2d and 3d enter V for a vertical flip of each j axis of the seed or 2d
patch.

comp-m . . . to toggle the seed or 2d patch into its complement. For binary this swaps
1s and 0s. For v >2 the values are shifted; each output a changes to am
by subtraction from the maximum value v − 1, so am = (v − 1)− a, and
the maximum value changes to zero (section 16.20).

toghex-x . . . (for 2d only) to toggle between a square and hexagonal grid.

grid3d-t . . . (for 3d only) to toggle grid lines, and update the 3d isometric — after
drawing bits/values on the 2d view.

back/cont-q/ret . . . enter return to accept the seed and continue, q to backtrack. If a
2d patch is active, the prompt is just cont-ret — stop-patch-q will
deactivate the patch as noted above.

313

21.4.4 Seed: bits/values current settings inset

3d IJH=14x14x14 val=4 scale=5 rot=1 ← the inset with current settings, for 3d

current settings . . . what they mean

IJH= . . . the current cursor 3d coordinates, or IJ= for 2d, I= for 1d.

val= . . . the current drawing value/color.

scale= . . . the current scale of cells in pixels, which can be expanded and contracted.

rot= . . . the current interval by which the seed can be rotated, or a 2d patch
moved.

21.4.5 Seed: setting bits/values with the keyboard and mouse

v=8 revised presentation v=2 default presentation

Figure 21.9: Drawing bits or values on a 2d seed [i, j]=[20,20]. Left: The v=8 “eye” was drawn with
the mouse and keyboard. Right: the default presentation of the eye for v=2; light green 0s and white
divisions; the flashing cursor was moved to the center. The v=8 eye was loaded into a v=2 base seed.

The active position (to be updated) in the seed graphic is highlighted by a small flashing cursor
initially in the top-left. For 3d, the cursor appears only on the 2d view of 3d. Its position is dis-
played in the top-right inset window (section 21.4.4). The cursor is repositioned with the mouse by
clicking either the left or right button on the new position9, or moved with the left/right/up/down
arrow keys.

Setting or drawing values on the seed graphic is done with the keyboard or mouse. This applies
to the 2d view of 3d — the 3d isometric can be updated by pressing t. To set (and activate) a
value at the cursor position, press a valid number key (without return) — the cursor will then
advance to the right by one cell. To draw a horizontal line towards the right keep the key pressed.
While the key is pressed the line will continue to the next row or jump back to the top-left. To
draw a vertical line downwards with the active value, press v.

To draw the active value with the mouse, drag the pointer anywhere over the seed with the
left button pressed — release to stop. To draw the complement of the active value (section 16.20)

9Mouse behavior differs slightly between Linux-like systems and DOS. In Linux the mouse pointer changes
direction within the bit/value pattern, pointing north-west instead of north-east, and within the pattern, left or
right mouse clicks reposition the flashing cursor. In DOS the mouse pointer is confined within the pattern and
clicking the left or right buttons sets values as well as repositioning the flashing cursor.

314 CHAPTER 21. THE SEED OR INITIAL STATE

drag with the right button pressed. While a mouse button is pressed, the inset in the reminder
window changes to show which button, the current active value, and the current width of the line,
for example,

left button: draw 2s width=3 or right button: draw 8s width=1

Initially the left button draws the value v-1 and the right draws 0, so for binary 1 and 0. A
button press outside the grid area changes the reminder window to outside grid .

To activate drawing with the mouse it is sometimes necessary to click the left and right button
alternately. To accept the seed enter return. Once accepted, the seed is also displayed in decimal
(if applicable — section 21.6).

21.4.6 setting bits/values: 1d segments
for 1d seeds only

For a 1d network, if b is selected at the seed prompt (section 21.1), the following prompts allows
just a segment of the seed to be defined,

segment: enter length (max/def=200): (for n=200)

Enter return for the whole seed, or enter the segment size whereupon a further prompt posi-
tions the segment within the network,

seglength 5: enter start position from left 0-149, def centered: (for example)

Enter return for a centered segment, or a position from the left. A bit pattern representing
just the segment is displayed for setting bits/values. There is no limit to adding and overwriting
segments.

21.4.7 setting bits/values: 1d shown as 2d
for 1d seeds only

For a network, 1d, if B is selected at the seed prompt (section 21.1), the 1d seed is shown in 2d as a
square or rectangular bit/value pattern, i× j. Default j (the number of rows) is set automatically
as the highest factor of n ≤ √n. The following prompt allows the default i to be revised,

now 20 x 10, reset i-axis: (for n=200)

The 1d seed is broken up into successive rows starting with the maximum cell index in the
top-left. If i is not a factor of n, some cells will be missing from the bottom row. The 2d
arrangement can be saved as a 2d PostScript or seed file, and loaded back into another 2d seed
file (section 21.4.8).

21.4.8 Setting bits/values: filing and PostScript

The seed (or a 2d patch) can be saved as a vector PostScript image, or as a 1d, 2d or 3d seed file,
by selecting PScript--P or file-F in section 21.4.2 — both options follow similar methods, and are
similar to the rule options in section 16.4.4. File extensions and default filenames (chapter 35) are
as follows,

315

S1. no divs S2. light blue divs S3. symbols, no divs

H1. black divs H2. greyscale, light grey divs H3. S3. symbols, white divs, dots

Figure 21.10: Examples of PostScript 2d seed output, the “eye” as in figure 21.9, [i, j]=[20,20], v=8.
A variety of options are available: color, greyscale, symbols, hex, square, division color, and zero dots.
Top Row: square layout. Bottom Row: hex layout.

PostScript files . . . *.ps files: for 1d, 2d, and the 2d view of 3d, (as in figures 21.1),
21.2 and 21.3 Left) — default filename my sPS.ps.
for the 3d image only (as in figure 21.3 Right) — default filename
my 3dPS.ps.

seed files . . . *.eed — default filename mysee vv.eed where v = value-range.

One of the following prompts appears in a top-right window 10,

for PostScript, PScript-P
PostScript 1d: save all-a, save patch-p: (for 1d)

PostScript 2d: save all-a, save patch-p: (for 2d)

PostScript 3d: save all 2d-a, save patch 2d-p, only 3d-3: (for 3d)

for a seed file, file-F
SEED: load-l, save all-a, save patch-p: (for 1d, 2d or 3d)

for a 1d seed which can be saved as a 2d seed file, file-F
SEED: load-l, save1d>2d-x, save all-a, save patch-p:

10If a 2d patch is active these prompts are dealt with directly — for PostScript the next prompt is in section 21.4.10
— then the relevant filing prompt appears as in section 35.3

316 CHAPTER 21. THE SEED OR INITIAL STATE

If bits2d-B was selected at the 1d seed prompt (section 21.1) to display the seed in 2d, there
is an extra option save1d>2d-x to save the 1d as a 2d seed. The i, j coordinates selected might
give an incomplete rectangle; this is acceptable for both the 2d seed and PostScript.

These options are summarized below,

load-l . . . load a seed file (section 21.7). As many seed files as required can be loaded
into the current seed. Differing value-ranges, dimensions and sizes are
possible, subject to the constraints listed in sections 21.7.1 — 21.7.5.

save-a . . . save the seed, as a seed file or PostScript. For PostScript and 3d, save-a
applies to the 2d view of the 3d image, as in figure 21.3.

save patch-p . . . save part of the seed as a seed or PostScript file, first defining the limiting
coordinates of the patch (in 1d, 2d or 3d) in section 21.4.9.

only 3d-3 . . . (for PostScript of 3d only) save a PostScript file of the seed 3d isometric
(section 21.4.11).

save1d>2d-x . . . (for 1d seed file) save a 1d seed as a 2d seed. The seed must be displayed
with bits2d-B in section 21.1.

A top-right prompt gives various options for the PostScript presentation (section 21.4.10).
Files are loaded and saved from the filing prompt (section 35.3).

21.4.9 Setting bits/values: saving a patch

Part only11 of the seed (in 1d, 2d, or 3d) can be saved, as either a seed file or as a vector
PostScript image file. The limiting coordinates of the patch are set by the last two mouse clicks
on the bit/value seed graphic, or by entering coordinates.

If p is selected in section 21.4.8, one of the following set of prompts are shown in sequence in
a top-right window,

example for a 1d network

1d:max i=149, revise coords-ret, accept patch 55-37 -p:
start i: end i:

example for a 2d network

2d:max i,j=39,39, revise coords-ret, accept patch 26,23-14,14 -p: file:i,j=6,6
start i: end i: start j: end j:

example for a 3d network

3d:max i,j,h=8,8,8, revise coords-ret, accept patch 6,6,5-2,1,3 -p:
start i: end i: start j: end j: start h: end h:

Enter p to accept the default coordinates according to the last two mouse clicks, or return
to set the coordinates manually on the second prompt line, which otherwise does not appear.
return at a manual setting gives the default mouse click coordinates. The patch seed file can
then be loaded back at any position within the same or another seed (section 21.7). Note that for
2d networks the patch options in section 21.4.1 provide alternative methods for saving a patch.
The facility to save and load a patch, combined with the patch options for 2d in section 21.4.1
provide very flexible methods for editing the seed.

11If a 2d patch is active it can be save directly – enter P or F in section 21.4.2.

317

v values color hex symbols hex symbols square

2 10

3 210

4 3210

5 43210

6 543210

7 6543210

8 76543210

Figure 21.11: Symbols for PostScript seed output for v = 2 to 8. Enter s in the PostScript prompt
(section 21.4.10) to show values as symbols replacing colors. Symbols come in two versions, hex and
square, depending on the bits/values display in section 21.4.3 which is toggled with x. The value zero
is shown here as a dot, but this can be blank or the dot size changed.

21.4.10 Setting bits/values: PostScript prompt
for 1d, 2d, and the 2d view of 3d as in figure 21.3 Right

When creating a PostScript image of a seed there are a variety of presentation possibilities as
illustrated in the figures in this chapter (21.1 — 21.13) and other figures in the manual. Note that
the following options do not apply to a PostScript 3d image as in figure 21.3 Right, which follows
its own methods (section 21.4.11).

Enter a (or p for part of the seed) at the prompt in section 21.4.8 to save the seed as a vector
PostScript (*.ps) file (default filename my sPS.ps). The following top-right prompt is displayed,
where direct-d applies only when interrupting space-time patterns12, for example,

create PostScript image for 2d, 20x20 (or 1d, 3d)

symbols-s greyscale-g color-c direct-d exit-q (def-c): color-c/C for v=2)

These options are summarized below (then subsequent options continue),

options . . . what they mean

symbols-s . . . to show values as symbols (figures 21.10, 21.11).

greyscale-g . . . to show values in greyscale (figures 21.10).

color-c . . . (the default) to show values in color.

color-C . . . (for binary v=2 networks) by default 1s are colored — blue on a white
background and yellow on black background. Enter C to instead save 1s
in black or white respectively.

12From the space-time pattern pause/interrupt prompt (section 32.16) enter e to revise the original, last, or
current state which gives the seed prompt in section 21.1. Alternatively enter P for an immediate PostScript
prompt similar to section 21.4.10. For 1d space-time patterns, P gives the direct option only.

318 CHAPTER 21. THE SEED OR INITIAL STATE

direct-d . . . (only when interrupting space-time patterns, section 32.16) to scan cell
colors directly from a 1d space-time pattern, or a snapshot of 2d, or the
2d view of 3d. If direct-d is selected the second line is replaced with,

direct: greyscale-g color-c (def-c): (symbols-s does not apply)

For interrupted 1d space-time patterns only, if direct-d was selected above, the next two
prompts limit the part of the image to be saved (section 32.18)

1d size (max/def=150): time-steps (max/def=669):

Once these options are complete, the prompt to amend other settings is presented, for example,

cellscale=5.00 dots(on)=0.70 divs(g), amend settings-a: (for example)

Enter return to accept the defaults, or enter a for the following prompts presented in sequence,

change: cellscale: togdots-x: dotscale: divs(0,w,b,g):

Enter changes required or return to accept defaults, which follow the current bits/values
presentation. The options are summarized below,

options . . . what they mean

cellscale . . . enter a new cell width in pixels.

togdots-x . . . to toggle zero dots on/off.

dotscale . . . (if dots are on) enter a new width for zero dots in pixels, which can be a
decimal number.

divs(0,w,b,g) . . . the initial default division (color) depends on the bits/values presentation,
and is shown in the prompt, for example divs(off) means that there are
no divisions and adjoining cells touch. To change, enter 0 for off, b for
black, w for white, and g for light blue/grey. The new choice becomes the
default.

Cells with value zero (0color) are initially colored light green in the bits/values presentation
(section 21.4), which can be toggled to white with 0color-∧ in section 21.4.2 – the PostScript file
will follow the current 0color.

Once these choices are complete, the *.ps file is saved from the filing prompt (section 35.3).
Section 36.1 explains how to view, edit, and crop the PostScript image.

21.4.11 Setting bits/values: PostScript 3d image
for the 3d image as in figure 21.3 Right

For a 3d network (or space-time pattern) if PScript--P is selected in section 21.4.8 the following
top-right prompt is presented

PostScript 3d: save all 2d-a, save patch 2d-p, only 3d-3: (for 3d)

To save all or part of the 2d view of the 3d seed as a vector PostScript file (default filename
my sPS.ps), enter a or p — further prompts are presented described in section 21.4.10.

Enter 3 to save the 3d image to a vector PostScript file at the current scale (default filename
my 3dP.ps) — the following top-right prompt is presented,

319

2d view of 3d 3d isometric viewed from below

Figure 21.12: An example of a 3d bit/value
seed, v=8, n=5×5×5, as it appears with the
prompt in section 21.5. The seed is shown
as both a 2d view and a 3d isometric. Draw-
ing bits/value applies only to the 2d view —
but both 2d and 3d can be rescaled indepen-
dently. This figure is bitmap graphics, not vec-
tor PostScript, but the 2d and 3d images can
be captured separately in vector PostScript and
combined as in figures 21.13, 21.3 and 32.18.

Figure 21.13: The v=8 2d 20×20 “eye” in figure 21.9 was loaded into a shallow 3d seed 20×20×3,
then flipped upside-down with V. The result is shown as it appears simultaneously in the 2d view and
in the 3d isometric.

3d to PostScript 3d: greyscale-P color-def:

Enter P for greyscale, or return for the same colors as the 3d seed image.
Finally, a top-right filing prompt (section 35.3) is presented for the vector PostScript *.ps

filename. Section 36.1 explains how to view, edit, and crop the PostScript image.

21.5 Setting the seed in hex

If h is selected in section 21.1, the seed is defined in hexadecimal (hex) which can be useful for creat-
ing repetitive patterns. The method is the same as setting a rule in hex in section 16.5. The hex ex-
pression of the current seed (initially just 0s) is displayed. Each hex character (0 — 9 then a — f)
shows the value of 4 bits, and the characters are displayed in one byte pairs.

320 CHAPTER 21. THE SEED OR INITIAL STATE

Figure 21.14: In this example (v=8, n=42) the seed was first set in hex from the possible hex
characters (0 — 9 and a — f). The figure shows the result once accepted, where the bits/values option
(section 21.4) activates below the hex presentation, allowing the seed to be reconfirmed or amended.

During the hex setting procedure, a top-right reminder window displays the following,

enter hex, arrows-move hex count=14← inset shows the current hex position, from the top-left

rotate-l/r, accept-ret

The hex character to be updated is highlighted by a flashing cursor, initially in the top-left. Its
position is displayed in the top-right inset window. The flashing cursor is moved with the arrow
keys, left/right and up/down for more than one hex line. To overwrite, enter a hex character
from the keyboard, without return. This automatically moves the cursor one position to the
right. Hex characters entered which exceed the current value-range will be automatically corrected
downwards to the maximum value after the hex string has been accepted. Enter l or r to rotate the
underlying seed by one cell as in sections 21.3 and 21.4, which will be immediately reflected in the
hex presentation. To accept the hex seed enter return, whereupon the seed will be presented as
bits/values displayed in 1d, 2d or 2d+3d (section 21.4), where it can be reconfirmed or amended.

21.6 Setting the seed in decimal
applicable only for a limited range of v and system size n

v max-n max decimal
2 32 4294967295
3 20 3486784400
4 16 4294967295
5 13 1220703124
6 12 2176782335
7 11 1977326742
8 10 1073741823

Table 21.3: Seeds in decimal — network
size limitations — the maximum size of a
seed n for each value-range v, and the cor-
responding maximum decimal number.

The decimal option remains valid as long as the decimal equivalent of the bit/value string
representing the seed is within the limits13 in table 21.3.

If d is an available option and is selected in the seed prompt (section 21.1), the seed can be
specified by its decimal equivalent. The following prompt is displayed,

decimal seed, enter 0-4782968 (def-rnd-dec): (example for n=14, v=3)

Enter a decimal number, or enter return for a random number within the permitted range,
which will be displayed. If the number entered is outside the permitted range, the program presents
an error message, for example,

13The same limits apply when setting a rule in decimal (table 16.2 section 16.6).

321

decimal seed, enter 0-4782968 (def-rnd):5555555 - too big! back-ret:

Enter return to revert to the seed prompt. Once successfully selected, the decimal seed is
presented again as bits/values (section 16.4), where it can be reconfirmed or amended.

21.7 Loading a seed, and loading constraints

Enter l in section 21.1, or F followed by l in section 21.4.8 to load a seed (.eed file)14.
When loading (from the top-right filing prompt, section 35.3) DDLab will know the file network

parameters — ideally these would be the same as the pre-existing base network parameters —
however, differing value-ranges, dimensions and sizes are permissible, subject to the constraints
listed in sections 21.7.1 — 21.7.5. As many seed files as required can be loaded into the current
base, and positioned anywhere if the base is bigger than the file.

21.7.1 loading a seed — all parameters equal

If all file-parameters, value-range v, dimension 1d, 2d or 3d, and size [i, j, h], are the same as all
base-parameters, the file is loaded without further ado.

21.7.2 loading a seed — unequal value-ranges

The value-range v can differ between file and base, but base-v will remain as the current value-
range. For file-v < base-v, loading is not a problem. For file-v > base-v, any file-value that exceeds
maximum base-v will be reduced to maximum base-v. In either case a top-right warning similar
to the following is presented, coming before any other prompt,

file-v(2) != base-v(8), abort-q, load anyway-ret: (for example)

21.7.3 loading a seed that fits within the base

If the seed-file (with file-dim ≤ seed-dim) fits within the base, then if any file-axis is smaller than
the base-axis, a prompt is presented in a top-right window to locate the file-seed within the base15,
for example,

example for a 1d network
1d: i=100, file size=20 abort-a or enter start pos
(def 40, max 80, rnd-r) i:

example for a 2d network
2d:i,j=100,100 file:i,j=6,6 abort-a or enter start coords
(def 47,47, max 94,94, rnd-r) i: j:

example for a 3d network
3d:i,j,h=200,100,100 file:i,j,h=44,44,44 abort-a or enter start coords
(def 78,28,28 max 156,56,560 rnd-r) i: j: h:

14Saving a seed was described in sections 21.4.8 and 21.8 — saving just part of a seed, a patch, in section 21.4.9.
15This is similar to loading a sub-network in section 19.4.3.

322 CHAPTER 21. THE SEED OR INITIAL STATE

Figure 21.15: Loading seeds that fit within the base. Any number of seeds can be loaded posi-
tioned anywhere. This example includes 3d seeds from figure 13.6 (and variations), and 2d seeds from
figures 2.3 and 21.16 loaded into a 3d 200×100×100 base.

Enter the coordinates in the base-seed to locate the file-seed’s lower right cell, return for a
default central position, or r for a random coordinate. Any number of file seeds can be loaded.

If file-dim < seed-dim (and the file-seed fits within the base), the smaller file dimension is
increased to match the base by adding axes with coordinates of size 1. For file-2d, axis h=1 is
added to load into base-3d. For file-1d, axis j=1 is added to load into base-2d, and axes [j, h]=[1,1]
to load into base-3d. File-axes of size 1 in the top-right prompt indicate that file-dim < seed-dim)
on these axes. For example, the prompt below indicates a 1d file-seed,

example of 2d into 3d
3d:i,j,h=66,66,66 file:i,j,h=11,11,1 abort-a or enter start coords
(def 27,27,32 max 55,55,64, rnd-r) i: j: h: (for example)

example of 1d into 3d
3d:i,j,h=33,11,22 file:i,j,h=14,1,1 abort-q or enter start coords
def 9,5,19 max 19,10,21: i: j: h: (for example)

21.7.4 loading a seed that does not fit within the base, 2d and 3d

A seed-file that is bigger than the base on one or more axes, or a seed-file where file-dim > seed-dim,
can still be partially loaded, but there is no option to locate the file.

For 2d and 3d seed-files and bases, a central zone of the file will be automatically selected and

323

Figure 21.16: Left: Loading a 2d seed file, 88×88, the “portrait” from figure 2.3, into a 2d base
network 44×44. Right: Loading a 3d seed, 44×44×44, the snapshot, v=8, from figure 13.6 Right into
a 2d base network, 44×44 — just the central level is loaded.

loaded into a central zone in the base. A top right prompt will indicate the dimensions (base-dim
and file-dim) and if any file coordinates are bigger than the seed coordinates, for example,

basedim=filedim 2=2, coords bigger (for 2d)

2d:i,j=44,44 file:i,j=88,88 abort-q, load anyway-ret:(for example)

When loading a 3d file into a 2d base, just the central horizontal level will be loaded centrally,
with the following top-right prompt,

basedim¡filedim 2<3, filedim reduced (3d into 2d)

2d:i,j=44,44 file:i,j=44,44 abort-q, load anyway-ret:(for example)

When loading a 2d file into a 3d base, if the 2d file is bigger than the base on any axis, the
central part of the 2d file will be placed at the central horizontal level of the 3d file, with the
following prompt,

basedim¿filedim 3<2, filedim reduced, coords bigger (2d into 3d)

2d:i,j=7,7.7 file:i,j=15,11,1 abort-q, load anyway-ret:(for example)

Note that the 2d file dimensions have been increased to 3d by adding a vertical axis of size 1,
as in section 21.7.3.

21.7.5 loading a seed that does not fit within the base, 1d

In the case of a 2d or 3d seed file to be loaded into a 1d base, or a 1d seed file to be loaded into a
2d or 3d base where the i base coordinate is smaller than the i file coordinate, the entire string, as
much as will fit, will be loaded according to the equivelent 1d indexing, from 0 to n-1. A top-right
prompt is presented, for example,

324 CHAPTER 21. THE SEED OR INITIAL STATE

Figure 21.17: Loading a 1d seed file into a 2d and 3d base network, v=6. The entire string, as much
as will fit, will be loaded according to the equivelent 1d indexing, from 0 to n-1. The 1d file-seed is
the “portrait” from figure 16.25 where n=7744 (88×88 when presented in 2d). The 2d file was loaded
left: into a 2d base 88×33, and right: into a 3d base 88×2×33.

basedim¡filedim 1<3, filedim reduced (3d into 1d)

1d:i=45, file:729 abort-q, load anyway-ret: (for example)

basedim¿filedim 2<1, filedim increased, coords bigger (1d into 2d)

2d:i,j=40,40 file:i,j=900,1, abort-q, load anyway-ret: (for example)

21.8 Saving a seed

Once the seed has been accepted, a top-right window shows the density of non-zero bits/values
(section 21.3.2) and gives another chance to revise or save the seed,

density 3-1s=303/400=75.750%, bias=75.000% (example for v=4)

SEED: revise-q save-s cont-ret

Enter q to revise, or s to save the seed (as a .eed file16) from the top-right filing prompt
(section 35.3). If just return is entered, the seed will be saved automatically with the default
filename mysee vv.eed where v is the value-range.

The seed, or part or a seed, can also be saved from the reminder window when setting
bits/values. In section 21.4 enter F followed by a to save the whole seed, or by p to save just a
patch as described in section 21.4.9

21.9 Seed file encoding

The .eed seed file is encoded17 starting with either 5 or 9 leading bytes depending on the network
size n, 5 lead bytes for “small” n≤65534, or 9 lead bytes for “big” n≥65535. The leading bytes
define v, n, (i, j) the axes of a 2d network, and (i, j, h) the axes of a 3d network. For a “small”
network, n requires 2 bytes, and (i, j) requires 1 bytes each. For a “big” network, n requires 4
bytes, and (i, j) requires 2 bytes each. for 3d h is implicit in n and (i, j).

The encoding proceeds as follows,

16Seed files in multi-value versions of DDLab and the old binary versions prior to 2002 are incompatible.
17See also the file encoding for single rules (section 16.16) and the wiring/rulemix (section 19.3).

325

byte 0 . . . value-range v (k is not relevant in a seed file).

byte 1,2 (big n byte 1,2,3,4) . . . network size, n.

byte 3,4 (big n byte 5,6 and 7,8) . . . [i, j] which gives the dimensions and axis sizes, If i = 0
and j = 0 the seed is 1d. If both i > 0 and j > 0 the
seed can be either 2d or 3d. h = n/(i× j). If h > 1
the seed is 3d, otherwise 2d.

note axes limits . . . for “small” n max axes (i, j, h) must be ≤255, for “big”
n max axes (i, j, h) must be ≤65535. These limit are
enforced when setting the axes (sections 11.6, 12.3.1).

The rest of the file consists of the seed values from 0 to n−1, where the number of bits required
for each cell (vbits) is as follows:

v=2 . . . 1 bit (vbits = 1)
v= 3 or 4 . . . 2 bits (vbits = 2)

v= 5, 6, 7, 8 . . . 3 bits (vbits = 3)

A seed encoding requires 5 or 9 leading bytes plus the bytes for the seed itself R, where

R =
⌈

n×vbits
8

⌉

bytes, the upper absolute value, minimum 1 byte.

21.10 Saving/Loading a seed as an ASCII string

Enter ascii-v at the seed prompt in section 21.1 to save or load the seed as an ASCII value string,
a *.see file, (see Filing chapter 35). This is different from a binary seed file (section 21.9), but is
useful for interchanging the seed between DDLab and alternative software.

The following top-right prompt is presented,

ASCII seed (v=8 n=56) load/save-l/s: (for example)

When loading, if file-v is not equal to base-v, the following top-right notice is displayed,

file-v(8) != base-v(3), abort-q, load anyway-ret: (for example)

and if file-size is not equal to base-size, the following top-right notice is displayed,

file-size(44) != base-size(56), abort-q, load anyway-ret: (for example)

In either case, enter q to abort loading, or return to continue loading. Although the loading
prompt warns of a conflict between the file and base (value-range v, or size n) with an option to
abort, any ASCII file within DDLab’s naming constraints (section 35.1) with a *.see extension
can nevertheless be loaded — as much or as little as will fit, starting at rule-table index zero. Any
file-v greater than maxbase-v will be reduced to maxbase-v.

326 CHAPTER 21. THE SEED OR INITIAL STATE

21.10.1 ASCII seed encoding

ASCII encoding for a seed (*.see) file (the same as for a rule-table *.tbl file)18 is as follows: the
first byte gives the value-range v, then a byte for each value at index 0 to n-1. For example, the
ASCII file, and the seed itself (in 1d), for a random seed v=8, n=56, are shown below (note the
inverted order),

the ASCII seed file — 1+56 bytes
801706771342370155163426126110422300366423711762236275130

the seed itself— 56 bytes, shown numerically and graphically
03157263226711732466300322401162162436155107324317760710

21.11 Saving/Loading a seed in the Golly file format
for 2d binary networks only

Golly’s pattern file format19 is an ASCII script following “run-length” encoding, starting at the
top-left of the 2d lattice, then encoding successive rows from the left. For a binary (v=2) 2d
network, numbers before the symbols ’o’ (=1), ’b’(=0), and ’$’ (=newline) stand for the number
of each symbol if there are more than one, so 4$ means finish the current row and insert three
blank rows. The symbol “!” terminates the script. This script is preceded by a preamble giving
the x, y size, the rule name and possibly other information, and the total script makes up Golly’s
*.rle file. For example, the script,

x = 19, y = 12, rule = x-rule-pre

16b2o$10bo$14bobobo$6bo3bo$2o4bo9b2o$6bo4$5b3o$4bo3bo$4bobobo!

encodes this 19×12 pattern . . .

For 2d binary patterns only, DDlab can duplicate this encoding in its own *.gly file, but omits
Golly’s preamble in the top line. DDLab does not use or need the Golly preamble because the
x, y size is deduced from the ASCII “run-length” script itself. In DDLab the default filename is
golly v2.gly (see Filing chapter 35). This file allows interchanging a seed between DDLab and
Golly’s *.rle file, but indirectly.

To convert *.gly to *.rle a Golly preamble may be added and the file renamed. However,
tests show that the preamble is not required. There is no need to add anything — simply rename
the file extention from *.gly to *.rle and the file will load into Golly.

18The ASCII rule and seed encoding (*.tbl and *.see) are the same, so the a seed can be loaded into a rule and
vice-vera, provided the file-name extension is changed accordingly.

19For a 2d rule file *.hen compatible with Golly for a v2k9 (3×3) Moore neighborhood CA, see section 16.10.9.

327

To convert *.rle to *.gly the Golly preamble is removed and the file renamed. This should
be done in an “8-bit clean” editor such as emacs, which does not corrupt certain characters.

Alternatively, to directly convert *.gly to *.rle very easily with a small program20, save the
following c-code naming the file ddlab2golly.c (for example),

include <stdio.h>

/* count characters and input using while */

main(){

int c,nl;

nl=1;

while ((c=getchar()) != EOF){

if (c ==’\n’) ++nl;

if (nl > 2) printf("%c",c);

}

}

Then compile with the following script, gcc -o golly2ddlab golly2ddlab.c making an ex-
ecutable called golly2ddlab. Then to convert myfile.rle to a myfile.gly enter the following
in a terminal, ./golly2ddlab < myfile.rle > myfile.gly. Make sure myfile.gly conforms to
DDLab’s filename constraints (section 35.1). myfile.gly can be loaded in DDLab as described in
section 21.11.1 below.

21.11.1 The Golly file prompt

For 2d binary (v=2) networks , enter Golly-G at the seed prompt in section 21.1 to save the
current seed as a *.gly file, or to load the seed from a *.gly file. The following top-right prompt
is presented,

Golly ascii seed (v=2, base ij=50x60) load/save-l/s: (for example)

Enter l to load. Both the i and j dimensions of the file lattice (deduced from the script itself)
must fit within the base lattice, so base i ≥ file i and base j ≥ file j, otherwise a top-right error
messages will appear,

Golly: base ij=20,10 < file ij=19,12, can’t load, cont-ret: (for example)

If file ij is smaller than base ij, the pattern will be positioned top-left. When loading, a message
similar to the following shows in the terminal,

load Golly: base ij=99,77 >= file ij=19,12 -OK

Once loaded the seed can be saved in DDLab’s classic format as a *.eed file (sections 21.4.8
and 21.8).

Enter s at the Golly file prompt above to save to a *.gly file — a message simlar to the
following shows in the terminal,

save Golly: ij=99x77 -OK

20Thanks to José Manuel Gómez Soto for this very useful fix.

Chapter 22

The Derrida plot

Once the rule or rules have been set, the Derrida plot[13] (and Derrida coefficient) can be selected
from the wiring graphic in section 17.4 — enter “Derrida-D”. Any type of network may be plotted,
a CA, RBN or DDN, in 1d, 2d, or 3d, preferably in SEED-mode or TFO-mode, but also in FIELD-
mode where network size is limited.

The main application of the Derrida plot has been as an order-chaos measure for large RBN
networks in the context of models of genetic regulatory networks [20, 24], where the canalyzing
inputs can be tuned to move the dynamics between order and chaos (chapter 15). However, the
Derrida plot also provides Liapunov-like insights into CA rules and rule clusters (section 22.7). New
options allow automatic plots of sets of rules in ascending decimal order, filtering out equivalent
binary rcode and tcode, and listing equivalence classes and rule clusters [38].

The Derrida plot, analogous to the Liapunov exponent in continuous systems, provides a
statistical measure of the divergence/convergence of network dynamics in terms of “Hamming
distance” (H). H between two binary states of equal size, n, is the number of bits that differ.
The normalized Hamming distance is H/n. For multi-value, H is the number of values that differ,
but exactly the same principles apply.

The Derrida plot is generated as follows

1. Randomly select a pair of initial states, I1, I2, separated by a small Hamming distance of
H0, at time-step t0.

2. Iterate each state forward independently, according to the network architecture, by usually
one, or more time-steps, i (i must be 1 to compute the Derrida coefficient).

3. Measure the Hamming distance, Hi, at time-step i, between the pair of final states, F1, F2.

4. Repeat the above for a sample of pairs of initial states with the same initial Hamming
distance H0, and plot normalized H0 (x-axis) against the mean normalized value of the
Hi’s, (y-axis).

5. Repeat the whole procedure for a range of increasing initial Hamming distances. The increase
(Ham steps) must be 1 to compute the Derrida coefficient, but may be set to larger intervals
otherwise.

328

329

Figure 22.1: Examples of Derrida plots for a 2d random Boolean network, k=5, n=40×40. Data
about the network are shown in the top-left hand corner of the graph (section 22.3), and Derrida data
above the top (sample and steps). The Derrida coefficient (section 22.6) would also be shown, but is
not in this case because steps > 1. The number of iterations is shown at the end of each curve.
Left: MaxH=1, showing the full range of Hamming distance, sample=25, steps=25.
Right: 4 superimposed plots for increasing canalyzing settings (0%, 20%, 50% and 70%), giving
progressivly lower slopes. MaxH=0.3, so zooming in for the most significant first part of the graph,
sample=25, steps=10. Canalyzing can be changed before a new plot, and previous plots kept.

22.1 Selecting the Derrida plot

To select the Derrida plot, first display the network as a wiring graphic after rules are set
(section 17.1). One of the top-right wiring graphic options (section 17.4) is the following,

. . . Derrida plot-D: (enter “D” to select)

22.2 Derrida plot options

If D is selected in section 22.1, the following series of prompts are presented in turn in a top-right
window to change the Derrida plot parameters or accept the defaults,

for a 40× 40 RBN, values shown are examples. Note: for single rcode only label-Z/0

Derrida plot: quit-q, Dc sample (now 15, max 320):
maxH (def 1.000): sample (def 25) tog spread (ON)-s: details-d
label-0 iterations (def 1): Ham steps (def 1 net=1600): keep-k:

Revised parameters generally become the new defaults. The parameters are described in
section 22.2.1 below.

330 CHAPTER 22. THE DERRIDA PLOT

22.2.1 Derrida plot parameters

The meaning of the parameters in the Derrida plot options (section 22.2) are given below, where
values in brackets are initial defaults or examples.

parameters . . . what they mean

quit-q . . . quit the Derrida plot.

Dc sample (now 15, max 320): . . . the number of initial points that will form the basis of
the Derrida coefficient, derived from the initial slope (section 22.6).
The initial default depends on the size of the network, but is 15 for
large networks.. Generally, between 10 and 20 points are appropriate.
Enter return to accept the default or enter a new value which becomes
the new default.

maxH (def 1.00) . . . the maximum normalized Hamming distance of the plot defining the
extent of the xy axis (maximum 1). A small maxH gives a detail of
just the left hand corner of the plot, which is perhaps the most signif-
icant. Only a small initial part of the plot is required to calculate the
Derrida coefficient, enough to contain the Dc sample (section 22.6).
Enter return to accept the default (initially 1) or enter a new decimal
value (0 < maxH ≤ 1) which becomes the new default.

sample (def 25) . . . the sample size for each initial Hamming distance. A smaller sample
gives a quicker plot. A larger sample provides a more accurate mea-
sure. Enter return to accept the default (initially 25) or enter a new
value which becomes the new default.

tog spread (ON)-s: or (OFF) . . . to toggle plotting the spread of each sample. Enter
return to accept the default (initially (ON)) or enter s to toggle —
this becomes the new default.

details-d . . . enter d to pause at each sample pair and show detailed data in a
top-right window (mainly for debugging and diagnostic purposes),

sample=4 H(t0)=21 H(t1)=16 q-quit: (for example)

In this example, at the 4th sample point, the initial Hamming distance
is Ht0 = 21 (not normalized), the final Hamming distance, is Ht1=16,
at time-step 1. For system size n ≤ 40 the bit/value pattern of the
initial and final pairs of states are also shown above the prompt. Enter
return at the prompt above for the next sample pair, or q to disable
the pause and continue without interruption.

label-Z/0 . . . (just label-0 if not single rcode) Enter return to accept the default
data labels at the end of each plot (section 22.5.2). Enter Z for the
Z-parameter [38, 44] (for single rcode only), or enter 0 to omit labels.

iterations (def 1) . . . the number of forward time-steps required. Enter return to accept
the default (initially 1) or enter a new value which becomes the new
default. Iterations must be 1 to compute the Derrida coefficient.

Ham steps (def 1 net=1600) . . . the interval between successive initial Hamming distances
(not normalized). The minimum and default is 1. A small interval
provides a more accurate plot. A larger interval provides a quick and

331

sketchy plot. Enter return to accept the default (initially 1) or enter
a new value which becomes the new default. The system size n is
shown as a reminder as it will be subdivided by the number of Ham
steps. Ham steps must be 1 to compute the Derrida coefficient.

keep-k . . . enter k to keep a previous plot and superimpose a new plot, as in
figure 22.1 Right. The new plot may have revised network parameters.

22.3 Data within the Derrida plot

Within the Derrida plot, some data is shown relating to both the network, and to Derrida
parameters, as in figures 22.1 and 22.2, described below.

22.3.1 Network data

The top-left hand corner of the graph will show context dependent information as follows.

vv . . . the value-range, for example v2.
k=k . . . for homogeneous-k .

k-mix=k1-k2 . . . the range of k for a k-mix .
network size=n . . . for a 1d network.

network size=i× j . . . for a 2d network.
network size=i× j × h . . . for a 3d network.

one-d CA wiring . . . for local 1d CA wiring.
two-d CA wiring . . . for local 2d CA wiring.

three-d CA wiring . . . for local 3d CA wiring.
random one-d wiring . . . for random 1d wiring.
random two-d wiring . . . for random 2d wiring.

random three-d wiring . . . for random 3d wiring.
no limit . . . random wiring is not restricted.
zone=r . . . random wiring is restricted within a radius r.

homogeneous CA rule . . . for a network with a single rule.

rulemix: canalyzing . . . for a rulemix
inputs=c/cmax=c% . . . the percentage of canalyzing inputs.

genes=g/n=g% . . . the percentage of canalyzing genes.

22.3.2 Derrida data

Some Derrida data is shown at the top of the graph, for example,

Derrida plot sample=55 slope=46.4deg Dc=0.072 (15 H)

sample is explained in section 22.2.1. The data slope, Dc and (15 H) relate to the Derrida
coefficient, described in section 22.6, and appear only if iterations=1 and Ham steps=1 (the
default) is active in section 22.2. Data at the end of each plot is described in section 22.5.2.

332 CHAPTER 22. THE DERRIDA PLOT

22.4 Interrupting the Derrida plot

While the Derrida plot is in progress, the following top-right message is displayed,

plotting Derrida, sample=25, iteration=1 step=1
quit/pause-q (values shown are examples)

If the plot is interrupted with q, the same parameters as in section 22.2 (except Dc sample
and maxH) can be changed in mid-plot. The following series of prompts are presented in turn in
a top-right window,

interrupted at Hamm=0.297, quit now-q, cont-ret:
sample (now 25): tog spread(ON)-s: details-d (values shown are examples)

iterations (now 1): Ham steps (now=1 net=1600): keep-k:

Enter q to stop the plot at the point reached, return to continue the plot, or revise parameters
before continuing, as in section 22.2.1. Note that changing iterations will have drastic effects.

22.5 Completing the Derrida plot

When the Derrida plot is complete, or if interrupted and stopped in section 22.4, data is displayed
at the end of the plot (section 22.5.2), and a top-right prompt appears, with contents depending
on the type rule or rulmix,

for a rulemix

Derrida plot complete
reset-r canalyzing-C: (C not in TFO-mode)

for a single binary rule (v =2) network, automatic within the limits in table 16.2

Derrida plot complete
reset-r canalyzing-C reviserule-v automatic-1/2/3 keep+k: (C not in TFO-mode)

for a single rule (v >2) network, automatic within the limits in table 16.2

Derrida plot complete
reset-r canalyzing-C reviserule-v automatic-3 keep+k: (C not in TFO-mode)

22.5.1 Completing the Derrida plot parameters

The meaning of the parameters in “Completing the Derrida plot” (section 22.5) are given below,

parameters . . . what they mean

reset-r . . . to reset the plot. The options in section 22.2 are presented, but with
an additional option redraw (no spread)-r. Enter r for a quick
redraw of the plot from memory without the sample spread.

canalyzing-C . . . (not in TFO-mode) to revise the network’s canalyzing settings, de-
scribed in chapter 15 for a rulemix, and section 18.6 for a single rule
network.

333

reviserule-v . . . (for a single rule network only) to review/revise the rule in a lower-
right window as described in chapter 16. This is useful if assembling a
number of rules on a multiple plot with option keep+k, or resetting
the start rule for an automatic plot (22.7).

automatic-1/2/3 . . . (for a single rule network where v=2, and within the limits in
table 16.2) enter 1 for automatic plots of equivalence classes [38], 2
for automatic plots of rule clusters [38] or 3 for automatic plots of
rules counting up from the start rule in decimal. Options 1 and 2
also simultaneously output lists of equivalence classes or rule clusters
in the terminal window (xterm) for Linux-like systems. These options
are described further in section 22.7.

automatic-3 . . . (for a single rule network where v ≥2, and within the limits in
table 16.2) enter 3 for automatic plots of rules counting up from
the start rule in decimal. These options are described further in
section 22.7.

keep+k . . . if an automatic plot was selected above, add k to retain previous plots
for a multiple automatic plot, for example, enter 1k, 2k or 3k. If k
is not added each new automatic plot is displayed separately.

22.5.2 Data at the end of each plot

The small box at the end of each plot, (including automatic plots of sets of rules in section 22.7)
shows data, which can be omitted by entering label-0 in section 22.2. For single rcode only, enter
“label-Z” to show the Z-parameter [38, 44]. For a single rule network the default data is the rule
in decimal provided that: v = 2, k ≤ 3 for rcode (so includes elementary rule-space), and v = 2,
k ≤ 5 for kcode in TFO-mode. Otherwise the rule is shown in hex. For a rulemix, the default data
gives the number of iterations.

22.6 The Derrida coefficient

The Derrida coefficient (Dc), analogous to the Liapunov exponent in continuous dynamical
systems, is derived from the initial slope of the Derrida plot, a tangent to the curve at the origin,
which indicates whether the network dynamics is convergent (ordered) or divergent (chaotic) and
to what extent.

A slope of 45◦ (Dc = 0) indicates the dynamics is balanced between order and chaos. A slope
above the 45◦ diagonal (positive Dc) is in the chaotic regime and correlates with increasing chaos.
A slope below 45◦ (negative Dc) is in the ordered regime and correlates with increasing order. The
initial slope is based on the first few points of the Derrida plot. The Derrida coefficient is only
calculated if iterations=1 and Ham steps=1 in section 22.2.

The number of points to determine the slope at the origin (the Dc sample) is selected to lie
approximately on a straight line — the default is 15 for large networks. The average slope between
these points and the origin is taken as the initial slope. If the initial slope = δ◦, then the Derrida
coefficient, Dc = log2(tan(δ

◦)). Figure 22.2 gives examples for a k5 RBN, with varying degrees of
canalyzing (section 15) to demonstrate a range of behavior.

334 CHAPTER 22. THE DERRIDA PLOT

Figure 22.2: Examples of Derrida plots and their Derrida coefficients (Dc) for a 2d RBN, k=5,
n=40×40 with various canalyzing percentage settings (C%), reset in section 22.5, for a range of
behavior. Other parameters were as follows: Dc sample=15, MaxH=0.03, sample=55, iterations=1,
steps=1. C%, δ◦ (the average slope), and Dc, for the plots are given below. Repeating these exper-
iments with the same parameters will give slightly different outcomes because the exact rules in the
rulemix will differ.

Left: 3 superimposed plots:chaos/balance/order.

C% slope δ◦ Dc
0 68.2◦ 1.323
51 45.4◦ 0.019
90 22.8◦ -1.251

Right: 2 superimposed plots:extreme chaos (chain-rules) and order.
C% slope δ◦ Dc
0 71.4◦ 1.572

100 16.6◦ -1.744

22.7 Automatic plots of CA rule clusters

Its of some interest to compare the Derrida plots of various CA rule-spaces, for example the 256
elementary rules (v2k3 rcode) in figure 22.3, or the 64 v2k5 totalistic rules in figure 22.5 (tcode
or kcode, idential for v=2). In “The Global Dynamics of Cellular Automata” [38] it was shown
that a rule has equivelent rules by negative, reflection and negative+reflection transformations,
making an “equivalence class” where all behavior is strictly equivalent1, originally discovered by
Crayton Walker [34]. A further “complementary” transformation will group the rules into “rule
clusters”. Complementary rules, though usually not equivalent, share some important behavior
measures, including the Z-parameter and G-density [38] (section 24.9), and the in-degree histogram
(section 24.6). As set out in [38], the 256 elementary rules fall into 88 equivalence classes and 48 rule
clusters, which can be placed into one of three symmetry categories by reflection transformations.
The 64 v2k5 totalistic rules fall into 36 equivalence classes and 20 rule clusters.

1See section also 18.5 to compute equivalence classes and rule clusters.

335

rcode table=8 rulespace=256

#: s n r nr Dc SY

1: 0 255 0 255 -inf SY

2: 1 127 1 127 -0.456 SY

3: 2 191 16 247 -0.441 SA

4: 3 63 17 119 -0.011 SA

5: 4 223 4 223 -0.449 SY

6: 5 95 5 95 -0.014 SY

7: 6 159 20 215 0.543 SA

8: 7 31 21 87 0.298 SA

9: 8 239 64 253 -0.457 SA

10: 9 111 65 125 0.545 SA

11: 10 175 80 245 -0.019 FA

12: 11 47 81 117 0.307 FA

13: 12 207 68 221 -0.020 SA

14: 13 79 69 93 0.289 SA

15: 14 143 84 213 0.295 FA

16: 15 15 85 85 -0.000 FA

17: 18 183 18 183 0.538 SY

18: 19 55 19 55 0.299 SY

19: 22 151 22 151 1.120 SY

20: 23 23 23 23 0.549 SY

21: 24 231 66 189 0.554 FA

22: 25 103 67 61 0.773 FA

23: 26 167 82 181 0.770 SA

24: 27 39 83 53 0.572 SA

25: 28 199 70 157 0.781 FA

26: 29 71 71 29 0.561 FA

27: 30 135 86 149 0.955 SA

28: 32 251 32 251 -0.451 SY

29: 33 123 33 123 0.545 SY

30: 34 187 48 243 -0.011 SA

31: 35 59 49 115 0.296 SA

32: 36 219 36 219 0.545 SY

33: 37 91 37 91 0.778 SY

34: 38 155 52 211 0.770 SA

35: 40 235 96 249 0.536 SA

36: 41 107 97 121 1.113 SA

37: 42 171 112 241 0.312 FA

38: 43 43 113 113 0.550 FA

39: 44 203 100 217 0.776 SA

40: 45 75 101 89 0.955 SA

41: 46 139 116 209 0.564 FA

42: 50 179 50 179 0.297 SY

43: 51 51 51 51 -0.000 SY

44: 54 147 54 147 0.956 SY

45: 56 227 98 185 0.772 FA

46: 57 99 99 57 0.954 FA

47: 58 163 114 177 0.558 SA

48: 60 195 102 153 0.966 FA

49: 62 131 118 145 0.773 SA

50: 72 237 72 237 0.548 SY

51: 73 109 73 109 1.119 SY

52: 74 173 88 229 0.773 SA

53: 76 205 76 205 0.298 SY

54: 77 77 77 77 0.545 SY

55: 78 141 92 197 0.557 SA

56: 90 165 90 165 0.966 SY

57: 94 133 94 133 0.772 SY

58: 104 233 104 233 1.108 SY

59: 105 105 105 105 1.537 SY

60: 106 169 120 225 0.964 SA

61: 108 201 108 201 0.956 SY

62: 110 137 124 193 0.771 SA

63: 122 161 122 161 0.780 SY

64: 126 129 126 129 0.542 SY

65: 128 254 128 254 -0.453 SY

66: 130 190 144 246 0.535 SA

67: 132 222 132 222 0.546 SY

68: 134 158 148 214 1.119 SA

69: 136 238 192 252 -0.022 SA

70: 138 174 208 244 0.309 FA

71: 140 206 196 220 0.304 SA

72: 142 142 212 212 0.560 FA

73: 146 182 146 182 1.115 SY

74: 150 150 150 150 1.539 SY

75: 152 230 194 188 0.779 FA

76: 154 166 210 180 0.948 SA

77: 156 198 198 156 0.955 FA

78: 160 250 160 250 -0.026 SY

79: 162 186 176 242 0.304 SA

80: 164 218 164 218 0.775 SY

81: 168 234 224 248 0.300 SA

82: 170 170 240 240 -0.000 FA

83: 172 202 228 216 0.559 SA

84: 178 178 178 178 0.560 SY

85: 184 226 226 184 0.565 FA

86: 200 236 200 236 0.304 SY

87: 204 204 204 204 -0.000 SY

88: 232 232 232 232 0.547 SY

(a) MaxH=1, the full range. (b) MaxH=0.1, detail to compute Dc

symmetric (SY)

rcode table=8 rulespace=256

#: s n r nr Dc SY

1: 0 255 0 255 -inf SY

255 0 255 0 -inf (-nan) SY

2: 1 127 1 127 -0.471 SY

254 128 254 128 -0.455 (-0.016) SY

5: 4 223 4 223 -0.443 SY

251 32 251 32 -0.457 (0.014) SY

6: 5 95 5 95 -0.021 SY

250 160 250 160 -0.022 (0.001) SY

16: 18 183 18 183 0.537 SY

237 72 237 72 0.538 (-0.001) SY

17: 19 55 19 55 0.312 SY

236 200 236 200 0.303 (0.009) SY

18: 22 151 22 151 1.111 SY

233 104 233 104 1.112 (-0.001) SY

19: 23 23 23 23 0.553 SY

232 232 232 232 0.562 (-0.009) SY

27: 33 123 33 123 0.546 SY

222 132 222 132 0.546 (-0.000) SY

29: 36 219 36 219 0.550 SY

219 36 219 36 0.540 (0.010) SY

30: 37 91 37 91 0.775 SY

218 164 218 164 0.779 (-0.004) SY

36: 50 179 50 179 0.307 SY

205 76 205 76 0.294 (0.013) SY

37: 51 51 51 51 -0.000 SY

204 204 204 204 -0.000 (0.000) SY

38: 54 147 54 147 0.955 SY

201 108 201 108 0.957 (-0.002) SY

43: 73 109 73 109 1.108 SY

182 146 182 146 1.113 (-0.005) SY

44: 77 77 77 77 0.551 SY

178 178 178 178 0.547 (0.004) SY

45: 90 165 90 165 0.965 SY

165 90 165 90 0.965 (0.000) SY

46: 94 133 94 133 0.767 SY

161 122 161 122 0.773 (-0.005) SY

47: 105 105 105 105 1.539 SY

150 150 150 150 1.535 (0.003) SY

48: 126 129 126 129 0.552 SY

129 126 129 126 0.549 (0.003) SY

semi asymetric (SA)

3: 2 191 16 247 -0.450 SA

253 64 239 8 -0.450 (-0.000) SA

4: 3 63 17 119 -0.014 SA

252 192 238 136 -0.024 (0.011) SA

7: 6 159 20 215 0.539 SA

249 96 235 40 0.540 (-0.000) SA

8: 7 31 21 87 0.313 SA

248 224 234 168 0.304 (0.008) SA

9: 9 111 65 125 0.537 SA

246 144 190 130 0.536 (0.001) SA

12: 12 207 68 221 -0.011 SA

243 48 187 34 -0.013 (0.003) SA

13: 13 79 69 93 0.307 SA

242 176 186 162 0.303 (0.004) SA

22: 26 167 82 181 0.780 SA

229 88 173 74 0.765 (0.014) SA

23: 27 39 83 53 0.566 SA

228 216 172 202 0.559 (0.007) SA

26: 30 135 86 149 0.954 SA

225 120 169 106 0.962 (-0.007) SA

28: 35 59 49 115 0.303 SA

220 196 206 140 0.300 (0.003) SA

31: 38 155 52 211 0.780 SA

217 100 203 44 0.777 (0.002) SA

32: 41 107 97 121 1.115 SA

214 148 158 134 1.113 (0.002) SA

34: 45 75 101 89 0.953 SA

210 180 154 166 0.960 (-0.007) SA

40: 58 163 114 177 0.557 SA

197 92 141 78 0.555 (0.001) SA

42: 62 131 118 145 0.769 SA

193 124 137 110 0.772 (-0.003) SA

fully asymetric (FA)

10: 10 175 80 245 -0.018 FA

245 80 175 10 -0.018 (0.000) FA

11: 11 47 81 117 0.306 FA

244 208 174 138 0.296 (0.010) FA

14: 14 143 84 213 0.296 FA

241 112 171 42 0.302 (-0.006) FA

15: 15 15 85 85 -0.000 FA

240 240 170 170 -0.000 (0.000) FA

20: 24 231 66 189 0.551 FA

231 24 189 66 0.547 (0.004) FA

21: 25 103 67 61 0.773 FA

230 152 188 194 0.770 (0.002) FA

24: 28 199 70 157 0.769 FA

227 56 185 98 0.775 (-0.007) FA

25: 29 71 71 29 0.568 FA

226 184 184 226 0.556 (0.012) FA

33: 43 43 113 113 0.551 FA

212 212 142 142 0.553 (-0.002) FA

35: 46 139 116 209 0.564 FA

209 116 139 46 0.563 (0.001) FA

39: 57 99 99 57 0.959 FA

198 156 156 198 0.957 (0.002) FA

41: 60 195 102 153 0.966 FA

195 60 153 102 0.967 (-0.001) FA

(d) Enter automatic-2 in section 22.5.1 to sequentially gen-
erate the Derrida plot (b) and the list (in the terminal) of the
46 rule clusters. Here the list is shown sorted into 3 columns
according to symmetric (SY), semi asymetric (SA), and fully
asymmetric (FA).

(c) Enter automatic-1 in section 22.5.1 to sequentially generate the the Derrida plot (a) and
the list Left (in the terminal) of the 88 rule equivalents — automatic-3 gives the complete list
of 256 (not shown). The list headings #: s n r nr Dc refer to #=count: s=start, n=negative,
r=reflection, nr=negative+reflection, Dc=Derrida coefficient, and for rule clusters the DC
difference in brackets.

Figure 22.3: (a) and (b) are automatically generated Derrida plots from the 256
elementary rules (v2k3, n=150), also listed in the terminal: (c) 88 rule equivalents,
and (d) 48 rule clusters[38]. Note that plot (b) is a detail at the origin of plot
(a), and the rules in each rule cluster give the same plot. It turns out that just 14
Derrida plots cover the whole of elementary rule-space.

336 CHAPTER 22. THE DERRIDA PLOT

Left: 8-rule cluster schematic. Right: Example of a non-collapsed rule cluster, total of type 20.

Examples of collapsed clusters, totals of each type in order: 12, 4, 4, 2, 2, 2, 2.

Figure 22.4: Graphical representation of rule clusters of the v2k3 “elementary” rules, and examples,
taken from “The Global Dynamics of Cellular Automata” [38] section 3.3, where its shown that the
256 rule-space breaks down into 88 equivalence classes and 48 clusters. The rule cluster is depicted
as 2 complementary sets of 4 equivalent rules at the corners of a box — with negative, reflection, and
complementary links on the x, y, z edges, but the edges also collapse due to symmetries.

kcode table=6 rulespace=64

#: s n Dc

1: 0 63 -inf

63 0 -inf (-nan)

2: 1 31 -1.743

62 32 -1.755 (0.012)

3: 2 47 0.549

61 16 0.549 (-0.001)

4: 3 15 0.246

60 48 0.251 (-0.005)

5: 4 55 1.571

59 8 1.564 (0.007)

6: 5 23 1.715

58 40 1.716 (-0.001)

7: 6 39 1.061

57 24 1.065 (-0.004)

8: 7 7 0.841

56 56 0.841 (0.000)

9: 9 27 1.725

54 36 1.718 (0.006)

10: 10 43 2.171

53 20 2.172 (-0.001)

11: 11 11 2.075

52 52 2.075 (0.001)

12: 12 51 1.262

51 12 1.263 (-0.001)

13: 13 19 1.427

50 44 1.437 (-0.009)

14: 14 35 0.580

49 28 0.578 (0.002)

15: 17 29 0.817

46 34 0.818 (-0.002)

16: 18 45 1.578

45 18 1.576 (0.001)

17: 21 21 2.266

42 42 2.264 (0.002)

18: 22 37 1.845

41 26 1.839 (0.007)

19: 25 25 1.264

38 38 1.265 (-0.001)

20: 30 33 -0.745

33 30 -0.738 (-0.007)

(a) MaxH=1, the full range. (b) MaxH=0.1, detail to compute Dc

Figure 22.5: Derrida plots of the 20 rule clusters in the 64 v2k5 tcodes, n=150.
Left:The terminal printout, with headings just #: s n Dc because tcode (and kcode)
rules are symmetric, so reflections reproduce the same rule. (a) the full range or 64
tcodes which replicate the 20 rule clusters, for the full range of Hamming distance
(b) for 20 rule clusters MaxH=0.1, enough to compute Dc (Dc sample=8H).

Experiment confirms, as expected, that the Derrida plots for the rules in an equivalence class
will be the same (subject to sampling variation) — as if plotting the same rule, and this turns out
also to be true of the complementary rules — so all the rules in a rule cluster have the same Derrida
curve (figure 22.5). In DDLab it’s now possible to automatically generate the Derrida plots for
binary (v=2) rule-spaces according to these equivalence classes or rule clusters, or for v ≥2 rules,

337

counting up from the start rule in decimal. The procedure works for rcode in SEED-mode, and
for kcode or tcode in TFO-mode. However, rule-tables must be within the limits in table 16.2 for
expressing the rule as a decimal number.

To automatically generate the Derrida plots, in section 22.5 enter 1 for equivalence classes, 2
for rule clusters (figures 22.3 and 22.5), or 3 for just a sequence of rules. In each case the initial
rule, selected in section 16 or revised with reset-r in section 22.5 starts of the sequence, counting
up, so to obtain an orderly and complete sequence of rules for an entire rule-space, the initial rule
should be set to decimal rule 0 (zero).

Starting with rule 0 for equivalence classes, just the lowest decimal rule will be plotted (as
the representative rule) and its equivalents skipped and filtered from the remaining list. For rule
clusters, the complement of the representative rule is also plotted, and its equivalents skipped
and filtered. The rules (for making up equivalence classes or rule clusters) are displayed in the
terminal (xterm) for Linux-like systems (figure 22.3), so this is a useful result in itself — Derrida
parameters in section 22.2 can be minimised if equivalence classes are the only data required.

Chapter 23

Graphic conventions for attractor
basins
not in TFO-mode

Figure 23.1 and section 23.1 explain the idea of basins of attraction in discrete dynamical networks.
Attractor basins are represented by state transition graphs, where nodes — network states, are
linked by directed edges — state transitions. States in deterministic networks have one successor
but possibly a number of predecessors (pre-images), so trajectories occur within trees. In a finite
network a trajectory must encounter a repeat state, defining its attractor. Attractor basins are
thus made up of transient trees rooted on attractor cycles.

This chapter describes the graphic conventions for drawing the state transition graphs of
attractor basins and subtrees, illustrated in figures 23.2 — 23.5, and in other figures in the manual.

23.1 Basins of Attraction — the idea
Given an invariant network architecture and the absence of noise, the dynamics on a discrete
dynamical network is deterministic, and follows a unique trajectory from any initial state. When a
state that occurred previously is re-visited, which must happen in a finite state-space, the dynamics
become trapped in a perpetual cycle of repetitions defining the attractor (state cycle) and its
period (minimum one, a stable point). The approach is analogous to Poincaré’s “phase portrait”
in continuous dynamics.

These systems are dissipative. A state may have multiple “pre-images” (predecessors), or none,
but just one successor. The number of pre-images is the state’s “in-degree”. In-degrees greater
than one require that transient states exist outside the attractor. Tracing connections backwards
to successive pre-images of transient states reveals a tree-like topology where the “leaves” are
states without pre-images, known as garden-of-Eden states. Conversely, the flow in state-space is
convergent. The set of transient trees and the attractor on which they are rooted make up the
basin of attraction. Local dynamics connects state-space into a number of basins, the basin of
attraction field, representing the system’s global dynamics.

338

339

For a binary network size n, an example of one of its states B might
be 1010 . . . 0110. State-space is made up of all S = 2n states (S = vn

for multi-value) — the space of all possible bitstrings or patterns.

Part of a trajectory in state-space, where C is a successor of B, and A
is a pre-image of B, according to the dynamics of the network.

The state B may have other pre-images besides A, the total number is
the in-degree. The pre-image states may have their own pre-images or
none. States without pre-images are known as garden-of-Eden states.

Any trajectory must sooner or later encounter a state that occurred
previously - it has entered an attractor cycle. The trajectory leading to
the attractor is a transient. The period of the attractor is the number
of states in its cycle, which may be just one - a point attractor.

Take a state on the attractor, find its pre-images (excluding the pre-
image on the attractor). Now find the pre-images of each pre-image,
and so on, until all garden-of-Eden states are reached. The graph of
linked states is a transient tree rooted on the attractor state. Part of
the transient tree is a subtree defined by its root.

Construct each transient tree (if any) from each attractor state.
The complete graph is the basin of attraction. Some basins of
attraction have no transient trees, just the bare “attractor”.

Now find every attractor cycle in state-space and construct its basin
of attraction. This is the basin of attraction field containing all 2n

states in state-space, but now linked according to the dynamics of the
network. Each discrete dynamical network imposes a particular basin of
attraction field on state-space.

Figure 23.1: The idea of basins of attraction in discrete dynamical networks (section 23.1).

23.2 Network states, nodes

Network states in attractor basins are usually represented by circular nodes, but may also be shown
as a bit/value pattern in 1d or 2d, or the decimal or hex value of the state, or they may not be
shown (section 26.3).

340 CHAPTER 23. GRAPHIC CONVENTIONS FOR ATTRACTOR BASINS

Figure 23.2: A point attractor (period=1) is represented as a node cycling to itself. The single node
and the center line of the pre-image fan (level 1) are set at a default angle of 45◦. The examples above
show point attractors with increasing fan size, from 0 upwards (from v2k3 rcode(dec) 77, n=12).

Figure 23.3: The pre-image fan (level 2) of a single pre-image (level 1) of a point attractor.
The examples show increasing fan sizes, from 0 upwards (from v2k3 rcode(dec) 110, n=(1-3) and
n=(6-10)). In this case both the point attractor and its pre-image are uniform states (all0s and all1s)
so the pre-image fan and attached trees are organized into equivalent groups (section 23.4.2).

Figure 23.4: Period 2 attractors which cycle to each other. The two nodes are set at a default angle
of -15◦. Varying sizes of the pre-image fan to both attractor states are shown, from 0 upwards. A fan
at level 1 is slightly angled to indicate that the direction of time is clockwise in the attractor — the
center lines of subsequent fans are radial to the center of the attractor cycle (taken from rcode v2k3
rcode(dec) 33, n=13).

Figure 23.5: Attractors with periods ≥3 are represented by polygons whose diameter approaches an
upper limit with increasing period. The first 10 examples from the left have periods of 3 to 12 (from
rcode(dec) 248, n=(3-12)). The framed example on the right is a fragment of a basin from v2k3
rcode(dec) 30, n=14, with period 63. A single edge or a fan at level 1 is slightly angled to indicate
that the direction of time is clockwise in the attractor — the center lines of subsequent fans are radial
to the center of the attractor cycle — see figure 2.6 for a clearer example.

341

23.3 Attractor cycles

Where three or more states make up an attractor cycle, this is represented as a regular polygon
with nodes at the vertices (figure 23.5). The direction of time is clockwise. The “last” vertex,
from which the first subtree is generated, is shown due east, so the first vertex at which the cycle
is entered is one node clockwise from due east. A point attractor is shown as a node (positioned
north-east) on a circle, indicating that the node cycles to itself (figure 23.2). A two state attractor
is shown as two nodes on a circle (positioned south-east and north-west), where the south-east
node is the “last” node. The diameter of attractor cycles increases asymptotically with system
size n, up to the maximum selected, which also determines the scale of the entire basin.

23.4 Transient trees

The pre-images or predecessors (if any) of the “last” attractor state are computed first. The pre-
image fan angle is set according to the in-degree and increases asymptotically to a maximum value
with increasing in-degree. In general the center line of the fan angle is radial to the attractor cycle
center point, but for fans rooted on the attractor, the fan angle is tilted slightly to indicate that
the direction of time around the cycle is clockwise (figure 2.6).

The pre-image fan is computed and drawn for each node at each successive level in the tree.
The endpoints of the fan where the nodes are drawn are positioned on notional concentric circles
around the attractor cycle corresponding to successive levels in the tree. The distance between
each successive concentric circle, and thus between tree levels away from the root, decreases asymp-
totically for 90 levels, thereafter remains constant, but both the rate of decrease and the number
of levels can be reset (section 25.2.2).

The tree will grow away from the attractor, backwards in time. Once the tree is complete with
all its garden-of-Eden states reached, the next tree (anti-clockwise on the attractor) is computed.
Note that with compression on (section 26.2), equivalent trees will be computed and drawn
simultaneously).

23.4.1 Transient tree colors

A cycle of four colors is used to draw transition edges. The color scheme of the attractor basin
depends on the start edge color which can be changed, resulting in four alternative color schemes
for both edges and transition nodes (section 26.4.3).

The edges in the same pre-image fan are drawn in the same color (except for the uniform
states — section 23.4.2 below). If the attractor period is 5 or less, successive fans are assigned a
different color so that a given transient tree may have a mix of colors. For attractor periods of 6 or
more, all fans in the same tree are assigned the same color, and the color is changed for the next
non-equivalent tree. Note that with compression on (section 26.2) equivalent trees will be colored
identically. Conventions for bit pattern node colors are described in section 26.3.1.

342 CHAPTER 23. GRAPHIC CONVENTIONS FOR ATTRACTOR BASINS

Figure 23.6: Examples of subtrees from root states with in-degrees (at level 1) of 1 to 5. These
examples are for v8k3 CA, n=5 for various rules, and random initial states, running forward by about 3
time-steps before running backward. States are shown as value patterns — the root state is highlighted
by default inside a double outline. For in-degree 1 at level 1 (the two subtrees top-left) similar layout
principles apply as in figure 23.3.

23.4.2 Transient trees for uniform states
for 1d and 2d CA

If CA compression is set, a special algorithm is employed to speed up computation of the subtree
of the “uniform” states, where all cells have the same value. When uniform states are on the
attractor, the attractor period cannot exceed v (2 for binary). If a given state is a pre-image of
a uniform state, then that state’s rotation equivalents [38] must also be pre-images, and may be
computed simultaneously by an appropriate rotational transformation.

The first level of a uniform state’s tree is organized into groups of equivalents (shown in different
colors). The subtree of each representative state in each group at this first level is computed in
turn. Each subtree will be completed before the next is started. Successive pre-image fans in each
non-equivalent subtree are assigned a different color. Equivalent subtrees will be computed and
drawn simultaneously, and will be colored identically (figure 26.5).

343

23.4.3 Subtree only

A subtree only may be selected, running backward from a given state, or from a state a specified
number of time-steps forward from a given state. Running forward before running backward
is usually necessary because most states have no pre-images — they are leaves, garden-or-Eden
states. The first pre-image fan is evenly spread around a notional circle with a diameter equal to
the current maximum attractor diameter. Successive pre-image fans are computed and drawn for
each node at each successive level in the subtree.

If the subtree seed has just one pre-image, the pre-image fan at level 2 will be spread out as
shown in figure 23.6 (the two subtrees top-left) following similar layout principles as figure 23.3.

Chapter 24

Output parameters for attractor
basins
not in TFO-mode.

There are many parameter options and sub-options relating to attractor basins. Each can be
looked at in turn, but for convenience they are divided into seven categories to allow jumping
directly to the category where options need to be changed from the current default settings. All
options have defaults so the remainder can be skipped at any time – accept defaults-d.

The parameter categories (and relevant chapters/sections) are,

options . . . what they mean
start/misc-ret . . . start/miscellaneous options difficult to categorize (section 24.4).

layout-l . . . layout of attractor basins — their scale, position and spacing (chapter 25).
display/boundary-p . . . display of attractor basins and nodes (chapter 26), and null boundary

conditions (NBC, section 26.1).
data/pause-t . . . pausing between trees/basins, specifying data to be recorded (chapter 27).

PScript-P . . . to create a vector PostScrip file of the attractor basin/s (section 24.2).
graphs-g . . . (FIELD-mode) to select the ibaf-graph or the jump-graph (section 24.3).

mutation-m . . . various mutation settings for the next network (chapter 28).

24.1 The first output parameter prompt for attractor basins

The first output parameter prompt is presented in a top-right window, and differs between SEED
and FIELD-modes. At the same time basin parameters appears in a top-center window.

SEED-mode
accept all basin defaults-d, space-time patterns only-s
restore defaults: all-a, layout only-L
revise from: start/misc-ret layout-l display/boundary-p
revise from: data/pause-t PScript-P mutation-m:

FIELD-mode
accept all basin defaults-d
restore defaults: all-a, layout only-L
revise from: start/misc-ret layout-l display/boundary-p
revise from: data/pause-t PScript-P graph-g mutation-m:

344

345

24.1.1 Output parameters for attractor basins — options summary

The meaning of the options in section 24.1 are summarized below, and described in detail in this
chapter and chapters 25 to 28.

As soon as a “revise from” option is selected, the reminder accept defaults-d appears in
a top-center window – enter d (at any time) to accept all remaining defaults, and skip further
output parameter prompts.

options . . . what they mean

accept all basin default-d . . . to accept all current output parameter defaults, and skip
further prompts. This can be done at any stage in the prompt
sequence. New settings generally become the new defaults, but can
be reset to the original. The next prompt for a basin of attraction
field will be presented in section 29.4, or for a subtree or single basin
in section 29.1.

space-time patterns only-s . . . (SEED-mode only) enter s to skip all attractor basin
options and go directly to the output parameters for space-time
patterns (chapter 31). Note that a final chance to select space-time
patterns is also given in section 29.1.

restore defaults: . . . to restore defaults to their original settings

all-a . . . to restore all defaults .

layout only-L . . . to restore just the layout defaults — described in chapter 25.

revise from: . . . jumping directly to an option category
At any point enter q (or q more than once) to backtrack to the first
output parameter prompt (section 24.1).

start/misc-ret . . . enter return to start miscellaneous (hard to categorize) options,
presented in sequence in a top-right window (section 24.4).

layout-l . . . for a sequence of prompts to set the scale, position and spacing of
attractor basins — described in chapter 25.

display/boundary-p . . . to set null boudary conditions (NBC, section 26.1) instead of pe-
riodic (PBC), to disable the compression of equivalent basins and
trees (the default for CA, section 26.2), and for a sequence of dis-
play prompts, types of nodes, orientation, and in-degree angle —
described in chapter 26.

data/pause-t . . . for a sequence of prompts for pausing attractor basins to re-adjust
the layout on-the-fly, and to show/print data at various levels of
detail — described in chapter 27.

PScript-P . . . to create a vector PostScript file of the attractor basin (section 24.2).

graphs-g . . . (FIELD-mode only) to select the ibaf-graph (the “interactive basin
of attraction field” graph), or the jump-graph with or without links
(section 24.3).

mutation-m . . . for a sequence of prompts to set the type of mutation (to wiring or
rules) to be applied to the next network generating the next attractor
basin/s with the same parameters — described in chapter 28.

346 CHAPTER 24. OUTPUT PARAMETERS FOR ATTRACTOR BASINS

24.2 PostScript of attractor basins

Enter PScript-P at the first output parameter prompt (section 24.1), or arrive there by viewing
the output parameters in sequence, to create a vector PostScript file of the basin of attraction
field, single basin, or subtree, or a range of the above. The following top-left prompt is presented,

if PostScript is currently OFF, the initial case
PScript: save basin to PostScript (now OFF): greyscale-P color-p:

if PostScript is currently ON, either greyscale-P or color-p
PScript: save basin to PostScript (now p): greyscale-P color-p cancel-0:

Enter 0 to deactivate, P or p to activate — a filename prompt will be presented (section 35.3).
If saving to PostScript is active, a new file will be created and overwritten to the selected filename
each time an attractor basin is drawn (default filename my bPS.ps). To conserve the file, the
selected filename should be renamed with utilities1 outside DDLab before a new attractor basin
is generated. Examples of vector PostScript images of basins are to be found throughout this
manual, for example in chapters 25 and 26. For PostScript files of jump-graph basins refer to
section 20.14.2.

24.3 Select the ibaf-graph or jump-graph
FIELD-mode only - see also sections 20.6, 20.7, 29.7.2

The ibaf-graph (section 20.6) is an interactive image of the usual basin of attraction field as
drawn and specified in chapters 25, 26, which can be rearranged with the mouse and keyboard for
dragging/re-scaling/re-displaying/nodes/fragments/components.

The jump-graph (section 20.7) represents the probabilities of jumping between basins due to
single-bit or single-value perturbations to attractor states, and gives some insight into the stability
and adaptability of the dynamics.

For a complete description of both graphs and their functions see chapter 20.
Enter graph-g at the first output parameter prompt (section 24.1) to go directly to the graph
prompt, or arrive there by viewing the output parameters in sequence. The following prompt is
presented,

graphs: ibaf-graph-i, jump-graph-j no-links+L:

Enter ibaf-graph-i to select the ibaf-graph (section 20.6) which requires the exhaustive test-
ing algorithm, so at the final basin field prompt (section 29.4) enter exh-e followed by ibaf-i in
section 29.7.2 to compute and activate.

Enter ibaf-graph-j to select the linked jump-graph (section 20.7). Enter ibaf-graph-jL for the
“layout only” jump-graph without links, which computes faster, and is applied for just laying out
attractors in arbitrary positions — section 24.3.1 below.

1For example, rename in a terminal, look at the PostScript file in “GhostView”.

347

24.3.1 Jump-graph basins applied to the ibaf-graph

The jump-graph options (section 20.7) include geometric layouts (circle/spiral/1d/2d/3d) which
can be usefully applied for the ibaf-graph. If basins are redrawn at the nodes of an uncompressed
jump-graph (section 20.14) — with or without links — the basin positions can be saved as a *.grh
file (section 20.16) then loaded back into the ibaf-graph to reset its layout, as in figure 24.1 below,

7

6

5

4

3

2

1

(a) jump-graph + basins

(b) ibaf-graph

Figure 24.1: The jump-graph with basins redrawn at nodes (a), can reset the layout of the ibaf-
graph (b) — here the top-left basin was then dragged, enlarged, and its nodes reset to 2d patterns.
For the binary 1d CA, v2k3, n=10, rule 9 with 7 basins (see also section 4.2.3).

348 CHAPTER 24. OUTPUT PARAMETERS FOR ATTRACTOR BASINS

24.4 Miscellaneous (hard to categorize) options

The rest of this chapter describes the first category of miscellaneous (hard to categorize) options,

options . . . what they mean

state-space matrix . . . an additional graphical method for representing states in attractor
basins (section 24.5) which can also be activated/deactivated on-the-
fly (section 30.3).

in-degree frequency . . . the frequency of different in-degrees in a subtree, basin or field
shown as a histogram (section 24.6).

show/count majority . . . highlight and count states in basins or subtrees with a majority
of a given value. For v=2 this provides an alternative measure of
fitness in the “density classification problem” [12, 22] (section 24.7).

screensave demo . . . (SEED-mode only) a continuous demo of single basins or subtrees for
different or mutant rules (sections 4.11, 24.8).

G-density, Z and λ . . . graphs of the density of garden-of-Eden (leaf) states against system
size, and how various rule parameters are distributed in rule-space
(section 24.9).

backwards space-time patterns . . . to show space-time patterns being computed
“backwards” as attractor basins are being drawn (section 24.10)
which can also be activated/deactivated on-the-fly (section 30.3).

speed . . . to slow down drawing attractor basins and backwards space-time
patterns or revert to full speed. See section 24.11, which also lists
other stages in DDLab where slow motion can be selected, including
on-the-fly.

Enter return at the first output parameter prompt (section 24.1) to access these options in
sequence.

24.5 State-space matrix

The state-space matrix plots each state in state-space on a 2d grid in the lower right corner of
the screen, plotting the left half against the right half of each state bit/value string. The x-axis
represents the left n/2 bits/values, the y-axis represents the right n/2 bits/values. If n is odd, the
extra bit/value is included on the left, and the grid is a flat rectangle as in figure 24.3 (bottom),
otherwise the grid is square. The scale of the matrix is set automatically according to n, though
this can be changed.

For a single basin, attractor cycle states and transient states are shown in different colors. For
a basin of attraction field, each basin is assigned a different color (cycling through 15 colors). The
start color for the color cycle may be reset to produce different color schemes. If the grid size is
big enough, the decimal equivalent of the states are also printed (figure 24.2).

349

0

63

42

54

21

27

45

18

9

36

61
44

23

39 34
52

28

12

4

55

50

29

30
10

19

49

48
16

31

11
53

57

40

13
7

3
1

59
46

25
15

5

41
56

24

8

47

58

37
60

20

38

35

33
32

62

22
43

51

17

26
14

6
2

Figure 24.2: The state-space matrix of the basin of attraction field of a cellular automaton, v2k3 rcode
(dec)110, n=6. Left: the uncompressed state transition graph. decimal numbers representing states.
Right: The state-space matrix, where the 3 basins are represented by 3 colors. The decimal equivalents
of states are shown in both cases.

Enter return at the first output parameter prompt (section 24.1) for the first miscellaneous
(start/misc:) option (section 24.4) for the state-space matrix. The first line of the prompt depends
on whether the matrix is currently ON or OFF.

start/misc: state-space matrix (now ON): off-x, all-states-m, attractor only-a

start/misc: state-space matrix (now OFF): all-states-m, attractor only-a
show and change: matrix size-s, start color-c:

24.5.1 State-space matrix — options summary

options . . . what they mean

off-x . . . to deactivate an ON matrix.

all-states-m . . . to display the matrix, including all states in the subtree, single basin or
field. For a single basin, attractor cycle states and transient states are
shown in different colors. For a basin of attraction field, each basin is
assigned a different color (cycling through 15 colors).

attractor only-a . . . to display the matrix showing just attractor states in the single basin or
field. For a basin of attraction field, each basin is assigned a different
color (cycling through 15 colors).

matrix size-s . . . to change the matrix size from the default. The following prompt is
presented,

change matrix size: % of 1/2 screen(default 63%):

Enter the new size as a percentage of half the screen width. If the matrix
cells are big enough, the decimal equivalent of states will be shown on
the matrix.

start color-c . . . to change the start color in the color cycle of 15 colors, and produce
different color schemes. The following prompt is presented,

change start color (now 10): enter 1-15:

350 CHAPTER 24. OUTPUT PARAMETERS FOR ATTRACTOR BASINS

Figure 24.3: The state-space matrix (lower right on each screen) of the basin of attraction field of a
CA, with compression off. Top: v2k3 rcode (dec)65, n=12, the 8 basins types are represented by 8
colors in the matrix. Bottom: v2k4 rcode (hex)eecc, n=13. Because n is odd, and the extra bit is
included on the left, the grid is a flat rectangle. The 88 basins are represented by cycling through 15
colors.

351

(a) attractor states only (b) a single basin

Figure 24.4: The state-space matrix of the same CA in figure 24.3 top, v2k3 rcode (dec)65, n=12.
(a) just the attractor states of the of the 8 basin types represented by 8 colors.
(b) just the states in the 5th basin type (top-right in figure 24.3 top). The attractor and transient
states are represented by 2 different colors.

24.5.2 Toggle the matrix on-the-fly

Whether set, or not, in section 24.5, the state-space matrix can be toggled on/off while attractor
basins are being drawn. The following reminder appears in the bottom title bar (section 5.5),

matrix-m STP:tog/scroll/esp/contr-s/#/e/c slow/max:</>

Enter m to toggle the state-space matrix on-the-fly. This can also be done for space-time
patterns (section 31.2.2.1). Options s/#/e/c and </> are described in section (section 30.3).

24.6 In-degree frequency histogram

DDLab can record the frequency of different in-degrees (the number of pre-images or predecessors)
that occur in a subtree, basin or field. If this option is selected, the in-degree information is
displayed as a histogram when the attractor basin is complete, or during a temporary pause
(section 30.2). The following top-right prompt is presented in section 24.4,

in-degree frequency histogram-h:

If h is entered, the histogram setting remains active for all further attractor basins. It may
be deactivated by not entering h at this prompt, by restoring all “output parameter” defaults
(section 24.1), or by backtracking through the main prompt sequence beyond section 9.

24.6.1 In-degree frequency cut-off

If h is entered above, the following prompt allows setting an upper threshold (or cut-off) to the
in-degrees recorded, to limit the size of the histogram. Any cut-off in the range of 50 to 5000 may
be set, the default is 200, or the current setting. The occurrence of in-degrees equal to or above
the cut-off value will be added to the cut-off frequency “bin” in the histogram.

select cut-off in-degree bin (50-5000, default 200):

352 CHAPTER 24. OUTPUT PARAMETERS FOR ATTRACTOR BASINS

Figure 24.5: In-degree histogram which has been rescaled from the default settings, of a basin of
attraction field of a CA, v2k3, rcode (dec)193, n=18. The attractor basins are shown at the top.

24.6.2 Drawing the in-degree histogram

While the in-degree histogram is active, Attractor basins are drawn in the usual way, and in-degree
information is recorded. The histogram and data will be displayed in a window in the lower section
of the screen once the attractor basin is complete, or can be seen at any time if paused on-the-fly
(enter q), in which case a top-right prompt similar to the following is presented (variations and
other pause options are described in section 30.2),

early exit - in pre-image fan (if within a pre-image fan)

inhist-h, next-tree/basin-n options-o stopfield-q speed-V cont-ret: (for a basin field)

During a pause, enter h to see the histogram and data corresponding to the attractor basin
generated so far. The x-axis represents the range of in-degrees, from in-degree zero (garden-of-
Eden states) upward. The y-axis represents the number of states having a given in-degree. The
last, black, frequency column (if applicable) represents combined in-degrees equal to the cut-off
value and above. The garden-of-Eden column is colored red, the other columns yellow. The x and
y axis are automatically re-scaled according to the range of in-degrees encountered, but can also
be manually re-scaled or shown in log form for a clearer view of the spread of frequencies or to
amplify smaller in-degrees.

353

Figure 24.6: Top: A subtree of a CA, v2k3 rcode (dec)193, with the n=50 1d root state shown in
2d 10×5), leaf nodes suppressed and the STG rotated by 90◦. Below: Two versions of the in-degree
histogram, with increasing rescaling (x and y axis) for a closer view. Excess in-degrees (indicated by +)
are included in the last black column on the right. Zero in-degrees (leaf states) are in the first (red)
column on the left.

354 CHAPTER 24. OUTPUT PARAMETERS FOR ATTRACTOR BASINS

24.6.3 In-degree data and prompts

An example of the data displayed in the window, and initial prompts (figure 24.5) for the basin of
attraction field of a v2k3 CA, rcode(dec)193, n=18) is shown below,

total att/nodes/edges=487/262144/262144 win-w ops-o
max in-degree=158, gE=161096=0.615, log:-x-y both-b tog bins(on)-B
hist:save/load-s/l, data:save/prt-S/p, rescale-r, quit-q:

For a subtree the prompt starts with subtree: nodes/edges= . . .

24.6.4 in-degree window — data decode

The data shown in the in-degree frequency window (section 24.6.2) signifies the following,

total att . . . the number of states on attractor cycles (does not apply to subtrees).
nodes . . . the number of nodes whose pre-images have been computed.
edges . . . the total number of edges computed so far.

max in-degree . . . the largest in-degree found, possibly more than the cut-off limit.
gE . . . the frequency and fraction of garden-of-Eden states (in-degree 0), usually

the greatest frequency.

Note that for a complete basin (or field), nodes=edges, for a complete subtree, nodes=edges+1,
and for an incomplete attractor basin, (i.e. if interrupted), nodes<edges.

24.6.5 in-degree window — options summary

win-w . . . to toggle the in-degree window itself, in case its hiding attractor
basins.

ops-o . . . for further options described in section 30.4.

log:-x-y both-b . . . to transform to a log plot on either axis or both (section 24.6.6).

tog bins(on) . . . for a binned or simple log plot (section 24.6.6).

hist:save/load-s/l . . . to save histogram data as DDLab binary file, (default filename
my prh.prh), or load the data file and regenerate a new histogram.

data:save/prt-S/p . . . to save histogram data as an ASCII file, (default filename
my data.dat), or print the ASCII data to the terminal (not for
DOS). The following data example is for CA, v2k3 rule 193, n=10
(basin of attraction field inset).

pre-image frequency distribution

0: 442

1: 350

2: 136

3: 45

4: 30

6: 10

7: 10

17: 1

rescale-r . . . to rescale the histogram (section 24.6.7).

355

Figure 24.7: The in-degree histogram as a log-log plot can be implemented in two ways on the
x-axis, Left: preserving a histogram (the default) with bins that capture an increasing range of
in-degrees, 0, 1–2, 3–7, 8–15, etc. Right: a simple log-log plot. The x and y axis can also be treated
separately. These plots are for the CA, v2k3 rcode (dec)193, in figure 24.6.

24.6.6 In-degree log plot

The in-degree histogram can be transformed to a log-log plot base 2. There are two ways of treating
the x-axis. The default (binned) method preserves a histogram with equal width bars, where each
bar combines a range of in-degrees, 0, 1–2, 3–7, 8–15, etc. The alternative method is a simple
log-log plot. Both are illustrated in figure 24.7. Enter B to toggle between the two methods —
the in-degree histogram changes color, yellow for binned, otherwise green.

Enter x, y or b in section 24.6.3 to replot the histogram according to log2 scale for just the
x-axis, just the y-axis, or both axes.

24.6.7 Rescaling the x/y-axis

Enter r in section 24.6.3 to rescale the x and y axes. The following additional prompts are
presented, depending on x-max, the max in-degree found,

if x-max ≤ 30

re-scale y axis (def-d):y-max:

if x-max > 30, prompts in turn)

re-scale x/y axis (def-d):x-max (30-158): y-max:

Enter the rescaled settings, or d to restore the originals — the histogram will be redraw
accordingly, as in figure 24.6.

The x-axis is initially scaled to show the spread of in-degrees from zero to the maximum found
(or to the cut-off value). If the cut-off value is shown, + is added at the end of the x-axis indicating
that in-degrees equal to or greater than the cut-off value have occurred.

If the maximum in-degree found is greater than 30, the x-axis can be rescaled by entering a
new maximum in-degree. Excess in-degrees (off the scale) will be shown as a black column on top
of the maximum in-degree column, and + will be added to the x-axis.

The y-axis is initially scaled to contain the highest in-degree frequency column in the histogram
(usually column 0, leaf states). It may be rescaled to any value, for instance to show smaller
in-degree frequencies at a larger scale.

356 CHAPTER 24. OUTPUT PARAMETERS FOR ATTRACTOR BASINS

Figure 24.8: The density classification problem in emergent computation seeks to evolve a rule that is
able to categorize states between a majority 0s and 1s. In this example of typical space-time patterns
(n=149), v2k7 rcode (hex)(ff f0 8c f0 ff e0 00 f0 ff f0 00 f0 ef e0 00 e0), evolved by Raja Das [12].

Figure 24.9: A subtree showing exceptions to den-
sity classification. Using the Raja Das [12] rule (as in
figure 24.8), a subtree was generated from an initial
state with 11 1’s out of n=17. Most states in the sub-
tree also have a majority of 1s, but there are 9.63% ex-
ceptions. indicated in the “Data on subtrees” window
(section 27.2.6) shown below, and by yellow squares
in the subtree.

24.7 Density classification problem — attractor basins

The “density classification problem” is a favourite exercise in emergent computation [12, 22] which
seeks to evolve CA rules able classify states between a majority 0s and 1s — the fitness is measured
by running forward from many random initial states (implemented in section 31.7.1).

This section introduces an alternative method of measuring fitness, by generating basins or
subtrees, and highlighting and counting the exceptions to the intended classification. A good
density rule will have two point attractors, the all 0 state attracting the majority-0 states,
and the all-1 state attracting the majority-1 states (figures 24.8, 24.10). Likewise, a subtree
with a given majority should attract the same majority value (figure 24.9). DDLab is able to
test for a majority of any value (0 to 7) in basins or subtrees, but the examples in this section
relate just to the majority of 1s and 0s. The following top-right prompt is presented in section 24.4,

show/count states majority, enter (0 - 1): (for v=2)

Enter 1 or 0 to highlight the majority states, which are displayed as small yellow squares with
a black border (figure 24.9). The number and percentage of the value selected is also displayed in
the data window when a basin or subtree is complete (sections 27.2.3, 27.2.6) as in figure 24.9.

357

Figure 24.10: A basin of attraction field showing states with a majority of 1s as yellow squares. n=13,
v2k7, same rule as in figure 24.9. Nearly all states belong to the all 0’s and all 1’s point attractors.
Data on the relative volume of these basins and (density of majority-1s) within each: 51.9% (7.34%)
and 47.3% (97.3%) — taken from the basin data window (section 27.2.3) at a pause (section 27.1.2).

24.8 Screen-saver demo
If a single basin or subtree was selected at the first prompt in section 6.2, an option is presented for
a continuously changing display where basins or subtrees are generated randomly in overlapping
bubbles on the screen (figure 4.18). The following top-right prompt is presented in section 24.4,

screensave demo -s:

Enter s to select the demo, also described in a quick-start examples in section 4.11. All on-the-fly
basin options in section 24.12 apply, including a new option E/C to expand/contract the basin
scale, as well as s to toggle backwards space-time patterns (section 24.10), and m to toggle the
state-space matrix (section 24.5.2) — toggling this off also resets a blank screen. Most settings,
(network, layout, display, mutation) apply to the screen-saver demo.

24.9 G-density, Z and λ

The G-density — of Garden-of-Eden (leaf) states — those without predecessors — in a subtree,
basin or field, is a measure of convergence in network dynamics, which in turn relates to the
quality of typical space-time patterns in CA, ordered-complex-chaotic [44]. A number of static
parameters from the rcode-table itself also predict convergence, to varying degrees. Although these
parameters are generalized for multi-value v ≥ 3, the options involving parameters (sections 24.9.3
– 24.9.5) apply only to binary (v=2) rules. If S is the rcode size, the binary parameters can be
defined as follows,

λ-parameter . . . the fraction of 1s in S. For v ≥ 3 λ is the fraction of non-quiescent values [26].
λratio . . . the total of the lesser value (1s or 0s) divided by S/2.

Z-parameter . . . the probability that the next unknown cell in the CA reverse algorithm is
determined [38, 44, 50].

358 CHAPTER 24. OUTPUT PARAMETERS FOR ATTRACTOR BASINS

0 ←—————— λratio —————–→ 1
0 ←————- Z-parameter ————→ 1
max ←– convergence/G-density —→ min

Figure 24.11: A view of rule-space (after Langton [26] with max chaos added). Tuning the Z-
parameter from 0 to 1 shifts the dynamics from maximum to minimum convergence, from order to
chaos, traversing a phase transition where complexity lurks. The chain-rules (about the square root
of rule-space) on the right are maximally chaotic and have the very least convergence, decreasing
with system size, making them suitable for dynamical encryption (section 16.11).

Figure 24.11 is a schematic view of rule-space illustrating how convergence and G-density relate
to order/chaos — predicted by the Z-parameter and to a lesser extent by λratio — only Z is able to
identify the maximally chaotic chain-rules (section 16.11). Complex rules occur at the order/chaos
phase transition, but are difficult to identify by these static parameters2.

λratio is utilised instead of the λ-parameter because it can be compared directly to Z — both
vary between 0 and 1 — where a low value indicates order and high convergence, and a high value
indicates chaos and low convergence. λratio approximates Z, which depends on the distribution as
well as the proportions of values in the rcode — Z predicts behavior more accurately (figure 24.14).
To test these relationships, this section describes how graphs of G-density against Z and/or λratio

can be plotted for predefined CA rules.
Plots can be made of Z against λratio (and Zleft against Zrigt) to relate parameters for pre-

defined CA rule samples. The proportions of rules in rule-space with various levels of canalyzing
inputs (chapter 15), λratio, and the P -parameter3 may be computed and displayed (figures 24.1,
24.2) — these measures are of interest in predicting convergence and stability in random Boolean
networks.

Plots of the variation of G-density with network size are also available, another useful measure
of the order-chaos spectrum of behavior applied mainly to CA [40, 49] (figure 24.13).

The following top-right prompt is presented in section 24.4,

if v=2

G-density plot: Zpara-1, +Lambda ratio-2, size range-3
parameter plot: Zpara-Lda ratio (C-P data), Zleft-Zright -L:

if v ≥ 3 the G-density graph only

G-density plot: size range-3

2Chapter 33 describes alternative methods for automatically classifying rule-space including complex rules.
3The P -parameter [20] is the fraction of 0s or 1s in the rule-table (whichever is more), P varies from 1 (order)

to .5 (chaos). The P -parameter is favoured in theoretical biology over the equivalent λ-parameter or λratio.

359

24.9.1 G-density, Z and λ — options summary

options . . . what they mean

G-density plot: . . . plots involving G-density, for predefined rules . . .

Zpara-1 . . . enter 1 for a plot of Z against G-density (sections 24.9.3 – 24.9.3.2).

+Lambda ratio-2 . . . enter 2 for two simultaneous plots, Z against G-density, and λratio

against G-density (sections 24.9.3 – 24.9.3.2).

size range-3 . . . enter 3 to plot G-density against network size n. (section 24.9.2).

parameter graph : . . . plots between parameters enter L for a predefined rule sample . . .

Zpara-Lda . . . to plot Z against λratio (sections 24.9.4 – 24.9.4.3.

Zleft-Zright . . . to plot Zleft against Zright (sections 24.9.4 – 24.9.4.3).
The Z-parameter is the greater of the two.

(C-P data) . . . to see the proportions of rules in rule-space — λratio, P -parameter,
and canalyzing inputs (section 24.9.5). This can be activated once
the Z — λratio or Zleft against Zright plots (above) are complete.

24.9.2 G-density plotted against network size
for multi-value, v ≥ 3, as well as binary v=2

The rate of increase of G-density with network size (system size) n is another order-chaos indicator
in CA. For the vast majority of rules, G-density increases with n, with ordered dynamics showing
the highest rate [44]. Very chaotic rules may approximate a zero rate, but only the maximally
chaotic chain-rules show G-density decreasing with increasing n (figure 24.13).

Enter 3 in section 24.9 to plot G-density against a range of n. If required, this can be done for
a number of selected rules on the same plot. The following prompt is presented,

G-density - size range:
start size (def=5): end size (max=31): (end size <20 is recommended)

Enter the start and end values of n. Note that if the end size is set high, computation time
may be inordinately long.

Enter d at the next prompt (optional) which normally skips all further options, but in this case
skips to mutation (chapter 28). The plot will be drawn in the lower right of the screen. The basin
of attraction fields (or single basins, or subtrees) will be draw (at a small scale by default) in a
window in the upper part of the screen (figure 24.12). When each attractor basin is complete the
G-density (y-axis) is plotted against the network size n, and the plot will continue automatically
for successive values of n (figure 24.13). Once complete, the following prompt appears in the
top-right corner of the data window (section 27.2),

quit-q rule-r mut-(def) keep+k:

Enter r to select a new rule (set in a lower-right window, chapter 16). To superimpose a new
plot on an old plot enter or add k, – i.e. enter rk for a new rule, or just k for the next mutant.
Otherwise enter return for the next mutant — the rule will change according to the type of
mutation set in section 28.1. Enter q to quit the plot and backtrack.

360 CHAPTER 24. OUTPUT PARAMETERS FOR ATTRACTOR BASINS

Figure 24.12: As the plot of G-density against network size n is in progress, and also the plots against
λratio or Z (figure 24.14), the attractor basins are drawn in an upper window at a default scale and
layout (which can be changed in chapter 25). This example shows the basin of attraction field for
1d CA, v2k5 rcode 9569a999, n=16, in figure 24.13.

← ordered 0111dc3610 ZL=.484 ZR =.562

← complex 6c1e53a8 ZL=.672 ZR=.727

← chaotic 994a6a65 ZL=.938 ZR=.9375

← max-chaotic chain-rule 9569a999 ZL=1 ZR=.5

Figure 24.13: Plotting G-density against a range of n for ordered, complex and chaotic 1d CA, v2k5
(rcode indicated), where the ordered rule has the highest rate of increase of G-density. Very chaotic
rules may approximate a zero rate; only chain-rules show G-density decreasing.

24.9.3 G-density against Z and/or λratio

for binary, v=2, rcode or tcode only — not for kcode

Enter 1 in section 24.9 for a graph of G-density against Z, or 2 for an additional graph of G-density
against λratio drawn simultaneously.

Enter d at the next prompt (optional) to skip further options. The Z graph will be drawn
in the lower right of the screen, the λratio graph beside it on the left. A subtree, basin or field
for each of the set of rules specified (in reverse decimal order) will be drawn (at a small scale by
default) in a window in the upper part of the screen, as in figure 24.12. When each attractor basin
is complete the G-density (y-axis) is plotted against the rule’s Z and/or λratio on the x-axis.

361

Figure 24.14: G-density plotted against Left: λratio, and Right: the Z parameter. n=12, for the set
of all v2k7 totalistic rules (tcode). The complete basin of attraction field was generated for each tcode
and the garden-of-Eden states counted. Z provides a tighter prediction of G-density than λratio.

24.9.3.1 G-density for tcode, or rcode k ≤ 3

For tcode, or rcode if k ≤ 3, the rules included in the plot consist of a countdown from the currently
active rcode or tcode as a decimal number. To include the entire rule-space, the maximum rule
should be selected. An easy way to do this is to enter fill-f in section 16.1.1, which sets all bits to 1.

The range of Z for the plot may be restricted, with a lower and upper limit. Note that low values
of Z (especially Z=0) should be avoided except for small n, because in-degree (and G-density) will
be very high. Very high in-degrees can exhaust computer memory or take a long time to compute.
The following prompts are presented, firstly to set the lower limit, then the upper.

min Z (def 0.2): set max Z (def 1):

24.9.3.2 G-density for k > 3 rcode

For rcode where k > 3, the following prompt is presented,

G-density plot: number of rules (def 1250):

Enter the number of rules to be plotted or accept the default. The rules will be selected at
random, but with a bias to include a representative distribution over values of Z.

24.9.4 Z - λratio plots
for binary, v=2, rcode or tcode only — not for kcode

Enter L in section 24.9 to plot of the Z-parameter (x-axis) against λratio, or Zleft against Zright,
for a predefined set of rules. The plot is located in the lower right part of the screen. In addition,
the proportions of rules in the rule sample with different levels of λratio, the P parameter, and
canalyzing inputs may be displayed once the graph is complete (section 24.9.5). The measures are
computed directly from rule-tables. The following prompt is presented,

plot: Zleft-Zright-1, Zpara - Lda ratio and C-P data-(def):

362 CHAPTER 24. OUTPUT PARAMETERS FOR ATTRACTOR BASINS

Figure 24.15: λratio plotted against Z. Left: all 256 v2k7 tcodes in 72 clusters. Right: a random
sample of 2200 v2k7 rcodes, but biased for a representative distribution over λratio and Z.

Zleft and Zright are components of the Z parameter. Z itself is greater of the two [38].
Whichever plot is selected, the prompts that follow are similar. Enter return for a Z - λratio

plot, or 1 for a Zleft - Zright plot.

24.9.4.1 Z - λratio or Zleft - Zright

There are two methods of predefining the rule set,

countdown . . . from the (start) rule selected in section 16.1.1. If the start rule is all 1s (or the
maximum decimal rule number 2k-1) the entire rule-space will be included, but
computation can be lengthy for large k. For tcode, and rcode k ≤ 3, this is the
only method. For rcode k ≤ 3 the plot will proceed without further options.
Countdown is also available for k=4 and k=5 rcode.

sample . . . a random sample of rules which can be biased (or not) to cover a representative
spread of λratio and Z — for rcodes k ≥ 4.

24.9.4.2 Z - λratio or Zleft - Zright for k ≥ 4 rcode

For rcode where k=4 or k=5, the following prompt allows the rule sample size to be specified, as
well as the countdown method,

lambda-Z graph: countdown-C, number of rules (def 2200):
or
Zleft-Zright graph: countdown-C, number of rules (def 2200):

Enter C for countdown as described in section 24.9.4.1 – this may take some time for k=5 where
rule-space = 232 = 4294967296. For k ≥ 6 the countdown option is omitted because rule-space
becomes too big.

Enter a number to set the sample size. By default the rules will be selected at random, but
with a bias to include a representative distribution over values of λratio and Z. The following
further option allows an unbiased random sample.

random rule sample will have lambda bias, no bias-n:

363

Figure 24.16: Zleft plotted
against Zright for 2200 v2k7
rcodes selected at random but
with a bias to cover a represen-
tative spread of Z.

An unbiased sample is useful in estimating the proportion of rule-space with different measure
of the λratio, P -parameter and canalyzing inputs. Once the plot is complete, a lower window
prompts for these details, described in section 24.9.5.

24.9.4.3 Z - λratio or Zleft - Zright for tcode

For tcode only, The following prompt is presented, allowing “equivalent” tcode to be skipped,

show only equivs-e all-a (def clusters): (tcode only)

All these alternatives perform a decimal countdown of tcodes from the start tcode selected in
section 16.1.1. Because each tcode must be transformed to rcode, computation can be lengthy for
large k. These options allow skipping (and seeing) equivalent rules.

Enter a to compute all rules (without skipping). Enter e to show one representative tcode from
each set of equivalent tcodes. Enter return for the default — one tcode from each cluster4.

A further prompt allows a pause to see the equivalents of members of the tcode cluster,

pause to show codes-p:

If p is entered above, after each point is plotted, data about equivalent tcodes and clusters
will be displayed in a top-right window, for example, for k=7 tcodes and countdown from the
maximum tcode 255,

v2k7-tcode:233=104 22=151 equiv=2 clust=4 tot=22 cont-ret:

This signifies that tcodes 233 and 104 are equivalent, as are their complements, 22 and 151.
These 4 tcodes make up a cluster. In this example, the number of clusters plotted so far is 22.

Once the plot is complete, a top-right window gives information about the frequency of
canalyzing levels, for example for v2k3 rcode (elementary rule-space),

c-frequency:136 78 24 18 total rules=256 last=256

This shows the frequency of rules with the 4 possible canalising levels (0, 1, 2, 3) — because
k=3. A lower window prompts for more detailed parameter frequency information, described in
section 24.9.5.

4There are at most 2 equivalent tcodes, the start tcode and its negative (the reflection of a tcode = identity),
and at most 4 tcodes in a cluster which includes the complements of both equivalents [38]. Rules in a rule cluster
have the same measures of Z, λratio (and also G-density) so the resulting plots will be identical.

364 CHAPTER 24. OUTPUT PARAMETERS FOR ATTRACTOR BASINS

24.9.5 Proportions of canalyzing inputs and λratio-P

Once the Z - λratio or Zleft - Zright plot in section 24.9.4 is complete, data on the proportions
of rules in the rule sample with different frequencies of canalyzing levels (0 — k), and parameters
λratio and P (which are equivalent), can be displayed. The following prompt is presented in a
small window to the left of the plot,

tot plotted=20000 (for example)

C-P data-d, +print-p: (+print-p not for DOS)

Enter d to see the data table displayed across the top of the screen, or p to also print the data
to the xterm window (not for DOS) as in tables 24.1 and 24.2.

Canalyzing-lambda ratio and P frequency count, total rules=256
C0=136=53.125% C1=78=30.469% C2=24=9.375% C3=18=7.031% Cr=120=46.875%, Cin=180=23.438%
ldr 0/4 1/4 2/4 3/4 4/4
ldr 0 0.25 0.5 0.75 1
P 1 0.875 0.75 0.625 0.5
freq 1=0.391% 17=6.641% 56=21.875% 112=43.750%70=27.344%
C=0 0 0 8=3.125% 64=25.000% 64=25.000%
C=1 0 0 24=9.375% 48=18.750% 6=2.344%
C=2 0 0 24=9.375% 0 0
C=3 1=0.391% 17=6.641% 0 0 0

Table 24.1: Canalyzing, λratio and P data for v2k3 rcode (elementary rule-space) with 256 rules.

Canalyzing-lambda ratio and P frequency count, total rules=65536
C0=94.638% C1=3080=4.700% C2=336=0.513% C3=64=0.098% C4=34=0.052% Cr=3514=5.362%, Cin=4080=1.556%
ldr 0/8 1/8 2/8 3/8 4/8 5/8 6/8 7/8 8/8
ldr 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1
P 1 0.9375 0.875 0.8125 0.75 0.6875 0.625 0.5625 0.5
freq 1=0.002% 33=0.050% 240=0.366% 1.709% 5.554% 13.330% 24.438% 34.912% 19.638%
C=0 0 0 16=0.024% 416=0.635% 3.918% 11.963% 23.755% 34.717% 19.626%
C=1 0 0 64=0.098% 512=0.781% 1.562% 896=1.367% 448=0.684% 128=0.195% 8=0.012%
C=2 0 0 96=0.146% 192=0.293% 48=0.073% 0 0 0 0
C=3 0 0 64=0.098% 0 0 0 0 0 0
C=4 1=0.002% 33=0.050% 0 0 0 0 0 0 0

Table 24.2: Canalyzing, λratio and P data for v2k44 rcode rule-space, 65536 rules.

The key to data in tables 24.1 and 24.2 is as follows,

data heading . . . what it means

C0=, C1=, C3=, the number and percentage of the k+1 (0 — k) possible canalyzing
levels found — numbers shown if less than 9999.

Cr . . . the number and percentage of rules with at least 1 canalyzing input.

Cin . . . the number and percentage of canalyzing inputs in the rule sample.

ldr (first line) . . . the 2k−1+1 possible values of λratio as a fraction.

ldr (second line) . . . as above shown in decimal. λratio= the fraction 0s or 1s (whichever
is less) relative to half rule-table size, λratio varies from 0 (order) to
1 (chaos).

P . . . as above showing the equivalent values of the P -parameter. P is
the fraction of 0s or 1s in the rule-table (whichever is more), P
varies from 1 (order) to .5 (chaos), and is related to λratio as fol-
lows, P = 1− (λratio/2)

365

freq . . . the number and percentage of rules that were found in each P or
λratio category above.

C=0, C=1, C=2, . . . the number and percentage of each canalyzing level that was found
in each P or λratio category above — numbers shown if less than
999.

24.10 “Backwards” space-time patterns

At the same time that attractor basins are being drawn, “backwards” space-time patterns may
be displayed on the left of the screen, if selected in section 24.4. Figure 24.17 shows examples.
The sequence of events reflect the way basins and subtrees are computed. For basins of attraction,
there will be three distinct phases in the space-time patterns,

1. The run-in from the initial seed state, which includes the transient and attractor cycle,
disclosed from the first repeat.

2. The attractor cycle itself, which is redrawn as it is being recorded.

3. Then the space-time patterns for drawing each transient tree, starting from the “root” and
back through successive levels of the tree. After a gap in the pattern, the root of each tree
(or subtree) is shown, followed by its immediate pre-images. Trees are computed from each
attractor root state in turn (omitting the pre-image on the attractor), cycling anti-clockwise.
The set of pre-images of attractor states must exclude the pre-image on the attractor itself
to avoid infinite regress.

For a subtree, phase 1 and 3 are similar, but here the run-in phase is replaced by an optional
forward-run (section 29.2) and there is no attractor. A forward-run for a given number of time-
steps is usually necessary, other than for maximally chaotic “chain” rules (section 16.11), because
most of state-space consists of leaves (garden-of Eden states) – a leaf state has no pre-images thus
no subtree.

The initial default is not to show the backward space-time patterns — the following top-right
prompt is presented in section 24.4 to toggle the current setting (enter s).

backwards space-time patterns (now OFF) tog-s: (or now ON)

24.10.1 Scroll space-time patterns

By default, 1d space-time patterns (both forward and backward) will scroll vertically. The pattern
can also be presented in successive vertical sweeps, restarting at the top when the screen is full,
which is somewhat faster than scrolling. If space-time patterns were set in section 24.10, the
following prompt is presented,

sweep backwards space-time pattern-s, scroll-def:

Enter s to sweep, or return to scroll. Scrolling can also be toggled on/off on-the-fly
(section 24.12).

366 CHAPTER 24. OUTPUT PARAMETERS FOR ATTRACTOR BASINS

← seed

← run-in

←
attractor

←
roots
trees
and
subtrees

(a) basin of attraction v2k5

← seed
←
foreward
run

←
roots
and
subtrees

(b) subtree v2k5

← seed
←
foreward
run

←
roots
and
subtrees

(c) subtree v8k3

Figure 24.17: “Backwards” space-time patterns (n=50) from a singleton seed, also showing (at top)
the basin or subtree state transition graph with the bit/value patterns at nodes. (a,b) v2k5 rcode
(hex)e0897801. (a) shows a basin of attraction, (b) a subtree from a state 22 time-steps forward from
the original seed. (c) v8k3 modified chain rule (rcode), showing a subtree from a state 25 time-steps
forward from the original seed. For v=2 only, colors distinguish distinct phases: run-in or forward run,
attractor, subtree roots, and their pre-images. The figures show just the start of the backward run,
which may continue for an indeterminate length of time.

367

24.11 Basin speed

Drawing basins and backwards space-time patterns may happen too fast for some purposes, such
as the keyhit on-the-fly options in section 24.12 where slowing down is done with the < key – so
slowing down may need to be preset.

The “speed” option in section 24.4 has the following top-right prompt,

speed: max-(def), or slowmotion (try 9000):

Enter a number to slow down, the higher the slower. Maximum speed can be restored on-the-
fly with the > key. The same slowdown option can be reached while interrupting (section 30.2),
and from the “attractor basin complete” prompt (section 30.4). An addition/alternative to slow
motion is to pause backward iteration after each tree or each pre-image fan (section 27.1.2).

24.12 Basin on-the-fly options
refer also to section 30.3

While attractor basins and backwards space-time patterns are being drawn, a number of settings
can be changed on-the-fly. A reminder similar to this will appear in the bottom title bar
(section 5.5),

matrix-m STP:tog/scroll/exp/contr-s/#/e/c slow/max-</> basinsize: E/C

DDLab c©1993-2024 advance-ret back/interrupt-q matrix-m STP:tog/scroll/exp/contr-s/#/e/c slow/max-</> basinsize: E/C

Changes take effect as soon as the key is pressed, without return, and apply whether or not
preset in the relevant sections in this chapter. Section 30.3 describes the options.

Chapter 25

Layout of attractor basins
not in TFO-mode.

Basins of attraction (and sub-trees) are drawn either singly, or in groups — for the basin of
attraction field1, for a range of network size n, or for mutant single basins. Groups of basins are
drawn in successive rows starting from a top-left position. Before drawing starts, the following
layout parameters, described in this chapter, may be altered (or defaults accepted): the basin scale,
new variables controling the gap between successive transient levels, positions, angles, horizontal
and vertical spacing, rows staggered, spacing increase (for a range of network size n), and the right
edge border. A basin of attraction field may be displayed as successive single basins as well as in a
group. Initial default layout values depend on the type of attractor basin selected. Once revised,
the new values generally become defaults, but may be reset to the original values.

If l is selected at the first “basin parameter” prompt in section 24.1 (or if the basin parameters
prompts are viewed in sequence) a top-left layout preview for attractor basins will appear, together
with the first layout prompt described below (section 25.2). Some layout parameters may also be
varied on-the-fly, after each subtree or basin is drawn (section 25.3).

25.1 The layout preview

The layout preview shows the anticipated size and positions of attractor basins, including the
diminishing projection of transient levels from the attractor, as they would appear on the screen
according to the current settings, and is presented in the top-left quadrant of the screen, in a
window representing the screen at 1/2 size. Polar coordinates are used to scale and position
basins, and these are indicated. x and y axes divide the screen with coordinates 0,0 at the center.
At the left of the screen x= -100, at the right x= +100. At the top of the screen y= +100, at
the bottom y= -100. Basins are represented by concentric circles, where the inner circle (radius
R0) is the maximum attractor diameter. Successive circles indicate successive levels in transients.
The first, top left, basin representation shows the first L “active” levels (default=90) were the
gap between successive levels decreases asymptotically parameterised by F (default=1), thereafter
the gap between further levels remains constant. Attractor basins illustrated in this book follow
these default settings, however, new options (section 25.2.2) allow these parameters to be varied,
permitting a wider diversity of basin presentation.

1After the basin of attraction field is drawn, these layout selections and many other aspects of the presentation
can be modified with the new “interactive basin of attraction field” (ibaf-graph) functions — chapter 20. The
field can also be redraw within jump-graph nodes (section 20.14) and the result saved/loaded to provide the initial
ibaf-graph layout(24.3.1). These functions add many layout possibilities to those described in this chapter.

368

369

Figure 25.1: The default layout previews, Left: for a single basin or subtree, and Right: for a range of
single basins.

Figure 25.2: The default layout previews, Left: for a basin of attraction field, and Right: for a range
of basin of attraction fields.

In the layout previews (figures 25.1 to 25.3) the first basin has every 20th circle highlighted,
as well as the attractor circle itself and the first 3 levels. The other basin representations show
the attractor circle and the first 3 levels only. If a single basin or subtree was selected (without a
range of network size n) only one preview basin is shown. Otherwise a representative number of
basins are shown to anticipate the layout.

25.2 The first layout prompt

Enter l at the first output parameter prompt in section 24.1 to skip directly to the preview for the
layout of attractor basins (section 25.1). Alternatively these options can be viewed in sequence.
The layout preview for attractor basins will appear (figures 25.1 to 25.3), together with the following
(top-right) first layout prompt,

370 CHAPTER 25. LAYOUT OF ATTRACTOR BASINS

Figure 25.3: The layout preview as it appears on the DDLab screen. This examle is for a basin
of attraction field, rad=3, start position: x=-70, y=50, spacing: x, y, and right border=22, with
staggered rows.

layout: reset defaults: all-r, transients (1.0/90)-t, mutants-M (M for single basins only)

att rad, % of 1/2 screen x-axis (min 0.24 def 6):
(min depends on screen resolution, def on previous selections)

25.2.1 Reset all layout defaults

Enter r in section 25.2 to restore all layout prompts to their original settings. These default settings
depend on the type of attractor basin selected. A revised layout preview will be displayed.

25.2.2 Reset transient scale

The transient scale can be reset, independently from the basin scale and attractor radius in
section 25.2.4. Transient nodes are positioned on notional concentric circles shown in green and
blue in the layout preview. The inner blue circle radius (R0) is the maximum attractor diameter.
Successive circles away from the center mark transient levels — their projection from the attractor
or subtree root. The first layout prompt in section 25.2, transients-t (1.0,90) gives the current
transient parameters (F,L). F (original default=1) controls the asymptotic decrease in the gap
between successive transient levels2, and L (original default=90) gives the number of these “active”
levels to which the decrease applies — further gaps then remain constant.

2The asymptotically decreasing gap between levels is calculated from the radius of successive levels
(R0 × F)/log(l2) where (R0 is the start radius, l is the current level, and F is a parameter (original default=1)
which can be varied. F>1 will reduce, and F<1 will enlarge, the extent of transients. In either case the transient
gap will decrease for L levels then remain constant equal to the last gap.

371

layout preview rad=12, x=-100, y=60,

F=1.0, L=130

Figure 25.4: Resetting transient parameters for a single basin of attraction, v2k3 rcode (dec)30, n=12,
seed=(hex)0baa — a chain rule with long transients showing just a segment of the attractor (period 102)
with a state highlighted (see the whole basin in figure 1). Top Right: the layout preview. Active levels
L=126 were set to accommodate the longest transient. Three settings of the parameter F controlling
the asymptotic gap decrease are shown. Top: F=1.0 (the original default), Center: F=1.5, Bottom:
F=3.0. The pre-image fan angle was also increased by setting its factor to 3.0 in section 26.4.2.

layout: reset defaults: all-r, transients (1.0,90)-t, mutants-M (M for single basins only)

att rad, % of 1/2 screen x-axis (min 0.24 def 6):
(min depends on screen resolution, def on previous selections)

Enter t to reset these parameters3. The following (top-right) prompt is presented,

transient defaults: reset original (F=1.0, L=90)-r (the original defaults)

amend: F (now 4.0): L (now 222): (current values — for example)

Enter r to restore the original defaults, or enter the new values for F and L in succession, which
remain as the defaults for the current basin session until DDLab is backtracked to the main prompt
sequence — then the original defaults (1.0,90) are restored. Except for the examples noted, these
original defaults are applied for the attractor basins illustrated throughout this book. However,
for very long transients characteristic of chaos, as in “chain” rules, it may be useful to curtail the
extent of transients by increasing F , and increasing L to include more active levels, for example
figures 1 and 25.4 above. On the other hand, the opposite changes may improve the look of short
transients — its really a matter of taste.

3Another significant transient default that can be altered is the pre-image fan angle (section 26.4.2).

372 CHAPTER 25. LAYOUT OF ATTRACTOR BASINS

25.2.3 Mutants for single basins on one screen

For single basins only, enter M in section 25.2 for a special default layout appropriate for displaying
successive mutants on one screen — for example to display the set of one bit mutants of a rule,
with the original basin shown by itself in the top row (section 28.3.1, figure 28.3).

25.2.4 Basin scale, attractor radius

The first layout prompt (section 25.2) gives the current attractor radius, scaled according to the
x-axis. In the example, (def 6) means 6% of 1/2 of the screen width. To alter the default basin
radius controlling the scale of attractor basins, enter a new radius — allowing up to two places
after the decimal point. The minimum radius allowed depends on the screen resolution and will
correspond to a scale of one pixel. A small scale is somtimes required for basins with very long
transients, though this can be adjusted in section 25.2.2.

25.2.5 Basin start position

To alter the default position of the first basin, enter return in section 25.2. The following top-right
prompt is presented,

start position, % offset from screen center
x (def -70): y (def 50): (values shown are examples)

Enter the new polar coordinates for the first basin, first x, then y. As shown in figure 25.1,
the screen center is at 0,0 and the edges of the screen are as follows, left x= -100, right x= +100,
top y= +100, bottom y= -100. A position outside the screen limits is permitted4, allowing, for
example, the relevant part of a large basin to be displayed.

25.2.6 Show the field as successive basins
FIELD-mode only

In FIELD-mode (but not for a range of n in section 8.1), a further option is presented (in the
same window as section 25.2.5) to display each basin in the basin of attraction field one by one —
successive single basins at the same start position.

show field as successive basins-s, and pause-p:

Enter s to show successive basins without pausing. Enter p to pause after each basin — data
on each basin (and other options) is will be displayed (section 27.2.3) – enter return will generate
the next basin.

25.2.7 Basin spacing and stagger rows
FIELD-mode only

To alter the default spacing between basins in a basin of attraction field (see figure 25.2 left), the
following prompts are presented in sequence:

4For groups of attractors in successive rows (not a single basin), their centers may end up below the visible
screen. If within one screen height below they will be drawn as usual — though just the tip of a transient may be
visible. Below this limit they are repositiond on the limit, and their transients are not drawn.

373

basin spacing, % of 1/2 screen (defaults depend on the radius set in section 25.2.4)

x spacing (def 30): y spacing(def 30) tog stagger rows (now off)-s:

Enter the new spacing according to the polar coordinate scale, first x, then y. Remember that
the screen is 200 units wide and 200 units high. Lastly, enter s to toggle the staggering of alternate
rows, as in figure 25.3

25.2.8 Select minimum right border width
FIELD-mode only

To alter the default minimum right border width, enter the new border width as a percentage of
the current x-spacing. If the distance between the center of the next basin and the right border is
less than this setting, the basin will be drawn at the start of the next row. Negative values for the
right border are permitted. The following top-right prompt is presented,

select right border as % of x spacing (def 45.0%): (def depends on spacing in section 25.2.7)

25.2.9 Amend the spacing increase for a range of n

If a range of network size n was selected in 8.1, the spacing between successive basins (and fields) is
set to increases by a default percentage which may be amended (see figure 25.2 right). The increase
is usually required because the size of basins tends to increase with greater n. The following prompt
is presented,

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

Figure 25.5: The basin of attracion field for a range of network size, n=5–16, shown on the left, v2k4
rcode (hex)8b26. The spacing between basins increases at a set rate as larger basins are expected
for greater n. In this example, the basin scale is 1.2 (section 25.2.4), the x, y start position is -90,70
(section 25.2.5), the initial x, y spacing belween basins is 6,6 (section 25.2.7), the right border width
is 45% (section 25.2.8), and the x, y spacing increase is set at 12%.

374 CHAPTER 25. LAYOUT OF ATTRACTOR BASINS

% increase in spacing for successive network size,
x increase (def 10%): y increase (def 10%): (values shown are examples)

Enter the new percentage increase, first for x (for the horizontal spacing), followed by y (for
the vertical spacing). This becomes the new default. An example of a range of basin of attraction
fields is shown in figure 25.5 where the default setting were slightly amended, and in figure 4.6.

25.2.10 Accept or revise layout parameters

Finally, the layout preview showing the current settings (as amended) is displayed, with the
following prompt to revise or accept,

layout: revise-q, accept-ret:

Enter q to revert to the first layout prompt (section 25.2) and re-adjust settings, or return to
accept the layout and continue.

25.3 Amend the layout during pause

If one of various “pause” options is selected in section 27.1.2, for a basin of attraction field or range
of fields, layout options become available after each basins (or field) is draw, including the angular
orientation, subtree fan angle, and the spacing and position of each successive basin. At the pause,
data will be displayed in a top-right window (chapter 27), and one of the following prompts will
be presented in a small top-center window (section 27.1.3) as follows,

next field-ret nopause-q ops-o layout-a: (for a field-pause)
next basin-ret nopause-q ops-o layout-a: (for a basin-pause)

Enter a for the layout options (for others see section 27.1.3) — the following top-right prompt,

amend angles-a next pos-p just spacing-ret:

These options are described in sections 25.3.1 to 25.3.4 below.

25.3.1 Amend the orientation and fan angle during pause

Enter a in section 25.3 to amend the basin orientation, and the “fan angle” — the spread of
in-degree edges at nodes. Further prompts will be presented in turn,

change basin orientation (now 0), enter angle:
change pre-image fan angle(now 1.00), enter factor: (values shown are examples)

These options can also be preset in section 26.4 where further details are given.

25.3.2 Amend the spacing and right border during pause

If return is entered in section 25.3 to amend the spacing (and right border). Prompts are presented
as described in section 25.2.7 and 25.2.8 above. Figures 25.6 and 27.1 give examples.

25.3. AMEND THE LAYOUT DURING PAUSE 375

Figure 25.6: Amending the layout of a basin of attraction field on-the-fly, for a CA v2k3, rcode (dec)110,
n=16. The field is shown with copies of equivalent trees suppressed exept for garden-of-Eden nodes
shown as dots (section 26.2.3). Layout parameters were set as follows: basin scale 3.8 (section 25.2.4),
x, y start position -75,13 (section 25.2.5), initial x, y spacing belween basins is 65,73 (section 25.2.7),
right border width 15%, (section 25.2.8). A pause after each basin was set (section 27.1.2) allowing
the x spacing to be changed — after the 4th basin to 40, after the 7th basin to 15.

25.3.3 Amend the next position during pause

Enter p in section 25.3 to amend the next position (as well as the spacing). Prompts are presented
similar to those described in section 25.2.5 above,

(start= -80,50) amend next pos, % offset from screen centre
x (def -50.2): y (def 50.1): (values shown are examples)

The last start position is shown as a reference. Enter the next position’s polar co-ordinates,
first x, then y. Remember that the screen center is at 0,0 and the edges of the screen are as follows,
left x= -100, right x= +100, top y= +100, bottom y= -100. A position outside the screen limits
is permitted. See section 25.2.5 for further details about these settings. Figures 25.6 and 27.1 give
examples. After the new position is set the new x co-ordinate becomes the new default x start
position for future basins, the default y co-ordinate is not affected. When this option is complete,
the spacing options 25.2.7 and 25.2.8 are presented.

376 CHAPTER 25. LAYOUT OF ATTRACTOR BASINS

25.3.4 Amend the spacing increase during pause

If a range of network size n was selected in 8.1, the spacing increase between successive basins
can be amended as described in section 25.2.9.

Chapter 26

Display of attractor basins
not in TFO-mode

This chapter describes various options to change the default display of attractor basins1, and to
set null boundary conditions (NBC), as opposed to periodic boundary conditions (PBC).

Enter p at the first “output parameter” prompt in section 25.2 to jump directly to the
display/NBC prompts, or reach them by viewing the output parameter in sequence.

For PBC only and local 1d CA by default (and 2d local CA by choice) attractor basins are
“compressed” (section 26.2).

26.1 Attractor basins with null boundary conditions
for 1d networks only

As described in section 2.7, as well as the default Periodic Boundary Conditions (PBC), new
options in DDLab allow Null Boundary Conditions (NBC), where inputs beyond the network’s
edges are held at a constant value of zero. Although NBC for space-time patterns (running forward,
section 31.3) apply for 1d, 2d and 3d networks, for attractor basins (running backward) NBC is
restricted to 1d networks only.

Three completely different reverse algorithms are applicable, where the original PBC algorithms
have been modified for NBC: (1) for CA, (2) for RBN/DDN as well as CA, and (3) the exhaustive
reverse algorithm for any of the above, thus providing a reality check of results. Provided the
network is 1d, all (backward) methods and functions for basin of attraction fields, single basins
and subtrees apply.

The following top-right prompt gives a reminder of the network: local/non-local 1d, v, k and
n, and offers the new option for NBC,

display: local 1d CA, v2k3 size=10 (for example)

Periodic boundaries (compression ON, off-s:) Null-N:

Enter N to set NBC, the top-right prompt changes to the following,

. . . (as before, or non-local network if RBN or DDN)

Null boundaries (compression OFF) Periodic-P:

Enter return to accept NBC, or P to revert to PBC.

1After the basin of attraction field is drawn, these display selections and many other aspects of the presentation
can be modified with the new “interactive basin of attraction field” (ibaf-graph) functions — chapter 20.

377

378 CHAPTER 26. DISPLAY OF ATTRACTOR BASINS

Figure 26.1: A basin of attraction field of a 1d CA with null boundary conditions (NBC) v2k3
rcode(dec)110, n=10. Compression does not apply with NBC, and the basins are very different from the
same network with periodic boundary conditions (and no compression) in figure 26.4. In this example
the basins were positioned within suitably rearranged jump-graph nodes (section 20.14).

3 9: 4 1 0

4 8: 9 8 3

2 7: 8 8 7

2 6: 1 6 0

0 5: 1 6 4

5 4: 1 3 4

2 3: 1 0 9

1 2: 9 2 4

7 1: 4 0 8

4 0: 1 7 1

Figure 26.2: A basin of attraction field of a 1d RBN with null boundary conditions (NBC) v2k3
homogeneous rcode(dec)110, n=10. Right: The wiring, set out as in section 17.2.

26.2 Compression of equivalent CA dynamics for periodic
boundaries

If the network is a local 1d or 2d CA (i.e. CA wiring and just one rule) with periodic boundary
conditions, rotational symmetries of the periodic array result in equivalent dynamics [38]. Given
a network state (periodic pattern), A, embedded in a particular past and future made up of
other time-connected network states, if A is translated around its circle (1d) or torus (2d) by an
arbitrary number of moves, and transformed to state B, the states in B’s past and future must be
identical transformations of the states in A’s past and future. The two sets of states are rotational
equivalents, and their connection topology is identical.

A complication arises because some states are made up of repeating pattern segments, for
example 011011011011 has 4 repeating segments 011. If the repeating segment size=s, there will
be only s rotational equivalent states irrespective of the network size n, whereas with no repeating

379

Figure 26.3: A basin of attraction field with compression of rotational equivalent dynamics, v2k3
rcode(dec)110, n=10. Only one prototype of each set of equivalent basins is drawn. In addition,
equivalent trees on attractor cycles (2nd and 4th basin), and subtrees from a uniform states (1st basin)
are copied and rotated, thus further speeding up computation as a reverse algorithm need not be
re-applied.

Figure 26.4: The same basin of attraction field as in figure 26.3 without compression of equivalent
dynamics. Compression was disabled so that all components of the state transition graph are computed
from scratch with a reverse algorithm, not copied and rotated as in figure 26.3. All states in state space
are represented.

segments (always the case if n is prime), the number of rotational equivalents is n. This becomes
more complicated for a 2d torus were repeating segments exist in two directions, and errors may
occur in the algorithm in this case. Compression in 3d has not been implemented.

It was proved in “The Global Dynamics of Cellular Automata” [38] that states with a given
repeating segment size s, cannot be upstream of a state with greater s. In an attractor cycle the
value of s for all the states must be equal. The uniform states where all values are equal (all 0s
and all 1s for binary) with the shortest repeating segment size (s=1) are often powerful attractors.

For local 1d CA by defaut (and 2d local CA by choice) “compression” algorithms come into
play (unless disabled in section 26.2.1) to compute equivalent basins, transient trees, and subtrees
from the uniform states, from each prototype. This considerably speeds up computation. For
equivalent basins, only the prototype is shown. The display of equivalent trees and subtrees may
also be suppressed to varying degrees.

380 CHAPTER 26. DISPLAY OF ATTRACTOR BASINS

26.2.1 Deactivate compression

Compression (section 26.2 is active For local 1d CA by default (and 2d local CA by choice), but
this can be deactivated/activated. The top-right prompt gives a reminder of the v, k and n (or
i× j for 2d), and is presented as follows, with a new option for null boundary conditions,

display: local 1d CA, v2k3 size=10 (for example)

Periodic boundaries (compression ON, off-s:) Null-N: (or compression OFF for 2d)

Enter s to deactivate/activate the compression algorithms.

26.2.2 Pre-images of uniform states

The uniform states, where all cell values are equal, enjoy a privileged status in the dynamics of
CA — they have maximum rotational symmetry (RS) so lie on or very close to attractors.

Figure 26.5: The special properties of CA uniform states, which lie on or very close to attractors, allow
speeding up computation of their pre-image fan and attached trees. Each (sub)tree type only needs
to be computed once, the equivalent (sub)trees simply have their states rotated. The pre-image fan
is organized into equivalent groups. This is illustrated here by some 1d CA v8k2 rcodes n=4, but the
method applies equally to binary, v=2, or any value-range v. States are shown as v=8 value patterns
— attractor states are highlighted by default inside a double outline. The attractor periods shown range
from 1 to 5. The framed basins are fragments centered on the attractor.

381

Uniform states can only be pre-images of each other2. States with higher RS must be downstream
of states with lower RS — all states in an attractor must have equal RS [38]. Take any pre-image
of a uniform state — all its rotations must also be valid pre-images, so this property allows a
method to speed up computation (if “compression” is on, section 26.2) as well as organizing
the pre-image fan and attached trees into equivalent groups. At present the method applies to
uniform states on the attractor, or to a uniform state that is the unique pre-image of a point
attractor (figures 26.5, 26.10). In principle this could be extended to any uniform state, and also
to states with repeating segments in general — this is not implemented in DDLab at present.

Figure 26.6: Suppressing equivalent subtrees in a basin of attraction field, v2k3 rcode(dec)110, n=10,
(as in figure 26.3). Top: all equivalent subtrees suppressed, however, short edges are still shown from a
uniform state (1st basin). Center: leaf states in the suppressed subtrees shown as spots, and Bottom: as
one pixel dots. Nodes in the prototype trees are shown as selected in section 26.3 — in the latter case
as a 1d bit pattern.

2The property that uniform states can only be pre-images of each other applies to any system with a homogeneous
rule — RBN and DDN as well as CA. However, the uniform state equivalent tree method only applies to CA.

382 CHAPTER 26. DISPLAY OF ATTRACTOR BASINS

26.2.3 Suppress copies of trees (and subtrees)

If compression remains set, a further option is offered to suppress copies of transient trees from
attractor cycles, and subtrees from uniform states. However, the garden-of-Eden (g-of-E) or
leaf nodes can be retained as spots/dots to indicate the footprints of the suppressed transients
(figures 25.6, 26.6). The prototype tree/subtree is drawn in full with whatever node display set in
section 26.3. The following top-right prompt is presented,

copies of trees (& subtrees from uniform states)
suppress: all-3, show only g-of-E nodes: normal-2 small-1:

Enter 3 to suppress all copies of equivalent trees or subtrees. This results in a clearer picture
of crowded basins. Alternatively, to retain just the leaf nodes in the equivalent trees or subtrees,
showing just their footprints, enter 2 for bold footprints, or 1 for subdued footprints where each
leaf node is shown as one pixel.

26.3 Node display

The nodes in attractor basins may be displayed in a variety of ways — as small circles or spots,
as scalable bit/value patterns in 1d or 2d, as the hex or decimal value of the pattern, or nodes
need not be shown. Whatever the selection, node display can be restricted to just rotationally
symmetric states (figure 26.8), just leaf states, or states other than leaf states.

As well as the primary method of node display, attractor nodes can be independently highlighted
as bit/value patterns. Pre-defined sets of nodes can also be highlighted in the “learning” routines
described in chapter 34. A top-right prompt to set the node display (similar to the following) is
presented (options summarized below). The default depends on previous selections,

nodes: 2d-B 1d-b hex-h dec-c spot-s (dec-c if applicable, 2d-b for a 2d network)

just Sym-nodes +S, just g-nodes +g, no g-nodes +G, none-n (def-s):

none spots

1005 676

868

359

316

829

791

788

279

499 177
209
849

423

227
929

736

97

63

21

27

9decimal

03ed 02a4

0364

0167

013c

033d

0317

0314

0117

01f300b1
00d1
0351

01a7

00e3
03a1

02e0

0061

003f

0015

001b

0009hex 1d bits 2d bits

Figure 26.7: Examples of alternative node display. from the Top-Left: none (except on the attractor):
spots, decimal, hex, 1d bit/value pattern, and 2d bit/value pattern, where the i× j dimensions can be
preset. This is the small basin in figures 26.3—26.6, v2k3 rcode(dec)110, n=10.

383

Figure 26.8: Symmetric states only, those made up of repeating segments (including the uniform
states) may be shown while other nodes are suppressed (enter bS). Here, the symmetric states apper
as value-pattern nodes in a basin of attraction field — they occur in basins 1, 4 and 5. v4k3 CA, n=6,
rcode(hex) 4d3f8c86143ffca77a0ed4b5d172e7c3.

For networks other than local 1d or 2d CA, this is the first prompt in the display sequence,
preceded by the title display: — the prompts in sections 26.2.1 and 26.2.3 are omitted.

options . . . type of node
2d-B . . . as a 2d bit/value patterns for 1d (or 3d) networks).
2d-b . . . as a 2d bit/value patterns for 2d networks.
1d-b . . . as 1d bit/value patterns for (1d or 3d networks).

hex-h . . . in hex (hexadecimal).
dec-c . . . in decimal ((if applicable — section 21.6).
spot-s . . . as small circles or spots, cycling through 4 colors to contrast with transient

edges colors, except garden-of-Eden states which are colored white.

+options . . . to restrict node display

just Sym-node +S . . . add S for just rotationally symmetric states consisting of repeating
segments, which include the uniform states. For example enter bS
for figure 26.8.

just g-nodes +g . . . add g for just leaf states (and attractor states without transients).
For example enter Bg for figure 26.9Left.

no g-nodes +G . . . addG to exclude leaf states (and attractor states without transients).
For example enter BG for figure 26.9Right.

none-n . . . to omit nodes altogether.

The options for node display can be combined with any other node options — compression
(sections 26.2.1 – 26.2.3) and highlighting attractor and subtree root nodes (section 26.3.2).

The colors of spots cycle through four colors to contrast with transient edge colors
(section 23.4.1). Decimal and hex numbers are shown black. For v ≥ 3 nodes displayed as 1d and
2d value-patterns follow the default value colors (chapter 7), but for binary systems the colors of
1s vary to distinguish trees — described below (section 26.3.1).

384 CHAPTER 26. DISPLAY OF ATTRACTOR BASINS

only leaf-states exclude leaf-states

Figure 26.9: Showing just leaf-states or excluding leaf-states, v2k3 rcode(dec)110, n=10, (as in
figure 26.6). Left: only leaf-states and attractor states without transients are shown. Right: leaf-states
and attractor states without transients, are excluded. The nodes are shown as 2d bit patterns 10×1.

Figure 26.10: The pre-images of a
uniform state’s tree are organized into
groups of equivalents. For binary
systems, the bit patterns of these
states, and states in their subtrees
are shown in the same color, cycling
through four colors. Nodes are shown
as 2d bit patterns 5×2. This is
the first basin in figure 26.3, v2k3
rcode(dec)110, n=10.

26.3.1 Node colors

When nodes are displayed as spots (the default), the colors of transient nodes are set to one of 4
colors contrasting with the colors of transition edges (section 23.4.1) where a cycle of four colors
distinguishes transient trees for attractor periods of 6 or more. This is also the case for the bit
patterns color of 1s in binary systems, whereas for v ≥ 3 the default value colors apply (chapter 7).
Leaf (garden-of-Eden) nodes as spots are black. 2d bit patterns have an outer border, 1d bit
patterns do not.

In binary systems, nodes in the same pre-image fan are drawn in the same color (except for
the uniform states, figure 26.10). If the attractor period is 5 or less, successive fans are assigned a
different color so that a given transient tree may have a mix of colors. For attractor periods of 6 or
more, all nodes in the same tree are assigned the same color, and the color is changed for the next
non-equivalent tree. Note that with compression on (section 26.2) equivalent trees will be colored
identically, and the pre-images of a uniform state’s tree are organized into groups of equivalents.
These states, and states in their subtrees, are shown in the same color, cycling through four colors.

385

Figure 26.11: Highlighting all non-equivalent attractor states as a 2d bit pattern for the basin of
attraction field of a 1d CA, v2k3 rcode(dec)111, n=10. Other node are shown as spots.

Figure 26.12: Highlighting all attractor states in a RBN basin of attraction field, v2k4, n=10. Other
node are shown as spots.

26.3.2 Highlight attractor, or subtree root, in 2d

One or all attractor states, or the root state in a subtree, can be highlighted as a bit/value pattern
in 2d, irrespective of the overall node display set in section 26.3. The following top-right prompt
is presented,

highlight attractor (or subtree root) in 2d: one-1 all-a:

Enter 1 to highlight one attractor state — this state is the last attractor state reached in the
initial forward run, and is positioned due east on the attractor cycle (figure 26.15).

Enter a to highlight all non-equivalent attractor states for local 1d or 2d CA (figure 26.11) – if
compression is set in section 26.2.1. Otherwise if a is entered all attractor states will be highlighted,
as in figure 26.12 for a RBN. If either 1 or a is entered, and running backwards for a subtree is
subsequently selected in section 29.1, the subtree root will be highlighted as a bit pattern as in
figure 26.14

386 CHAPTER 26. DISPLAY OF ATTRACTOR BASINS

26.3.3 Change the 2d node i, j

2d bit/value patterns at all or some nodes are selected by entering,

2d-B . . . for 2d bit/value patterns for 1d (or 3d) networks (section 26.3).
2d-b . . . for 2d bit/value patterns for 2d networks (section 26.3).
1 or a . . . to highlight all attractor states, just one, or a subtree root (section 26.3.2).

A 2d network retains its i, j (a 3d network its i) as the default, set in sections 11.6.2 or 12.3.
For 1d networks a default i, j is chosen automatically, where j (the number of rows) is the highest
whole factor of n, where j ≤ √n (see also section 21.4.7). For any dimension, the following
top-right prompt allows the default i to be revised,

2d node ij now 7x2: reset i (max 14): (example for 1d n=14)

The network is broken up into successive rows starting with the maximum cell index in the
top-left hand corner. If the i selected is not a whole factor of n, some cells will be missing from
the bottom row, which is evident if dots are activated in section 26.3.4.

26.3.4 Alter scale, divisions and dots — node as bits/values

If nodes are set as bits/values either in 1d or 2d (section 26.3) or if the attractor or subtree root
nodes are highlighted in 2d (section 26.3.2), divisions between cells, dots at zero values, or both,
can be added to the basic presentation, illustrated in table 26.1 below,

basic divs+dots

1d

2d 5×2

Table 26.1: Alternative presentations for bit/value nodes, v=2, n=10

For a cell scale in pixels p ≤ 5 the presentation without divisions or dots is the default.
The scale can be changed, and divisions/dots toggled, with the following top-right prompts, which
are presented in turn, for example,

alter cell scale, now 5 pixels: tog divs (now OFF)-i: tog dots (now OFF)-t:

If required, enter the new cell scale in pixels, then toggle the divisions, then the dots, from
their present settings (ON or OFF). These new setting become the new defaults, and will also be
applied in a PostScript image (section 24.2). Note that divisions and dots will not apply if the cell
scale in pixels p ≤ 3. The cell scale in “backwards” space-time patterns (section 24.10) and the
cell scale of basin nodes as bit/value patterns described in this section, will be the same. Both can
be changed on-the-fly as basin are being drawn (section 30.3).

26.3.5 Alter decimal or hex node scale

If nodes were set as decimal or hexadecimal in section 26.3 the default node label size is set
automatically depending on the basin scale (section 25.2.4). This default can be altered by a given
factor. The following top-right prompt is presented, for example,,

dec/hex node scale (now 10), enter factor (now 1.0), original-o:

387

26.4 Change orientation, fan angle, edge color

The next three prompts allow the default orientation of attractor basins (section 23.3), the default
pre-image fan angle, and the default edge colors, to the changed. The following top-right prompts
are presented in turn,

change basin orientation anti-clockwise (now 0), enter angle:
change pre-image fan angle (now 1.00), enter factor:
change start edge color (now 0) ----0 ----1 ----2 ----3:

26.4.1 Orientation

1005 676

868

359

316

829

791

788

279

499 177
209
849

423

227
929

736

97

63

21

27

9

xxx 0◦

1005

676

868
359

316

829
791

788279 499
177

209849

423

227

929
736

97

63

21

27 9

xxx 45◦

1005

676868
359

316
829

791
788

279

499

177209849

423

227

929

736

97

63

21

27

9

xxx90◦

Figure 26.13: Changing the orientation of a single basin of attraction, starting with 0◦, then setting
45◦, and finally 90◦. Labels are in decimal with a seed of 63, v2k3 rcode(dec)110, n=10.

Changing the orientation allows attractor basins to be rotated anti-clockwise by the angle entered
at the prompt in section 26.4,

change basin orientation anti-clockwise (now 0), enter angle: (current angle shown)

The default is 0◦ due east. Figure 26.13 gives examples. Note that for a single basin of
attraction, with the orientation at 0◦, the seed state is positioned one step clockwise from east.
Changing the orientation works for all types of attractor basins. The orientation of individual
basins in a field can also be changed during a pause as fields are drawn (section 30.2).

26.4.2 Pre-image fan angle

The pre-image fan-angle is the angle containing all the pre-image edges converging on a node —
set automatically depending on the number of edges. It is sometimes useful to decrease the angle
for denser branching occurring in large networks or ordered rules (figure 26.14), or to increase the
angle for chaotic rules with low branching (figure 26.15). This is done by entering a multiplication
factor at the prompt in section 26.4,

change pre-image fan angle (now 1.00), enter factor: (current factor shown)

The fan-angle can also be changed during a pause as fields are drawn (section 30.2).

388 CHAPTER 26. DISPLAY OF ATTRACTOR BASINS

Figure 26.14: Decreasing the pre-image fan-angle of a subtree of a 1d CA v2k3 rcode(dec)110, n=55.
The subtree root, (hex)71f0cf34c0fced, is highlighted as a bit pattern. Other nodes are show as
spots. Left: default fan-angle (factor=1). Right: reduced fan-angle (factor=0.3). Note that the fan
converging on the root of a subtree is always 360◦, and is not affected.

Figure 26.15: Increasing the pre-image fan-angle of a single basin of attraction of a 1d CA, v2k3
rcode(dec)30 n=10. This is a chain-rule with very low in-degree, characteristic of chaos. In each
case, part of the basin including the attractor and one complete tree is shown. One attractor state
is highlighted as a bit pattern. Other nodes are show as spots. Top: default fan-angle (factor=1).
Bottom: increased fan-angle (factor=3). The basin orientation was also changed to 34◦ (section 26.4.1).

26.4.3 Edge color

As described in section 23.4.1, a cycle of four colors is used to draw transition edges, and this also
determines node colors (section 26.3.1). The resultant attractor basin color scheme3 depends on
the start edge color (red is the default) which can be changed with this prompt in section 26.4,
which also indicates the current color cycle,

change start edge color (now 0) ----0 ----1 ----2 ----3:

3Colors are different on a black background (section 6.3.3).

389

xxxxxxxxxred xxxxxxxxxbrown xxxxxxxxxgreen xxxxxxxxxblue

Figure 26.16: Alternative edge start colors (indicated) result in different basin color schemes. This is a
single basin with copies of trees suppressed (section 26.2.3), the fan angle reduced by 0.5 (section 26.4.2)
and leaf nodes excluded (section 26.3). Transient nodes are shown as spots. v2k3 rcode(dec)110, n=15,
seed(hex)660d.

26.5 Limiting backward steps

Its possible to limit the number of backward steps (or levels) in subtrees (from the root state), or
in the trees of single basins (from the attractor), to see just the core behavior. This option is part
of “Final options for attractor basins” in chapter 29 and described in section 29.5.

For single basins the number of backward steps can be set at zero, showing just the bare
attractor (section 29.5.1). Because the data is derived from forward itteration – reverse algorithms
do not come into play — the graphic image of attractors for very large networks, including 2d,
can be generated, as in figures 29.2 and 29.3.

Chapter 27

Pausing attractor basins, and data
not in TFO-mode.

This chapter describes methods for pausing attractor basins according to a hierarchy of stages
during drawing (section 27.1), to show/save/print data at each stage (section 27.1.1), and activate
other options including amending the layout (section 27.1.3). The level of data detail can be set in
section 27.3, including a complete sorted list of all the states (section 27.5). Printing/saving the
data can be done with or without pausing. The data is generated as attractor basins are drawn.
The methods apply to any attractor basin type — a basin of attraction field, a single basin or a
subtree, or a range n of the above.

To jump directly to the pause/data category of prompts, enter t at the first “output parameter”
prompt in section 25.2, or arrive there by viewing the output parameters in sequence.
When attractor basins are complete, a data summary is displayed in any case, but setting a pause
allows intermediate data during the drawing itself.

27.1 Pause stages hierarchy

The top down hierarchy of stages of pause/data, from least to most detail, is as follows,

1. pause after each basin of attraction field in a range of network size n (section 8.1).

2. pause after each basin of attraction in a basin of attraction field, or after each single basin
or each single subtree for a range of network size n.

3. pause after each tree (or subtree from the uniform states) in a basin of attraction.

4. pause after each fan — the set of pre-images of each state in a tree.

From the selected pause/data stage, relevant upper stages will also apply. For example, if
stage 3 is selected for a pause after each tree, a data pause will also occur at stages 2 and 1.
Each stage gives a specific top-center pause prompt described in section 27.1.3.

390

391

27.1.1 Pause after each field for a range of fields

If a basin of attraction field for range of n was specified in section 8.1, the following prompt is
displayed,

pause/data: field range 5-12, pause after each field-f: (for example)

Enter f to pause after each successive field. A top-center prompt is also shown, described in
section 27.1.3. If f was entered, the prompt in section 27.1.2 is presented for further stages of
detail.

27.1.2 Pause after each basin, tree, or pre-image fan

A pause can be selected for a basin of attraction field, a single basin, or a subtree (including a
range n set in section 8.1) at various stages of detail. The following context dependent top-right
prompt is presented, (enter 1, 2 or 3 as required, or return not to pause),

(for a basin of attraction field, including a range n set in section 8.1)

pause/data: pause for data: fan-3 tree-2, basin-1, none-def:

(for a single basin, or a subtree)

pause/data: pause for data: fan-3 tree-2, none-def:

27.1.3 The pause prompt

At at each pause, as well as basin data in a top-right window, a prompt is presented in a top-center
window depending on the stage reached in the pause hierarchy (section 27.1) as follows,

stage . . . pause prompt
1 . . . next field-ret nopause-q ops-o layout-a:
2 . . . next basin-ret nopause-q ops-o layout-a:
3 . . . next tree-ret basin-q:
4 . . . next fan-ret tree-q:

options . . . what they mean
-ret . . . for the next field, basin, tree, or fan.
-q . . . to disable pausing at the current stage — pause at the next higher stage.
-o . . . for a top-right prompt with various options (section 30.4).
-a . . . for the layout options, to amend the angular orientation, subtree fan angle, and

the spacing and/or position of each successive basin, described in section 25.3.

27.2 Attractor basin complete — data window

When an attractor basin is complete (or abandoned), data are displayed in a top-right window.
Examples and decoding are shown below for a CA with compression active (section 26.2). The
first item in this data window gives boundary conditions, either PBC (periodic), or NBC (null).
The window also includes a top-right inset showing the type of wiring, algorithm or function that
was utilised, as follows,

392 CHAPTER 27. PAUSING ATTRACTOR BASINS, AND DATA

Figure 27.1: A basin of attraction field of a CA, v2k3 rcode (dec)110, n=12, relating to various data
outputs in section 27.2, and saved in sections 27.4.1 — 27.4.4. In this example the default layout was
amended in the jump-graph with no edges (section 20.7).

top-right insets . . . what they mean

CAW . . . cellular automata wiring or local wiring.

NLW . . . non-local wiring.

EXH . . . the exhaustive algorithm.

MAP . . . a random map, using the exhaustive algorithm.

NTO . . . neutral order components.

More detailed data, including a sorted list of states, may also printed or saved to a file
(sections 27.3, 27.5).

27.2.1 Data on basin of attraction fields

By default, when a basin of attraction field is complete, unless a range of fields was specified
(sections 8.1, 27.1.1), data on the field is presented in a top-right window. An example of data on
a field (for v2k3 rcode (dec)110, n=12) as in figure 27.1 is shown below,

for a single field, or if pausing in a range of fields
PBC basin types=5 total basins=11
n=12 field=4096 g=1971=0.481 0.109sec

If the basin of attraction field is interrupted1 (by entering q twice, see section 30.2), the data

1In this and other examples, the computation was slowed (section 24.11) to give enough time to interrupt.
Interupts at other points in a basin or subtree are described in section 30.2.

393

on the incomplete field appears as in the example below, depending on the point of interruption,

EARLY EXIT PBC basin types=3 total basins=5
n=12 sspace=4096 field=3358 g=1637=0.487 (computation slowed)

data type . . . decode of data

EARLY EXIT . . . indicates that the field was interrupted.

PBC or NBC . . . periodic or null boundary conditions.

basin types= . . . the number of basin prototypes displayed.

total basins= . . . the total number of basins in the field.

n= . . . the network size.

field= . . . the total number of states in the field, which should equal the size of
state-space, vn, unless interrupted. If the computed field 6= vn, the size
of state-spaces (sspace=) will be displayed as well as the incorrect size
of the field (field=). If the field was not interrupted this would indicate
an error (section 27.2.2).

g=x=y . . . the number and density of garden-of-Eden states in the field.

xmin ysec . . . the time taken to draw the field.

27.2.2 Errors in basin of attraction fields

Inconsistencies and errors in computing attractor basins can be caused by parameter changes while
the basin is in the process of being drawn. One such change is abandoning a tree and continuing
with the next tree (section 30.2.1). Another is to change some aspect of the network itself, which
is possible while pausing or interrupting (section 30.2).

If such an error occurs in a basin of attraction field, the progress bar (section 30.1) is likely to
go off its scale, the size of state-space as well as the field will be indicated in the data window,
for example sspace=1024 field=1486. A message will also appear below the progress bar, for
example, ERROR excess states=462 indicating that more states were computed than the size
of state-space. section 30.2.2 gives further details.

Note that similar errors can occur in single basins or subtrees, but these will not be indicated.

27.2.3 Data on basins

An example of data on a basin (for v2k3 rcode (dec)110, n=12) is shown below2.

for a single basin
PBC equiv basins=4 att(hex)=0c 1c
period=9 size=831=81.2% g=402=0.484 ml=35 mp=13 0.014sec

for basin 2 if pausing a field
PBC basin 2, equiv basins=4 att(hex)=00 73
period=9 size=831 81.2% g=402=0.484 ml=35 mp=13

If the single basin is interrupted (by entering q twice, see section 30.2), the data on the
incomplete basin appears as in the example below,

2If a count of states with a majority of a given value is active, this data will also be displayed in the basin (or
subtree) data window, for example maj1=572=0.126 (section 24.7).

394 CHAPTER 27. PAUSING ATTRACTOR BASINS, AND DATA

EARLY EXIT PBC equiv basins=4 att(hex)=0c 1c
period=9 size=42=4.1% g=21=0.5 ml=5 mp=4 4.084sec (computation slowed)

data type . . . decode of data

EARLY EXIT . . . indicates that the basin was interrupted.

PBC or NBC . . . periodic or null boundary conditions.

basin x . . . the basin in question is the prototype of the xth type.

equiv basins= . . . number of equivalent basins of this type.

att(hex)= . . . the “first” attractor state, shown in hex.

period= . . . attractor period.

size=x=y% . . . size of the basin, and the percentage of state-space made up by the basin
and its equivalents.

g=x=y . . . the number and density of garden-of-Eden states in the basin.

ml= . . . the maximum number of levels in the basin outside the attractor — the
length of the longest transient.

mp= . . . the maximum in-degree found in the basin.

xmin ysec . . . the time taken to draw the basin.

27.2.4 Data on trees

An example of data on a tree in basin 2 (as shown in figure 27.1),

for tree 3 if pausing basin 2
tree=3, no=3 size=263 (tree types=3 att=9)
root(hex)=01 cc g=127=0.483 ml=35 mp=13

data type . . . decode of data
tree= . . . the tree type index.
no= . . . number of trees of this type.

size= . . . size of the tree (including the root).
tree types= . . . total number of non-equivalent tree types.

att= . . . attractor period.
root(hex)= . . . the state at the root of the tree, in hex.

g=x=y . . . the number and density of garden-of-Eden states in the tree.
ml= . . . the length of the tree, excluding the attractor root.
mp= . . . maximum in-degree found in the tree.

27.2.5 Data on pre-image fans

An example of data on a pre-image fan, in the 2nd tree in basin 2 (as shown in figure 27.1),

fansize=2 nextindex=12 level=4 fan-root(hex)=00 07

395

data type . . . decode of data
fansize= . . . the number of pre-images in the fan (at least 1).

nextindex= . . . the current accumulated number of states at the next level in the
tree — for diagnostic purposes.

level= . . . the current level away from the attractor — the transient length from
the fan-root in time-steps.

fan-root(hex)= . . . the state at the root of the fan, in hex.

27.2.6 Data on subtrees

Figure 27.2: A subtree for a 1d
CA, from a root state shown as a
2d 15 × 10 bit pattern. The root
was reached by iterated 3 steps
forward from the seed state, which
was chosen at random. n=150,
v2k5 rcode(hex)aa5566a1.

If generating just one subtree from an arbitrary state, on completion, data will be displayed in
a top-right window. The first example (figure 27.2) is for a large CA, n=150. A seed state chosen
at random was iterated forward by 3 steps and the subtree was generated from the state reached
— the subtree root. Running forwards by some steps before running backward (section 29.2) is
usually necessary because a random state is very likely to be a garden-of-Eden state.

For such a large network the root is not shown in the data window —they are only shown if
n ≤ 56. This limit does not apply when data is printed or saved (section 27.4.7).

subtree=4335
g=4030=0.93 ml=11 mp=1253 5.292sec

If the subtree is interrupted (by entering q twice, see section 30.2), the data on the incomplete
subtree appears as in the example below,

EARLY EXIT part subtree=946
g=7=0.0074 ml=2 mp=850 2.500sec

396 CHAPTER 27. PAUSING ATTRACTOR BASINS, AND DATA

Figure 27.3: Above: a “subtree” where the root happens to lie on the
attractor, so all the states in the basin are shown — running backwards
for ever is prevented. Left: The whole basin (with compression set) as
it would normally appear, shown at a smaller scale. This example is a
CA, n=14, v2k5 rcode (hex)aa5566a1.

The second example (figure 27.3) is for a small CA n=14 with the same rcode, where a random
seed was iterated forward by 33 steps before generating the subtree. However, the state reached
(the root of the subtree) turned out to be on the attractor, so all the states in the basin were
generated. This is indicated by subtree=basin. DDLab keeps track of a repeat to prevent the
subtree running backwards for ever around the attractor and its trees.

subtree=basin=6895 root(hex)=10 f1
g=2505=0.363 ml=84 mp=6 26.014sec

data type . . . decode of data

EARLY EXIT . . . indicates that the subtree was interrupted.

subtree= . . . size of the subtree.

part subtree= . . . size of an interrupted subtree.

subtree=basin= . . . indicates the root state is on the attractor, the whole basin is gener-
ated, so this is the size of the basin.

root(hex)= . . . the root of the subtree, in hex, if n ≤ 56.

g=x=y . . . the number and density of garden-of-Eden states in the subtree.

ml= . . . the maximum number of levels in the subtree, excluding the root.

mp= . . . the maximum in-degree found in the subtree.

xmin ysec . . . the time taken to generate the subtree.

27.2.7 Data on subtrees from a uniform state

If a subtree pause is selected for a CA in section 27.1.2 when generating the tree from a uniform
state (where all values are the same), with compression set the pause will occur after each equivalent
set of subtrees, and data will be displayed on each subtree prototype. An example of the data on
the 4th prototype subtree in figure 27.4 is shown below,

397

Figure 27.4: Proto-
type subtrees from a
uniform state, all 0s,
for a CA, v2k3 rcode
(dec)96, n=14. Copies
of the prototypes have
been suppressed in
section 26.2.3, and
the default fan angle
reduced by a factor of
0.3 in section 26.4.2.

seg-fan=211 (17 segs) seg-tree=4 no=14 size=59
seg-root(hex)=00 42 g=51=0.864 ml=8 mp=49

data type . . . decode of data

seg-fan= . . . the total number of pre-images of the uniform state.

(x seg) . . . made up of x segments or groups of rotation equivalent states.

seg-tree= . . . the subtree prototype number.

no= . . . number of subtrees of this type.

size= . . . size of the subtree including its root.

seg-root(hex)= . . . the state at the root of the subtree, in hex.

g=x=y . . . the number and density of garden-of-Eden states in the subtree.

ml= . . . maximum number of levels in the subtree including its root.

mp= . . . maximum in-degree found in the subtree.

Once all prototype subtrees have been generated, data on the complete tree is presented as
follows (decode as in section 27.2.6),

subtree=basin=16333 root(hex)=00 00
g=13363=0.818 ml=9 mp=212 9.266sec

398 CHAPTER 27. PAUSING ATTRACTOR BASINS, AND DATA

27.3 Print or save data
printing data in the terminal is for Linux-like systems only

As attractor basins are drawn, data similar to those described above (sections 27.2.1 — 27.2.7),
and also a list of states in different formats (section 27.5) may be printed in the terminal from
which DDLab was launched (for Linux-like systems only) and/or output to a .dat file.

All the states or just the attractor states can be listed, with or without extra details
(section 27.5). States are shown as value strings. The extra details are the state’s basin number,
level, and the number of its pre-images.

The following prompts, which have the same options, are presented in turn, firstly to print,
then to save the data,

for printing data in the terminal — Linux-like systems only
print data: basin data only-1, and tree data-2
include states: details-s/+s no-details-S/+S att-only-a/+a:

for saving data as an ASCII file
save data: basin data only-1, and tree data-2
include states: details-s/+s no-details-S/+S att-only-a/+a:

Enter a combination of the following,

options . . . what they mean

basin data only-1 . . . for basin data (section 27.2.3) or subtree data (section 27.4.7).
and tree data-2 . . . for basin and tree data (section 27.2.6).

include states: . . . show just the states, or add states to selections above (section 27.5).

details-s/+s . . . list all states including details.
no-details-S/+S . . . list all states without details.

att-only-a/+a . . . list only attractor states states including details.

For example, enter,

1a . . . for basin data, combined with a list of attractor state including details.
2s . . . for basin and tree data, combined with a list of all states including details.
S . . . for a list all states without details.

If the save data options were selected, further prompts will appear to set the file name as a
.dat file (section 35.3) – the default filename is my data.dat. The format of the data printed in
the terminal, or in the ASCII data file, is shown in the examples in section 27.4, together with the
decoding of the data.

399

27.4 Data format

Examples of the data format, printed in the terminal (Linux-like systems only) or saved to a .dat

ASCII file (section 27.3) are described and decoded below.

27.4.1 Network parameters data

If 1 or 2 is selected in section 27.3, the following network parameters data are given first, including
the rule, network dimension and size, and various rule parameters.

This example relates to the figure 27.1.

v2k3 rcode(dec)110 (hex)6e

1d size=12 ld=0.625 ld-r=0.75 P=0.625

zl=0.75 zr=0.625 Z=0.75 C=0/3

data type . . . what it means
v2k3 . . . value-range v, neighborhood size k.

rcode(dec)110 (hex)6e . . . the rcode in decimal and hex.
1d size=12 . . . network dimension and size.

ld=0.625 ld-r=0.75 P=0.625 . . . λ, λratio, P -parameter.
zl=0.75 zr=0.625 Z=0.75 . . . Zleft, Zright and the Z-parameter.

C=0/3 . . . canalyzing inputs.

This initial network parameters data are only given for single rule networks. For mixed rule
(and mixed-k) networks, the complete network parameters can be printed and saved (also to a
.dat ASCII file) as described in section 19.6.

27.4.2 Basin field data

An example of the complete data for the basin of attraction field in figure 27.1 (enter 1 in
section 27.3),

data . . . decode
v2k3 rcode(dec)110 (hex)6e

1d size=12 ld=0.625 ld-r=0.75 P=0.625

zl=0.75 zr=0.625 Z=0.75 C=0/3 . . . network parameters, described in section 27.4.1
above

ty. at no (p) s % g gd ml mp . . . reminder of data order, key in section 27.4.3 below
1. 0000 1 (1) 34 0.83% 29 0.853 3 29 . . . basin 1 data
2. 0073 4 (9) 831 81.2% 402 0.484 35 13 . . . basin 2 data
3. 07c7 2 (18) 312 15.2% 138 0.442 10 6 . . . basin 3 data
4. 01c7 2 (9) 51 2.49% 27 0.529 4 7 . . . basin 4 data
5. 0777 2 (2) 6 0.293% 2 0.333 2 2 . . . basin 5 data
basin types=5 total basins=11 . . . basin summary
n=12 field=4096 . . . network size, field size
g=1971=0.481 . . . total garden-of-Eden states, and density

400 CHAPTER 27. PAUSING ATTRACTOR BASINS, AND DATA

3965

3575

2015

2860

3250

715

2868

3282

843

3372

1203

717

3540

1875

3405

13351245

885

1495

1885

3445

2535

1950

3705

2210

650

2600

3938

3467

1583

2237

758

3032

1342

1273

997

3988

3667

2383

3380

1235

845

1820

3185

455

780

3120

195

260

1040

65

Figure 27.5: The 4th basin in
figure 27.1 with nodes shown in
decimal. CA v2k3 rcode(dec)110,
n=12. To reproduce this basin and
the data in section 27.4.6 gener-
ate this single basin with the seed
(dec)455 or (hex)01c7, and select
dec–c in section 26.3

27.4.3 Key to basin data order

The key to data on basins is set out below, where the labels are shown as a reminder.

ty. at no (p) s % g gd ml mp

reminder labels . . . what they mean

ty. . . . basin type numbered in the order drawn.
at . . . the “last” attractor state in hex.
no . . . number of equivalent basins of this type — always 1 if no compression.
(p) . . . attractor period.
s . . . total states in basin.
% . . . percentage of state-space made up of this basin type.
g . . . number of garden-of-Eden states in the basin.
gd . . . the density of garden-of-Eden states in the basin.
ml . . . the length of the longest tree in the basin, excluding the attractor root.
mp . . . the maximum in-degree found in the basin.

If CA compression is suppressed (section 26.2), or for a non-CA network where there are no
equivalent basins — data on every basin will be shown.

27.4.4 Tree data

An example of the same data as for the basin of attraction field in section 27.4.2 above (figure 27.1),
but also including tree (and subtree) data, which precedes the basin data summary is given below
(enter 2 in section 27.3). For CA, subtree data is given for each subtree type rooted on the
pre-images of a uniform attractor state (all values equal) in section 27.2.7.

401

data . . . decode
v2k3 rcode(dec)110 (hex)6e

1d size=12 ld=0.625 ld-r=0.75 P=0.625

zl=0.75 zr=0.625 Z=0.75 C=0/3 . . . network parameters, described in section 27.4.1

ty. at no (p) s % g gd ml mp . . . reminder of data order, key in section 27.4.3
tree. root no s g gd ml mp ... reminder of tree data order, key in section 27.4.5

below
seg-fan=29 (4 segs) . . . uniform state in-degree, and number of subtree types
1. 0aaa 2 1 1 1 2 0 . . . data for each subtree type, in basin 1
2. 0ab6 12 1 1 1 2 0

3. 0ad6 12 1 1 1 2 0

4. 0db6 3 2 1 0.5 3 1

1. 0000 1 (1) 34 0.83% 29 0.853 3 29 . . . data, basin type 1
1. 0fd1 3 13 7 0.538 5 4 . . . data for each tree type in basin 2
2. 0d70 3 1 0 0 0 0

3. 0730 3 263 127 0.483 35 13

2. 0073 4 (9) 831 81.2% 402 0.484 35 13 . . . data, basin type 2 (figure 27.4.5)
1. 037d 6 2 1 0.5 1 2 . . . data for each tree type in basin 3
2. 0137 6 1 0 0 0 0

3. 0f1d 6 49 22 0.449 10 6

3. 07c7 2 (18) 312 15.2% 138 0.442 10 6 . . . data, basin type 3
1. 0f7d 3 13 8 0.615 4 7 . . . data for each tree type in basin 4
2. 0d34 3 1 0 0 0 0

3. 071c 3 3 1 0.333 2 2

4. 01c7 2 (9) 51 2.49% 27 0.529 4 7 . . . data, basin type 4 (figure 27.4.2)
1. 0ddd 2 3 1 0.333 2 2 . . . data for each tree type in basin 5

5. 0777 2 (2) 6 0.293% 2 0.333 2 2 . . . data, basin type 5
basin types=5 total basins=11 . . . basin summary
n=12 field=4096 . . . network size, field size
g=1971=0.481 . . . total garden-of-Eden states, and density

27.4.5 Key to tree data order

The key to data on trees is set out below, where the labels are shown as a reminder.

tree. root no s g gd ml mp

reminder labels . . . what they mean

tree. ... tree (or subtree) type numbered in the order drawn.
root ... the state at the root of the tree, in hex.
no ... number of equivalent trees of this type (always 1 if compression suppressed).
s ... the size of the tree including the root.
g ... number of garden-of Eden states in the tree.
gd ... the density of garden-of-Eden states in the tree.
ml ... the maximum number of levels in the tree, excluding its root.
mp ... the maximum in-degree found in the tree.

Note that for CA with compression active (section 26.2), data is also given on subtrees from
a uniform state. If CA compression is suppressed, or for a non-CA network where there are no
equivalent trees — data on every tree will be shown.

402 CHAPTER 27. PAUSING ATTRACTOR BASINS, AND DATA

0fd1

0d1f

01fd

0b70

070b

00b7

09df

0df9

0f9d

08ca

0ca8

0a8c

0f4a

04af

0af4

0f76

076f

06f7

08cd

0cd8

0d8c

0532

0325

05d2

0d25

0b33

033b

0844

0448

091e

01e9

0911

0119

0d70

070d

00d7

0730

0307

0073

0310

0103

0031

01f0

0f01

001f

0b00
000b

0d00

000d

05ff

0ff5

09ff
0ff9

0700

0007

0cad

0adc

0cb5

0b5c

0cd5

0d5c

08aa

0aa8

0f6a

06af

08ad

0ad8
08b5 0b5808d5 0d58
08b6

0b68

08d6

0d68

0f56

056f

08da

0da8

0f5a

05af

0300

0003

0dff

0ffd

0f9c 09cf
0873

0738

05ce

0ce5

0100

0001

0caa 0aac
04ab

0ab4

076b

06b7

04ad

0ad4

076d

06d7

04b5

0b54

04d5

0d54

0755

0557

0cb6

0b6c

0cd6

0d6c

0cda

0dac

04db

0db4

075b

05b7

08c5
08c6
0f46

0af7

0f7a

0831

0318

0fde

0def

0339
0393

0d39

039d

0327

0273

0792

0927

0472

0724

044e

04e4

0c49

049c

0dc9

087c
0843
05c2
052e010804a5
0ca6

0b4b
0576

0ef1

0837

Figure 27.6: A detail of the second
basin in figure 27.1 with nodes shown
in hex. CA v2k3 rcode(dec)110,
n=12. To reproduce this basin
and the data in section 27.4.6 gen-
erate this single basin with the
seed (hex)0073, and select hex–h in
section 26.3

27.4.6 Single basin data

An example of the data for a single basin, with tree data, is given below (enter 2 in section 27.3).
This is the second basin in figure 27.1. A detail with nodes in hex (figure 27.4.5) shows how this
data corresponds to the states on the attractor.

data . . . decode

v2k3 rcode(dec)110 (hex)6e k3

1d size=12 ld=0.625 ld-r=0.75 P=0.625

zl=0.75 zr=0.625 Z=0.75 C=0/3 . . . network parameters, described in section 27.4.1
1. 0fd1 3 13 7 0.538 5 4 . . . data for each tree type
2. 0d70 3 1 0 0 0 0

3. 0730 3 263 127 0.483 35 13

single basin. 0073 4 (9) 831 81.2% 402 0.484 35 13 . . . basin data

The tree data order is as in section 27.4.5, and the basin data order is in section 27.4.3, but
the reminders of the data orders are not shown.

27.4.7 Subtree data

An example of the data for the subtree (n=150) shown in section 27.2 and figure 27.2, is given
below (enter 2 in section 27.3).

data . . . decode

v2k5 rcode(dec)2857723553 (hex)aa 55 66 a1

1d size=150 ld=0.469 ld-r=0.938 P=0.531

zl=0.938 zr=0.672 Z=0.9375 C=0/5 . . . network parameters, described in section 27.4.1
subtree=4335 root(hex)=09e30c2fe4605f23b454a99978e67921e8f599 . . . subtree size, root in hex
g=4030=0.93 ml=11 mp=1253 . . . more data according to the key in section 27.2.4

403

2. 1. 0.

4: 4 1 2

3: 3 4 4

2: 0 3 4

1: 2 2 4

0: 1 2 2

Figure 27.7: The basin of attraction field of an RBN, with states listed in section 27.5. The RBN has a
homogeneous rule, v2k3 rcode (dec)110, n=5. Nodes are displayed as a 2d bit pattern (section 26.3).
Right: The wiring matrix (section 17.2).

27.5 List of states

Examples of the list of states and data (with explanatory notes) are shown in sections 27.5.1 to
27.5.3 below, for a basin of attraction field of a small RBN3 defined in figure 27.7. The list of
states can be very lengthy so a small network, n=5, is applied in these examples.

As well as showing just the list of states and data, the list can also be broken up into sections
giving basin data, or in addition tree data, by entering 1s or 2s in section 27.3. Both of these
options show network parameters, a reminder of the basin data (and tree data) order at the top,
and a summary of data for the basin of attraction field at the bottom, as in section 27.4. Compare
these lists with the basin of attraction field and its nodes shown in figure 27.7.

27.5.1 Just the list of states

The example below shows just the list of states and three items of extra data about the states.
Enter s in section 27.3, or S to exclude the extra data. The first column is the state bit-string
(or value-string for multi-value). The next three columns give extra information about each string
as follows,

the basin number . . . as drawn in sequence. For a CA, if compression has not been suppressed
(section 26.2) this is the basin prototype number. For a subtree or
single basin the number is always 1.

level . . . the number of steps (levels) of the state away from the attractor for a
basin of attraction, or from the subtree root for a subtree. If this is 0
then the state is on the attractor, or is itself the subtree root.

pre-images . . . the number of the state’s immediate predecessors (pre-images). If this
is 0 then the state is a garden-of-Eden (leaf) state.

3Note that in an RBN compression does not apply (section 26.2).

404 CHAPTER 27. PAUSING ATTRACTOR BASINS, AND DATA

data details attractors-only decode

00000 1 0 3 00000 1 0 3 \...
11111 1 1 0 10111 2 0 2
00001 1 1 0 01100 2 0 2
10111 2 0 2 11110 3 0 2
01101 2 1 0 10011 3 0 2
01100 2 0 2 00100 3 0 3
10110 2 1 3 \
11010 2 2 0 \...level=0 indicates attractor states
01111 2 2 0
01110 2 2 2
10001 2 3 1
10000 2 3 2
11101 2 4 2
00011 2 4 0
00010 2 4 1
10101 2 5 1
10100 2 5 2
11001 2 5 0
11100 2 6 0
01011 2 6 0
01010 2 6 0
11110 3 0 2
10010 3 1 3
11011 3 2 0
00111 3 2 0
00110 3 2 1
11000 3 3 0
10011 3 0 2
00101 3 1 0
00100 3 0 3
01001 3 1 0
01000 3 1 0

\ \ \ \...the number of pre-images of the state, garden-of-Eden=0
\ \ \...level, attractor state or subtree root=0
\ \...basin number, subtree or single basin=1
\.....state shown as a bitstring (or value-string)

27.5.2 The list of states with basin data

This example shows the same list as in section 27.5.1 together with basin data. Enter 1s in
section 27.3,

data . . . decode
v2k3 rcode(dec)110 (hex)6e
1d size=5 ld=0.625 ld-r=0.75 P=0.625
zl=0.75 zr=0.625 Z=0.75 C=0/3 . . . network parameters, described in section 27.4.1 above

ty. at no (p) s % g gd ml mp . . . reminder of data order, key in section 27.4.3
00000 1 0 3 . . . list of states and details for basin 1
11111 1 1 0
00001 1 1 0
1. 00 1 (1) 3 9.38% 2 0.667 1 3 . . . basin 1 data
10111 2 0 2 . . . list of states and details for basin 2
. just the first and last sates are listed
01010 2 6 0
2. 0c 1 (2) 18 56.2% 8 0.444 6 3 . . . basin 2 data
11110 3 0 2 . . . list of states and details for basin 3
. just the first and last sates are listed
01000 3 1 0
3. 04 1 (3) 11 34.4% 6 0.545 3 3 . . . basin 3 data
basin types=3 total basins=3 . . . basin summary
n=5 field=32 . . . network size, field size
g=16=0.5 . . . total garden-of-Eden states, and density

405

27.5.3 The list of states with basin and tree data

This example shows the same (complete) list as in sections 27.5.1 and 27.5.2 together with basin
data and tree data (decode notes are omitted). Enter 2s in section 27.3.

v2k3 rcode(dec)110 (hex)6e
1d size=5 ld=0.625 ld-r=0.75 P=0.625
zl=0.75 zr=0.625 Z=0.75 C=0/3

ty. at no (p) s % g gd ml mp
tree. root no s g gd ml mp

00000 1 0 3
11111 1 1 0
00001 1 1 0

1. 00 1 3 2 0.667 1 3
1. 00 1 (1) 3 9.38% 2 0.667 1 3
10111 2 0 2
01101 2 1 0

1. 17 1 2 1 0.5 1 2
01100 2 0 2
10110 2 1 3
11010 2 2 0
01111 2 2 0
01110 2 2 2
10001 2 3 1
10000 2 3 2
11101 2 4 2
00011 2 4 0
00010 2 4 1
10101 2 5 1
10100 2 5 2
11001 2 5 0
11100 2 6 0
01011 2 6 0
01010 2 6 0

2. 0c 1 16 7 0.438 6 3
2. 0c 1 (2) 18 56.2% 8 0.444 6 3
11110 3 0 2
10010 3 1 3
11011 3 2 0
00111 3 2 0
00110 3 2 1
11000 3 3 0

1. 1e 1 6 3 0.5 3 3
10011 3 0 2
00101 3 1 0

2. 13 1 2 1 0.5 1 2
00100 3 0 3
01001 3 1 0
01000 3 1 0

3. 04 1 3 2 0.667 1 3
3. 04 1 (3) 11 34.4% 6 0.545 3 3
basin types=3 total basins=3
n=5 field=32
g=16=0.5

The format and keys of network parameters, basin data and tree data are described in
sections 27.4.1 — 27.4.5.

Chapter 28

Mutation of attractor basins
not in TFO-mode.

When the attractor basin has been drawn for a given network, a new attractor basin may be
immediately generated with the same presentation settings, but with a change, or mutation, to
some aspect of the network. This process can be repeated indefinitely and automatically. Mutations
can be cumulative or relate back to the starting network, and may comprise just one bit/value
in a rule-table or just one wire move in a RBN/DDN. A whole spectrum of mutations can be
preset from small to large, from all possible one bit/value mutants, a countdown of the decimal
rule number, up to fully random rules and/or wiring. This chapter describes the various mutation
options. The methods apply to RBN/DDN as well as CA, rulemix and k-mix, and to all the rule
types, rcode, kcode and tcode.

Mutants of single basins can be grouped on one screen (section 25.2.3) — especially useful to
show the set of one bit/value mutants of a rule (section 28.3.1).

28.1 The first mutation prompt

If m is selected at the first “output parameter” prompt (section 24.1), or if the output parameter
prompts are viewed in sequence, the first top-right mutation prompt is as follows,

mutation: (for next) chain-c Post-P tcode-t kcode-k rcode-r none-n (Post-P v=2 only)

wiring-w/+w, rule: special-s, set bits/values-b, single bit/value-1-(def):

28.1.1 The first mutation prompt — options summary

The options are summarised below, some are expanded in greater detail in later sections.

options . . . what they mean

chain-c . . . for a random chain-rules (section 16.11). The rules results in sup-trees
with very low in-degree, suitable for encryption [49].

Post-P . . . (value-range v=2 only) for random Post-functions (section 14.12).
If k ≤ 5 a Post-function is found at random from rcode-space. For
k ≥ 6 a Post-function if found at random from kcode-space where
Post-function are more abundant — otherwise the search would take
too long.

406

407

tcode-t . . . for random tcode.

kcode-k . . . for random kcode.

kcode-r . . . for random rcode.

none-n . . . no mutation — keeping the same rule and wiring — required when
trying different layouts, display, and other options in section 24.1).

wiring-w/+w . . . enter w to mutate the wiring by moving a selected number of wires
randomly within network (section 28.2) without changing the rule.
Add w (+w), for example cw, sw, bw or 1w, to first set the wiring
mutation, then the wiring and rule can mutate simultaneously.

special-s . . . for special rule mutations (section 28.3), including bit/value-flips in
sequence (section 28.3.1 — not for k-mix), and single basins grouped
on one screen (section 25.2.3).

set bits/values-b . . . to set the number of bits/values to flip in rcode (section 28.4).

single bit/value-1 . . . (the default) to flip one bit/value at random (section 28.4).

For a rulemix (including a k-mix), these options generally apply at all cell locations
simultaneously unless noted otherwise.

28.2 Mutate wiring

Enter w at the first mutation prompt (section 28.1), or another option followed by w, to move
one or more wires in the network to random positions for each new attractor basin. A top-right
prompt similar to the following is presented,

wires to move=1/30=3.33%(def): all-a number-n %-p: (values shown are examples)

local-L, from original wiring-w/+w:

In this example, n=10 and k=3, so the total number of wires is 30. In a mixed-k network the
total number of wires equals the sum of the n neighborhoods.

The default is to move just one wire. The wiring mutations are either cumulative, or can restart
from the original wiring with wiring-w/+w below. The wire moves are made by picking a random
wire of a random cell for each wire move. Note that a local CA will be re-assigned as a randomly
wired (nonlocal) network if wiring mutation is chosen, so compression in basins (section 26.2) will
be deactivated.

The options below activate the wiring change at each mutation,

options . . . what they mean

return . . . to move one random wire in the network, the default.

all-a . . . for new random wiring for the whole network.

number-n . . . to specify the number of wires to move, selected at random, with the
following subsequent prompt, . . . number of wires:

%-p . . . to specify the percentage of total wires to move, selected at random, with
the following subsequent prompt, . . . % of total wires:

408 CHAPTER 28. MUTATION OF ATTRACTOR BASINS

Figure 28.1: Starting with CA v2k3 rule (dec)110, n=10, as shown in figure 26.4, three mutant basin
fields are shown where one randomly chosen wire was moved at random to a new position. The actual
moves were as follows: Top: cell 9, 098→398. Center: cell 3, 432→452. Bottom: cell 5, 654→634.

local-L . . . to restore local wiring (for 1d, 2d or 3d). For 1d and a single rule,
compression in basins (section 26.2) will be restored, and the program
will revert to the first mutation prompt (section 28.1).

wiring-w/+w . . . enter w for the default single wire move to start from the original
wiring at each mutation, otherwise mutations are cumulative. For non-
cumulative mutations of several wires, enter the option followed by w,
for example aw or pw.

409

Figure 28.2: Mutant basins of attraction shown on one screen — selected with mutants-M in
section 25.2.3. The original basin Top left: is a CA v4k2, n=7, kcode(hex)027e60, seed(hex)cdca
(as in figure 28.5 but without compression). The other basins are one wire move mutants from the
original. As there are many possible single wire moves, this exact set of mutants would be hard to
reproduce.

28.3 Special mutation options

Special mutation options take into account the different rule types (rcode, kcode or tcode) selected
in section 13.1.1. For single basins or subtrees, successive mutants can be generated automatically
and grouped on one screen (pausing at each full screen) if mutants-M is selected in section 25.2.3.
Otherwise there would be a pause with the “attractor basin complete” prompt (section 30.4) after
each mutant is complete.

The following kinds of changes/mutations are included in special mutations,

1. A countdown by decimal rule number, provided the rule-table is within the decimal limits
(table 16.2). For a rulemix or k-mix, the rule-number at each cell is decreased by one.

2. A succession of random single bit/value flips. For a rulemix or k-mix one cell is first selected
at random for the flip.

3. Flipping successive bits or values in the rule-table from left to right, either cumulatively or
singly — from the original string at each flip. For a rulemix this applies to all rule-tables
simultaneously. This option does not apply for a k-mix.

Enter s at the first mutation prompt (section 28.1) for the special rule mutation options, which
depend on whether kcode, tcode, or neither, are active, and whether the rule-table is within the
decimal limits. The following is an example of a special mutation prompt in a top-right window,

(kcode active, and both kcode and rcode within decimal limits)

specify rcode or kcode mutation
kcodeno-5 kcodeflip-4 rcodeno-3 rcodeflip-2 (def-4)
(Mutant Layout Set) bit/value flip from left: cumulative-1 single-0:

The options, and the wording subject to the context, are described below,

410 CHAPTER 28. MUTATION OF ATTRACTOR BASINS

Figure 28.3: 32 one-bit mutant basins of attraction shown on one screen selected with mutants-M
in section 25.2.3. The original rule Top left: is a 1d CA v3k3, n=8, rcode 60, seed all 0s. where all
states belong to one very regular basin. The rule was first transformed to its equivalent k=5 rcode
(hex)f00ff00f, with 32 bits in its rule-table. Below: All 32 one-bit (non-cumulative) mutant basins are
shown. If the rule is the genotype, the basin of attraction can be seen as the phenotype.

info and options . . . what they mean

specify rcode. always appears — the rcode options apply even if kcode or tcode is
active.

. . .or kcode. (if kcode active) otherwise . . .or tcode. . . , or neither, appears.

kcodeno-5 . . . (if kcode active and within decimal limits) for a countdown from the
initial decimal kcode number.

tcodeno-5 . . . (if tcode active and within decimal limits) for a countdown from the
initial decimal tcode number.

kcodeflip-4 . . . (if kcode active) for a random bit/value flip in kcode.

tcodeflip-4 . . . (if tcode active) for a random bit/value flip in tcode.

rcodeno-3 . . . (if rcode within decimal limits) for a countdown from the initial
decimal rcode number.

rcodeflip-2 . . . for a random bit/value flip in the rcode.

(def-4) . . . enter return for the default — kcodeflip-4 or tcodeflip-4 is the
default if either is active, otherwise the default is rcodeflip-2.

(Mutant Layout Set) . . . (for single basins, and if mutants-M was selected in section 25.2.3).

bit/value flip from left: . . . (not for k-mix) Successive flips from left to right (cumulative
or single — below). section 28.3.1 provides further details.

cumulative-1 . . . keep previous flips.

single-0 . . . restore previous flips — so single bit/value flip from the original rule.

411

Figure 28.4: Mutation of the basin of attraction field by one bit-flips. The v2k3 rcode (dec)110 was
first transformed to the equivalent k5 rcode (hex)3cfc3cfc (section 18.7.1). The CA, n=10 (basin field
shown in figure 26.3), was then mutated in sequence by a single bit from the left (non-cumulatively).
Three mutant basin fields are shown (from the top) for the 5th, 8th and 14th bit-flip The three rules
(hex) are 34fc3cfc, 3dfc3cfc, 3cf83cfc.

28.3.1 Bit-flip or value-flip in sequence
not for mixed-k

If 1 or 0 is entered in section 28.3, at each mutation, successive bits in the rule-table (tcode, kcode
or rcode) will be flipped in sequence from left to right. The difference is that for cumulative-1
the previous flip remains unchanged, whereas for single-0 the previous flip will be restored to its
former state. The single-flip results in a set of rules 1 Hamming distance from the start rule —
the cumulative-flip results in a steady increase in the Hamming distance.

The start and end position of flips can be altered from the default at the extreme ends of the
rule-table. The following top-right prompt is presented, this example for v2k3 rcode,

rcode: specify start - end position of bit/value flip (countdown)
start position (def 31): end position (def 0):

Enter the new start position, followed by the new end position. Once the end position is
reached, the next mutation will revert to the start.

412 CHAPTER 28. MUTATION OF ATTRACTOR BASINS

Figure 28.5: Mutant basins of attraction shown on one screen — selected with mutants-M in
section 25.2.3. The original basin Top left: is a CA v4k2, n=7, kcode (hex)027e60, seed (hex)cdca (as
in figure 28.2 but without CA compression active). Lower row: 10 one-value (non-cumulative) mutant
basins. As v=4 and the value-flip is random, this exact set of mutants would be hard to reproduce. In
this example, both the nodes (section 26.3), and equivalent trees (and subtrees) (section 26.2.3), are
suppressed.

For a rulemix the mutation applies to the rule at each cell simultaneously.
Note that finer mutations can be made to rcode if first transformed to an equivalent rcode

with greater k (section 18.7.1). For single basins only, the mutant basins can be grouped on one
screen with the original basin by itself in the top row — by selecting mutants-M in the layout
(section 25.2.3). For a bit/value-flip in sequence, if the set of mutants fits on one screen the
program will pause once the set is complete (or when the screen is full). Figures 28.5 and 28.3 give
examples.

28.4 Flip bits or values

Enter return at the first mutation prompt (section 28.1) for the default one bit or value flip,
or enter b to first alter the number of bits or values to be flipped at random in kcode or tcode
if active, or in rcode. The total number of bits/values T , the maximum that may be flipped,
depends on the network — if S is the rule-table size (section 13.2.1), n the network size, and i the
network index, T is given as follows,

single rule . . . T=S

rulemix . . . T=S × n

k-mix . . . T=

n−1
∑

i=0

Si

T appears in the prompt and is the basis for the percentage setting. Examples of the top-right
prompt are as follows,

(single rcode v4k3, T=vk=64)

rcode: bits/values to flip=1/64=1.56%: all-a number-n %-p

(homogeneous-k, mixed rcode v4k3 n=10, T=n(vk)=640)

rcode: bits/values to flip=1/640=0.156%: all-a number-n %-p

Mutations are made by picking a random bit or value of a random cell’s rule-table for each
bit/value flip. The options are described below,

413

options . . . what they mean

return . . . to flip one bit or value, the default.

all-a . . . for a new random rule or rules.

number-n . . . to specify the number of random flips, with the following subsequent
prompt, . . . number of bits/values:

%-p . . . to specify the percentage of total bits/values to randomly flip, with the
following subsequent prompt, . . . % of total bits/values:

28.5 No pause before next mutant

When an attractor basin is complete, the program will pause1 and wait for return to be entered
for the next mutant attractor basin. To suppress the pause and produce a continuous display of
mutant attractor basins, the following top-right prompt is presented,

don’t pause after mutant-y:

Enter y to suppress the pause. There will be a short delay to see the complete attractor basin
before the next mutant is generated. The default delay can be changed — the following subsequent
prompt is presented if y was selected above,

change delay, enter factor (now 1.00 max 10):

Enter a factor to change the delay. For example to make it half as long enter .5, twice as long
enter 2. To restore the default setting enter 1. This option works for all types of attractor basins,
basin fields, single basins, and subtrees, including a range of sizes set in section 8.1. To interrupt
the continuous display enter q.

1The “attractor basin complete” prompt (section 30.4) provides many other options, including methods to
examine the current network.

Chapter 29

Final options for attractor basins
not in TFO-mode.

This chapter describes a number of final options before attractor basins are drawn, which depend
on the parameters set previously in chapters 24 to 28.

If s for a “single basin/subtree” was selected at the first DDLab prompt in section 6.2 (and a
seed in chapter 21) then a choice will need to be made between a subtree and a single basin of
attraction, or to opt for space-time patterns only (as in section 24.1).

For a subtree, it’s possible (and usually advisable) to run forward by a given number of
time-steps from the selected seed, and generate the subtree from the state reached. The number
of backward steps in the subtree, or in trees in a single basin, can be limited to see just the core
behavior of large networks. For a single basin, its also possible to exclude subtrees altogether and
show just the “bare” attractor — useful for very large 2d networks as in figures 29.2 and 29.3.

One of two different reverse algorithms that compute pre-images directly are applied automati-
cally by default for either local or nonlocal wiring. However, the nonlocal algorithm can be applied
to local wiring as a reality check. The inner workings of both algorithms can be observed.

As a further reality check, an exhaustive algorithm can be selected. There are further options
for attractor basins of networks with sequential instead of synchronous updating, and for (biased)
random maps, which rely on the exhaustive algorithm. Finally, there is an option to generate
neutral order components utilising DDLab’s subtree methods, showing how the space of sequential
orders is partitioned into sets of orders with identical dynamics.

29.1 Subtree or single basin

If a single basin or subtree was selected at the first DDLab prompt in section 6.2 (and a seed in
chapter 21) a top-right prompt allows either running backward to generate a subtree, or running
forward to determine the attractor cycle and generate a single basin of attraction,

backward for subtree-b, single basin of attraction-(def):
space-time patterns only -S, tog backwards stp (now OFF)-s/+s: (or now ON)

Enter return or s for a single basin of attraction. Enter b or bs for a subtree1. s/+s
toggles the current setting for showing backward space-time patterns (section 24.10). Enter S to
abandon further options in this chapter and proceed with the options for just space-time patterns
(chapter 31).

1Select a subtree if “neutral order components” are to be generated (section 29.10).

414

415

29.2 Subtree: Run forward before running backwards

If b is entered for a subtree in section 29.1, a further top-right prompt is presented to first run the
network forward from the seed state by a specified number of time-steps before running backwards,

forwards before backwards?
how many steps (def 0):

The state reached on the forward run becomes the root of the subtree. Running forwards before
running backwards is usually necessary2, other than for very chaotic networks such as CA with
“chain” rules (section 16.11) — for chain rules large network sizes (nLim=65025, section 8.3) are
permissible. For most other networks, a seed selected at random is very likely to be a garden-of-
Eden state which has no pre-images thus no subtree, so a much smaller size is required (section 8.3).

Enter the number of forward steps, or accept the default, 0. A final prompt will be presented
(section 29.4) before the subtree is drawn.

29.3 Single basin of attraction

If a single basin of attraction was selected in section 29.1 a final prompt will be presented before
the basin is drawn, described in section 29.4. Although the upper size limit for the network is
very large (section 8.3), large network sizes should be applied with extreme caution.

29.3.1 Single basin history limit

To generate a single basin of attraction, the network must first be run forward from the initial
state (seed) to find the attractor. States at each successive time-step are added to a history
array, against which the state at each new time-step is checked looking for a repeat, which would
define the attractor cycle. In previous versions of DDLab, the maximum number of steps in the
history array (the history limit) was 65535 (unsigned short int), but is now increased to 4294967295
(unsigned int), so the history limit is unlikely to be an issue3.

29.3.2 Interrupting while looking for attractor

If the dynamics is interrupted (with q) while the network is still iterating forward looking for the
attractor cycle, the following top-right message is presented,

still looking for attractor cycle, 1247 iterations (for example)

exit-q, cont-ret:

Enter return to continue looking, or q to give up — the top-right attractor basin complete
prompt will appear (section 30.4).

2However, enter return for zero forward steps if “neutral order components” are to be generated (section 29.10).
3If the number of iterations exceeds the history limit, no more time-steps will be added, but the checks of

new time-steps against the history array continue – for a large state-space and chaotic rules (especially chain-rules
section 16.11) the attractor may therefore not be found.

416 CHAPTER 29. FINAL OPTIONS FOR ATTRACTOR BASINS

29.4 Final attractor basin prompt

Before drawing attractor basins, a final top-right prompt is presented as a reminder of the type
of wiring (local or nonlocal) and the type of attractor basin (subtree, single basin, or basin field),
and giving further special options. Enter return to skip these options and generate the attractor
basin. The wording of the prompt depends on the network parameters, and for example,

for a subtree with nonlocal wiring
subtree (nonlocal) n=8, local-x exh-e rmap-r seq-s nto-o
view ppstack-1 +pause-2, reorder(on) tog-R/+R, limit backsteps-b/+b:

for a single basin with nonlocal wiring
single basin (local) n=14, nonlocal-x exh-e rmap-r seq-s
view ppstack-1, limit backsteps+b:

for basin of attraction field with local wiring
basin field (local) n=10, nonlocal-x exh-e rmap-r seq-s nto-o
view ppstack-1:

for basin of attraction field if the ibaf-graph was set in section 20.6.1
basin field (can vary) n=10, nonlocal-x ibaf: exh-e rmap-r seq-s nto-o
view ppstack-1:

29.4.1 Final attractor basin prompt — conditions and reminders

The special options must meet the following conditions to be included in the final attractor basin
prompt (section 29.4).

exh-e rmap-r seq-s . . . state-space, vn, must be within the limits in table 29.1.

ibaf: exh-e rmap-r seq-s . . . as above, but for the ibaf-graph selected in section 20.6.1. The
blue text is a reminder.that the ibaf-graph was selected.

nto-o . . . for v=2 and n ≤ 12 only, and a basin field, or a subtree with zero
forward steps (section 29.2).

The first line of the final attractor basin prompt includes the following reminders,

subtree, single basin, basin field . . . the type of attractor basin.

n=10, n=5-12 . . . the network size n, or the start and finish for a range of n
(section 8.1).

(local), (nonlocal) . . . refers to the wiring — whether local as in 1d CA, or nonlocal as in
RBN, DDN, or for any other network with nonlocal wiring, including
2d and 3d CA4. Local/nonlocal is toggled with x (section 29.4.2).

29.4.2 Final attractor basin prompt — options summary

Enter return to generate the attractor basin with the default reverse algorithm for local or nonlocal
wiring. Other options are summarized below, and described in detail in the rest of this chapter,

42d and 3d CA “local” wiring is treated as nonlocal in DDLab’s algorithms.

417

options . . . what they mean

nonlocal-x . . . for 1d local wiring, enter x to redefine the wiring as nonlocal and use the
nonlocal algorithm.

local-x . . . for nonlocal wiring (except mixed-k), enter x to restore 1d local wiring
(if changed to nonlocal above), or to rewire any nonlocally wired network with
1d local wiring — the nonlocal wiring will be forgotten, but it could be saved
and reloaded (chapter 19).

exh-e . . . (vn within the limits in table 29.1 only) for attractor basins of the current
network using the exhaustive algorithm. Optionally save/print the exhaustive
pairs. (section 29.7).

rmap-r . . . (vn within the limits in table 29.1 only) for attractor basins of a random
map (uses the exhaustive algorithm) consisting of exhaustive pairs (optionally
with Hamming bias). Optionally load/save/print the exhaustive pairs.
(section 29.8)

seq-s . . . (vn within the limits in table 29.1 only) for attractor basins of the current
network, but with sequential updating (uses the exhaustive algorithm).
(section 29.9)

nto-o . . . (subject to the conditions in section 29.4.1) to find the neutral order compo-
nents in sequential updating and show the components as if they were subtrees.
(section 29.10).

view ppstack-1 . . . to view the changing partial pre-image stack as a histogram, indicating
the inner workings of the reverse algorithms (section 29.6) for either local wiring
(section 29.6.1), or nonlocal wiring (section 29.6.2).

+pause-2 . . . (for nonlocal wiring only) to view the partial pre-image histogram, as above,
and also pause after each set of valid pre-images (section 29.6.2).

reorder(on)-R/+R . . . (for nonlocal wiring only) the reverse algorithm reorders the cells for
more efficient computation. The reordering can be toggled off/on by entering
R, or another entry followed by R, for example 1R (section 29.6.3).

limit backsteps-b/+b . . . (for a single basin or subtree only) to restrict the number of back-
ward steps, enter b or another entry followed by b (section 29.5).

29.5 Limit backward steps

Its possible to limit the number of backward steps (or levels) in subtrees (from the root state), or
in the trees of single basins (from the attractor), to see just the core behavior. If b, or another
entry followed by b, is entered in section 29.4, the following top-right prompt is presented,

enter max backward steps (def no limit):

Enter the number of backward steps. Trees and subtree will stop generating further pre-images
when the number is reached. Enter return not to impose a limit.

418 CHAPTER 29. FINAL OPTIONS FOR ATTRACTOR BASINS

Figure 29.1: Limiting the number of backward steps from the attractor in the trees of a single basins.
Left: the complete basin. Center: trees limited to 5 backward steps. Right: trees limited to zero
backward steps, and non-equivalent nodes shown as bit-patterns. v2k3 rcode(dec)110, n=12, seed
(hex)08e0.

29.5.1 The bare attractor — limit backward steps to zero

For single basins the number of backward steps can be set at zero. Enter 0 at the prompt in
section 29.5 to display just the bare attractor. Because the data is derived from forward itteration
– reverse algorithms do not come into play — the graphic image of attractors for very large
networks, including 2d, can be generated, as in figures 29.2 and 29.3.

Figure 29.2: Left Gosper’s
glider-gun from the game-of-
Life [10] shown as an attractor
with period 30, with back-
ward time-steps limited to
zero. Below The initial
state 38×16 including an eater
to consume emergent gliders.

419

time
proceeds
clockwise

1

38

14

glider
ejected

36

27
26

asym
m

etric span

sym
m

etric span

Above: Glider-gun GGa on a 30×21 toroidal
lattice, showing all 38 attractor states — time-
step 38 is due East. Symmetric/asymmetric
spans are indicated. Gliders eject at time-step
36.

tim
e

1

2

3

13

14 glider ejected

21
22

110

109

a
s

s
a

Above: Glider-gun GGb on a 29×29 toroidal
lattice, showing part of the attractor —
period 110. Time-step 110 is due East.
Symmetric/asymmetric spans are indicated.
Gliders eject at time-step 14.

Figure 29.3: Glider-guns, GGa and GGb, from the X-rule [14] shown as periodic attractors where
colliding gliders self-destruct. Backward time-steps were limited to zero.

420 CHAPTER 29. FINAL OPTIONS FOR ATTRACTOR BASINS

29.6 Viewing the partial pre-image stack

For networks with synchronous updating (the default in DDLab) two distinct reverse algorithms
apply to generate pre-images [38, 39] — for either local or nonlocal wiring. The local algorithm is
for homogeneous-k networks with 1d CA (nearest neighbor) wiring, but with possibly mixed rules.
The nonlocal algorithm is for any other type of wiring (RBN, DDN, mixed-k, 2d or 3d networks).
The nonlocal algorithm in general is considerably slower. Both algorithms work by generating a
set of partly computed pre-images, “partial pre-images”, held in a stack until either completed or
rejected as invalid. Each partial pre-image can give rise to more partial pre-images.

Some inner workings of these algorithm may be observed by viewing the partial pre-image
stack as it initially grows, then shrinks, both for the local wiring algorithm (section 29.6.1), and
for nonlocal wiring algorithm (section 29.6.2).

Figure 29.4: A 1d local CA subtree, showing the partial pre-image stack, v2k6 rcode(dec)110, n=50.
The partial pre-image stack is represented by a horizontal bar extending from left to right within a
rectangle near the bottom of the screen — its length (in pixels) shows the varying size as the partial
pre-image stack grows and shrinks, leaving a trace of its maximum extent (shown in this example).
It may be necessary to slow computation (sections 24.11, 30.4) to see the bar.

421

29.6.1 Partial pre-image stack, local wiring

For local 1d wiring, enter 1 in section 29.4, to see how the partial pre-image stack varies in size for
the local 1d reverse algorithm. This is shown as a horizontal bar near the bottom of the screen,
whose length (in pixels) corresponds to the varying size of the partial pre-image stack (figure 29.4).

29.6.2 Partial pre-image stack, nonlocal wiring

For nonlocal wiring, enter 1 or 2 in section 29.4 for a view of the inner workings of the nonlocal
reverse algorithm. A histogram will appear in the lower half of the screen with n columns
(figure 29.4) showing the changing partial pre-image stack for each successive cell in the network
starting from the left. When the attractor basin is complete (or abandoned), a final histogram
gives the average over all histograms to date.

If 1 is entered in section 29.4, the histogram changes continually, and the following top-right
prompt is presented,

partial pre-image histogram: start pause-p:

If 2 is entered in section 29.4, or if p is entered above, there will be a pause just before each
pre-image fan is drawn — but no pause for garden-of Eden states. The following top-right prompt
is presented, explained below,

pre=81 (wild=9) abandon pause-p, early exit-q, see next-def: (for example)

info or option . . . what it means

pre=81 . . . the size of the pre-image fan.

(wild=9) . . . (if wildcards exist) the number of pre-images resulting from wild-
cards.

abandon pause-p . . . to abandon pausing.

early exit-q . . . to abandon the single basin or subtree (section 30.2.3), giving the
“Attractor basin complete” prompt (section 30.4).

see next-def . . . for the next pre-image fan and pause.

Successive values in the histogram tend to increase then decrease — if the value reduces to zero
at any time the state is a garden-of-Eden state. The value of the last green column represents the
final set of pre-images. However these pre-images may contain “wild-cards” cells, which have no
outwires. An additional blue column (red for the final histogram) on top of the last green column
shows additional pre-images that result from filling in these wild-cards.

29.6.3 Reorder to optimize the nonlocal reverse algorithm

The algorithm to reorder cells for more efficient computation is implemented by default, however it
can be toggled off/on by enteringR, or another entry followed byR, for example 1R in section 29.4.
Toggling reordering off implements the reverse algorithm from left to right.

The nonlocal reverse algorithm [39, 42] builds a stack of partial (i.e. incomplete) pre-images by
taking each cell in turn and filling in valid entries taken from the rule-table of that cell according
to the cell’s wiring. Any conflict between successive entries disqualifies the partial pre-image. The
partial pre-image stack will grow, then shrink as conflicts mount (figure 29.5).

422 CHAPTER 29. FINAL OPTIONS FOR ATTRACTOR BASINS

Figure 29.5: A 1d nonlocal CA subtree (v3k3, n=33 — defined below). The changing histogram
shows the varying size of the partial pre-image stack for each next cell. The final bar height represents
the number of pre-images of a particular state. The numbers below the top-right window show how
cells were reordered to optimize the nonlocal 1d reverse algorithm (section 29.6.3).
Top: The DDLab screen showing the complete subtree and the final histogram giving the average over
all histograms to date. Above: The histogram of the first subtree at level 1. The network: n=33, v3k3
rcode(hex) 214989121861a4 (chain rule) and random wiring defined in file v3n33alg.wso, 2 steps
forward from the initial state (hex) 010a154814556a4201 before running backwards.

The algorithm works for cells taken in any order. However, to reduce the growth of the
partial pre-image stack, the cells are reordered to ensure there is wiring overlap of successive
cells (if possible), to allow conflicts to happen early. For fully random wiring, this reduces the
growth of the partial pre-image stack considerably compared to a left to right (or some arbitrary)
order. A left to right order is of course very efficient for 1d CA wiring. Memory load can be

423

Figure 29.6: The final partial pre-image histogram, with the reordering algorithm suppressed, for the
same network as in figure 29.5 Top. An approximate comparison of the time t, and the maximum
average stack height h, with the reordering algorithm active is as follows, active: t=57sec, h=2000,
inactive: t=5min 51sec, h=8000.

reduced and computation speed increased. The new order (if applied) is shown below the top-right
prompt window (figure 29.5). The reordering reduced the time (and memory) to complete this
subtree by a factor of about 6 (figure 29.6).

The new order is local within the reverse algorithm and makes a small difference to the
presentation of attractor basins. The partial pre-image histogram in section 29.6.2 (if active)
will appear according to the new order.

29.7 Exhaustive algorithm
vn within the limits for the exhaustive algorithm in table 29.1

Enter e in section 29.4 to use the exhaustive algorithm, instead of either of the default reverse
algorithms (sections 29.6, 2.19). The following exhaustive pairs prompt (below the top-right) is
presented, and options summarized below.

exhaustive pairs: compute-ret, and save-s, and prt-p/+p: (prt-p/+p not for DOS)

After the attractor basin is drawn, the exhaustive algorithms remains active and the prompt
reappears before the next mutant (chapter 28) — enter q to exit.

options . . . what they mean

return . . . to compute the list according to the current network architecture.

and save-s . . . to compute the list as above, and save it to a .exh file, which can be loaded
as a random map (sections 29.8 and 29.8.1).

and prt-p/+p . . . (not for DOS) enter p to compute the list as above, and print to the
terminal (section 29.7.4), or lp or sp to load or save the list and print it at the
same time.

Although the exhaustive algorithm is limited to small networks the method applies to CA,
DDN/RBN, and random maps, systems that form a hierarchy of subsets with random maps as
the most general (figure 29.7). The exhaustive algorithm also applies to asynchronous updating
(section 29.9).

424 CHAPTER 29. FINAL OPTIONS FOR ATTRACTOR BASINS

Figure 29.7: CA, DDN/RBN, and random maps, are systems that form a hierarchy of subsets, with
random maps the most general. This is reflected by the reverse algorithms, for (a) 1d local wiring,
(b) nonlocal wiring but including (a), and (c) exhaustive testing which includes (a) and (b) as well as
random maps and asynchronous updating.

The exhaustive algorithm is efficient for basin of attraction fields, or large single basins/subtrees
that use up a good proportion of state-space, and additionally is not sensitive to neighborhood
size, k. However the method is highly sensitive to increasing network size n. Every state in state-
space must be iterated forward by one step according to the network architecture, and the list of
vn “exhaustive pairs”, each state and its successor (a non-random map) held in an array. The
maximum network size nexhL is listed in table 29.1 for each value-range v. In practice n is limited
to much smaller networks to compute the complete list in a reasonable time. However, even with
the maximum size it should be possible to see the start of the list being printed in the terminal.
Once complete, attractor basins are generated by scanning the list of successors for pre-images of
a given state — if the given state is not found it is a garden-of-Eden (leaf) state.

v nexhL state-space vn ≈ millions

2 28 268435455 ≈ 268.4

3 18 387420488 ≈ 387.4

4 14 268435455 ≈ 268.4

5 12 244140624 ≈ 244.1

6 11 362797055 ≈ 262.8

7 10 282475248 ≈ 282.5

8 9 134217727 ≈ 134.2

Table 29.1: Maximum network size
for the exhaustive testing algorithm for
different value-ranges v, and the corre-
sponding maximum state-space vn.

29.7.1 Generating the exhaustive list

Enter return or p in section 29.7 to compute the exhaustive list. A horizontal red progress bar near
the top-right of the screen will monitor the proportion of state-space completed so far, together
with the following message,

setting up exhaustive pairs, interrupt-q:

If q is entered to interrupt, which may be necessary if you lose patience with a large network,
the following prompt is presented,

425

exhaustive pairs 25% complete; stop-q options-o cont-ret:

Enter q to abandon the exhaustive pairs computation, enter o for the “options” prompt in
section 30.4, or return to continue.

29.7.2 Compute and activate the ibaf-graph

If the “interactive basin of attraction field graph” (ibaf-graph, section 20.6)) was selected in
section 24.3 the uncompressed field (or random map — section 29.8) is drawn as usual, and
the followed prompt appears below the completed progress bar in section 29.7.1 above,

draw interactive basin-of-attraction field graph, ibaf-i:

Enter i to compute and activate the ibaf-graph. For further details see section 20.6.1.

29.7.3 Saving the exhaustive pairs

Enter s in section 29.7 to compute and then save the exhaustive pairs. Once the list is generated
the following prompt is presented below the red progress bar,

SAVE exhaustive pairs-s:

Enter s to save the list as an .exh file (chapter 35). The list is essentially a random map
(section 29.8) but is not random, and the file can only be loaded from the random map prompt
(sections 29.8 and 29.8.1).

29.7.4 Printing the exhaustive pairs in the terminal

Enter p in section 29.7 to compute and print the list of exhaustive pairs to the terminal, or sp to
save the list and print it at the same time. The list is presented in four columns. The left two
are consecutive states in state-space ordered by ascending decimal equivalents, first the state in
decimal, then its bit/value string. The right two columns show the corresponding successor states,
first the state bit/value string, then in decimal — tables 29.2 and 29.3 give examples.

consecutive states successor states

dec bits bits dec

....

4090 111111111010 100000001111 2063

4091 111111111011 000000001110 14

4092 111111111100 100000000101 2053

4093 111111111101 000000000111 7

4094 111111111110 100000000011 2051

4095 111111111111 000000000000 0

Table 29.2: Printing exhaustive pairs, the final
six items of the list, for the 1d CA v2k3 rule
(dec)110, n=12, as in figure 27.1.

consecutive states successor states

dec bits bits dec

......

728060 002301233330 101210302211 4607141

728061 002301233331 001210302220 412840

728062 002301233332 301210302233 12995759

728063 002301233333 101210302221 4607145

728064 002301300000 101211311111 4611413

728065 002301300001 001211311101 417105

......

Table 29.3: Printing exhaustive pairs, for a v4k3
rule selected at random, n=12. A six item sample
from the list after 60 seconds, Computng the com-
plete list, without printing, of 16777215 (16.7 mil-
lion) items took about 3 minutes.

426 CHAPTER 29. FINAL OPTIONS FOR ATTRACTOR BASINS

29.8 Random map
vn within the limits for the exhaustive algorithm in table 29.1

Enter r in section 29.4 to generate a random map, which also consists of exhaustive pairs but
created at random (but possibly with a Hamming distance bias), instead of by some dynamical
rule. The following prompt below the top-right is presented, with some options similar to
“exhaustive pairs” (section 29.7) — the same size constraints apply (table 29.1),

random map: load-l, rnd-(def), set Ham-h, and save-s/+s, and prt-p/+p:
x (prt-p/+p not for DOS)

After the attractor basin is drawn (with the exhaustive algorithm, section 29.7) the random
map function remains active and the prompt reappears before the next (new) random map —
enter q to exit. However, if Hamming bias was set, the prompt changes as follows,

random map: load-l, Ham1-(def), reset Ham-h, and save-s/+s, and prt-p/+p:
x (Hamx shows the current Hamming bias)

options . . . what they mean

load-l . . . to load an .exh file of a random map (section 29.8.1).

rnd-(def) . . . enter return to create a random map, which is a list of random states just
like exhaustive pairs. While the (random) exhaustive pairs are being assigned,
a horizontal red progress bar near the top-right of the screen will monitor the
proportion of state-space completed so far, together with prompts to interrupt
etc. as described in section 29.7.1.

set Ham1-(def) . . . enter return to create a random map with the current Hamming dis-
tance bias, shown as Hamx, i.e. Ham2, Ham3 etc.

set Ham-h . . . (or reset Ham-h) to create a random map, but biased according to Hamming
distance (section 29.8.2).

and save-s/+s . . . enter s, to create a random map as above, and save it to a .exh

file, or hs to reset the Hamming bias and save. A prompt will appear to
SAVE exhaustive pairs-s:, the same as in section 29.7.3.

and prt-p/+p . . . (not for DOS) enter p to create a random map as above,and print to the
terminal (section 29.7.4), or lp or sp, to load or save the list and print it at
the same time, or hsp to reset the Hamming bias, save, and also print.

In DDLab, a random map is a directed graph with out-degree one, representing an exhaustive list
of transitions, and is arguably the most general discrete dynamical system. The set of all random
maps contains the subset of all DDN/RBN, which in turn contains the subset of all CA.

Provided that the size of the map is a power of the value-range v, the function to set up a
random map is implicit in the exhaustive testing algorithm (section 29.7). This algorithm creates a
list of vn pairs of states, each state and its successor, by iterating each state in state-space forward
by one step according to the network dynamics. A random map, on the other hand, assigns the
successors at random (or with some bias). Assigning successors according to the dynamics of a
particular class of network is just a special case of such a random assignment.

427

H=1

H=2

H=3

H=0

Figure 29.8: Typical random map graphs (basin of attraction fields) with different Hamming bias
H. From the top, H=1, H=2, H=3, and without bias H=0, so fully random. H=1 is the most
fragmented, H=0 tends to have a characteristic giant component[42, ch.3].

Some randomly assigned successors states are likely to occur more than once, so other states
will not occur at all (there will be no room left in the list). These are the states without pre-
images, “garden-of-Eden” states. A random map has all the properties of a dynamical system with
converging trajectories leading to attractors, though such a system is very probably irreducible to
a sparsely connected network. A fully connected network, however, where k = n, where each cell
receives inputs from all cells (including from itself), can implement any random map. The space
of all such fully connected networks, and all random maps (of the Boolean hypercube of length n)
is (2n)2

n

, which is also the upper limit for the space of all possible binary basin of attraction fields.

428 CHAPTER 29. FINAL OPTIONS FOR ATTRACTOR BASINS

29.8.1 Loading the random map or exhaustive pairs

Enter l in section 29.8 to load a previously saved list of exhaustive pairs from an .exh file
(chapter 35), and draw the attractor basins. Note that the current values of v, n must match
the file value of v, n. If not, a top-right warning5 such as the following will be displayed,

file n=7 != network n=8 (wrong file) cont-ret: (values shown are examples)

The default filename for a random map (or exhaustive pairs) file is myexh vx.exh where x is
the current value-range v. The (binary) encoding is described in section 35.2 (EXHAUSTIVE).

29.8.2 Biasing the random map by Hamming distance

If h was entered in section 29.8 the random map can be biased (or the current bias reset) according
to Hamming distance. The following prompt near the top-right is presented,

set Hamming distance (0-10): (for n=10)

Enter the Hamming distance H (0 — n). 0 signifies no bias, a fully random map. If biased,
the exhaustive pairs will differ by H bits or values, i.e. between each bit/value string and its
assigned successor. figure 29.8 shows random map graphs (basin of attraction fields) with a range
of Hamming bias H from H=1 to no bias, a fully random map. H=1 is the most fragmented,
H=0 tends to have a characteristic giant component[42, ch.3].

While the exhaustive pairs are being assigned, a horizontal red progress bar near the top-right
of the screen will monitor the proportion of state-space completed so far, together with prompts
to interrupt etc. as described in section 29.7.1.

29.8.3 Random map data

In addition to the normal data shown in a top-right window when an attractor basin is complete
(chapter 27), for a complete random map (basin of attraction field), additional data shows the
frequency of different cycle periods in a bottom-center window, which is of some interest in graph
theory[42, ch.3]. This example (from figure 29.8 H=2) shows that there are 14 cycles with period
2, 1 with period 3, etc. The last column (10+) gives the frequency of period 10 or more.

Random Map, v2 n=10 cycle period: 1 2 3 4 5 6 7 8 9 10+

Ham bias=2 cycle frequency: 0 14 1 0 2 0 0 1 0 1

For a single basin or subtree, the window just gives the message,

Random Map, v2 n=10 (for example)

5A mismatch in v will usually be detected because the file size will be incorrect, but this will be reported as a
mismatch in n.

429

29.9 Sequential updating
with the exhaustive algorithm (section 29.7) so vn within table 29.1

By default, network updating is synchronous, in parallel. Alternatively, the updating can be
sequential6. The way that cell indexes are listed from left to right is the sequential order, and
corresponds to an update-tag (from 0 to n-1), for example,

0 11 12 13 14 15 16 17 18 19 10 11 - the update-tag for n=12
2 8 10 5 6 9 7 4 11 0 3 1 - a possible sequential order

There are n! (factorial n) possible sequential orders in a network of size n. DDLab provides
simple default orders, left to right (e.g. 9876543210 for n=10), right to left (e.g. 0123456789 for
n=10), and a random order. A specific order can also be set by hand. The order can be saved
and loaded from a .ord file. For n ≤ 12, all possible orders can be listed — identified by an
“order-index” from 0 (left to right) to n!-1 (right to left), and an order can be chosen from this
list.

Enter s in section 29.4 for sequential updating. with the following top-right prompt,

sequential update: >-(def) <-b rnd-r set-s all-S: (all-S if n ≤ 12)

At the same time a top-center reminder backtrack sequential-q remains in place while se-
quential selection is in progress. The options are summarized below.

options . . . what they mean
>-(def) . . . enter return for the default order from left to right in a 1d network, or in general

counting down the cell index n− 1 to 0 (section 10.2).
<-b . . . for the opposite order, from right to left, cell index 0 to n-1.

rnd-r . . . for a random order (section 29.9.1).
set-s . . . to set a specific order by hand (section 29.9.2).
all-S . . . (if n ≤ 12) to list all n! possible orders and select a specific order from the list

(section 29.9.3).

29.9.1 Random order

Enter r in section 29.9 (or in section 31.4.2 for space-time patterns7) to set a random order. A
top-right prompt shows the order (which can be revised), together with the order-index in decimal
and hex if n ≤ 12, for example,

random order, n=12
5 0 1 3 10 9 4 8 11 7 2 6 (dec)=199658374 (hex)=be68b84 (for n=14)

update-tags shown from 0-11
save/load-s/l >-f <-b re-order-r cont-ret:

In the example above, cell index 5 (update-tag 0) is the first to be updated, and cell index 6

6This section is also relevant to sequential updating for space-time patterns (section 31.4.2), but in that case
the vn limit in table 29.1 is irrelevant.

7For space-time patterns (section 31.4.2) — for large networks there are two extra options: more-m to see the
next window of the update order, and jump-j to jump to a selected update-tag.

430 CHAPTER 29. FINAL OPTIONS FOR ATTRACTOR BASINS

(a) order=right→left, 0123456789

(b) randomly ordered, order=4536780129

Figure 29.9: A basin of attraction field for a 1d CA with sequential updating, v2k3 rule (dec)110,
n=10. (a) sequential left to right, (b) randomly sequential. The order is shown in the lower rule
window.

(update-tag 13) is the last to be updated. The info and options are described below,

info and options . . . what they mean
n=12 . . . the system size.

5 0 1 . . . 6 . . . the random order as a list of cell indexes.
(dec)= . . . (if n ≤ 12) the order-index in decimal, a number defining the order.
(hex)= . . . (if n ≤ 12) the order-index in hexadecimal.

update-tag shown from 0-11 . . . reminder of the update-tags.
save-s . . . to save the order to a .ord file (section 35.3).
load-l . . . to load an order.

>-f . . . for a left to right order, as in section 29.9.
<-b . . . for a right to left order, as in section 29.9.

re-order-r . . . for a new random order.
cont-ret . . . to accept the order and continue.

29.9.2 Set specific order

Enter s in section 29.9 to set a specific order by hand. The sequence of cell indexes is set with the
following top-right prompt,

enter cell index (no repeats) 0-11 or rnd-(def) back-b
update 4: 4 8 10 3 * * * * * * * * (for n=12, for example)

In this example, update-tags 0 — 3 have been entered as cell indexes 4, 8, 10, 3, and the cell
index for update-tag 4 is requested. A prompt for each update-tag from 0 to n-1 is presented in
turn. Stars (*) indicate unallocated update-tags, otherwise the allocated cell indexes are shown.
Enter a unique cell index (repeats will be rejected) for each successive update-tag. return gives a
valid random cell index. Enter b to backtrack to the previous update-tag.

431

Once the selected sequence is complete, the following top-right prompt is presented,

sequence complete 0-11 (for n=12)

4 8 10 3 0 9 11 1 6 5 2 7 (dec)=188097014 (hex)=b3621f6
save/load-s/l reselect-r cont-ret:

info and options . . . what they mean
0-11 . . . the range of cell indexes, and update-tags for n=12.

4 8 10 3 . . . 7 . . . the sequential order as a list of cell indexes.
(dec)= (hex)= . . . (if n ≤ 12) the order-index in decimal and hex, as in section 29.9.1.
save/load-s/l . . . to save or load the order to a .ord file as in section 29.9.1.

reselect-r . . . to start again — set a new order.
cont-ret . . . to accept the order and continue.

29.9.3 List all orders
n ≤ 12 only

Enter S in section 29.9 to list all n! possible orders and select a specific order. As many orders as
will fit will be displayed in a window on the right of the screen, followed by further options. For
example, for n=12 (the maximum list size permitted) the first two orders and last two orders in
the list are shown below,

all possible orders n=12, 0-479001599
decindex - order - hexindex
0 - 01323456789ab - 0 (this is the right to left order)

1 - 01323456789ba - 1

. . . (the list continues, the last two order are shown below)

479001598 - ba987654b3201 - 1c8cfbfe
479001599 - dcba9876543210 - 1c8cfbff (this is the left to right order)

jump/copy-j orderseed-s accept-a more-ret: (or top-ret if on the last page)

The center column is the sequential order, with cell indexes shown in hex for compactness.
The left and right columns show the order-index (0 to n!) which specifies and codes for each order.
The left column is in decimal, the right in hex.

The prompts on the bottom line are explained below,

options . . . what they mean
jump/copy-j . . . to jump to a new initial order-index. jump to index (0-479001599):

(for n = 12) appears at the bottom of the list. Enter a decimal order-index,
the list will be redrawn with that index at the top. Then a may be entered
to accept the top selection.

orderseed-s . . . to set the order-index as if it were a seed — see section 29.9.4.
more-ret . . . the default to show the next window of entries in a long list.
top-ret . . . the default if on the last page (or single page) to re-list from the top.

432 CHAPTER 29. FINAL OPTIONS FOR ATTRACTOR BASINS

29.9.4 List all orders — set order seed

Enter s in section 29.9.3 to set the order-index as if it were a seed (chapter 21). A lower left
order seed prompt appears with similar options8 to the seed prompt (sections 21.1, 21.2),

Select order seed, max=(dec)479001598=(hex)1c8cfbff prtx-x
rnd-r bits1d-b bits2d-B hex-h dec-d (def-d): (for n=12)

These options are fully described in section 21.2 and further sections in chapter 21, and are
briefly summarized below,

options . . .what they mean

dec-d . . . (the default) enter return or d for the order seed in decimal, if the number
is greater than max, too big! back-ret will appear to re-enter.

rnd-r bits1d-b bits2d-B hex-h . . . any of these methods also apply for the order seed. If
the entry exceeds max, the following message appears re-enter,

order index 55889 > max(40319) cont-ret: (for n=8)

As soon as the list (section 29.9.3) and its prompts reactivate, enter a to accept the selection.

29.9.5 Drawing the attractor basin with sequential updating

Once the sequential order has been set, the exhaustive pairs prompt will be shown (section 29.7).
– enter return to compute9 while displaying the prompt in section 29.7.1. Once the exhaustive
pairs are complete, the attractor basin will be drawn. At the same time, the “rule window” will
be displayed at the bottom of the screen, showing the rule (or the rule at index 0 for an RBN),
and other information (section 16.19), and in addition the updating order is shown in alternating
red-black colors. For n ≤ 12 the sequential order is shown in hex, and the order-index is also
shown in decimal and hex. For n > 12 just the sequential order is shown in decimal.

Figure 29.10: The rule window for sequential updating. This example is for v2k3 rcode(dec)110,
n=10, and a sequential order as in figure 29.9(b).

29.10 Neutral order components
PBC, v=2, n ≤ 12 only, and a basin field, or a subtree with zero forward steps (section 29.2)

In sequential updating, different orders may produce equivalent dynamics. Its of some interest
from a mathematical perspective to compute the neutral order components, how sequence space is
divided up into sets of orders with identical dynamics. This turns out to depend on the network’s
wiring scheme. The algorithm in DDLab that computes neutral order components (limited to

8Note that some of the sub-options in section 29.9.4 may be irrelevant in the context of the order seed.
9This may take some time for larger networks, as noted in section 29.7).

433

0000

02d0

0018

0002

02e8

02d2

00f0

001e

001a

03c0 02ee
02ea

0870

00f6

00f2

0020

0024

08e8 03c6 03c202f0
02f4

0876

08720120

00f8

00fc

0026

08ee
08ea03c8 03cc02f6

08a0

0878

087c0122

00fe

08f0
08f403ce 0408

08a2

087e

08f6
0930040a

0932

Figure 29.11: A neutral order component, a set
of equivalent orders generated from the order
root, computed and drawn in an analogous way
to a subtree for network dynamics. Any other
order in the component acting as the root would
generate the same component. Nodes (shown in
hex) represent the order-index, a unique number
for each order. This example is for n=8, k=3,
with 8d-hypercube wiring (section 12.2). The
order seed=0, i.e. the order is 76543210. The
subtree is the first neutral component in the neu-
tral field in figure 29.12.

network size n ≤ 12), does so by starting with a particular order (the order seed), and generating
its equivalent orders by swapping the order of pairs of neighboring cells that have no links to each
other, neutral pairs. Valid swaps within the first order are treated as “pre-images”, and these
pre-images may have pre-images in turn (repeat orders are discounted). When no valid swaps
remain the neutral component is complete.

DDLab treats these components as subtrees. A single component subtree (figure 29.10), or the
entire set of components subtrees (figure 29.12) making up sequence space (the neutral field) can
be computed and drawn in an analogous way to a single subtree or basin of attraction field for
network dynamics. The layout and node label options described in chapter 26 apply.

Nodes are labelled according to the order-index (a unique number, 0 to n!-1, section 29.9.3),
in decimal, hex, as a bitstring, etc as previously selected in section 26.3. The default is as a spot.

Enter nto-o at the prompt in section 29.4 to generate the neutral subtree (section 29.10.1)
or neutral field (section 29.10.2), depending on whether a subtree or basin of attraction field
is currently selected10. Note that the rule or rule scheme, or a subtree’s initial state, selected
previously, plays no role in computing neutral order components.

10The neutral order prompt nto-o is not activated if a single basin of attraction was selected in section 29.1.

434 CHAPTER 29. FINAL OPTIONS FOR ATTRACTOR BASINS

Figure 29.12: The neutral field, the subtrees making up sequence space — the first 175 or so, out of a
total of 1862, are shown — computed and drawn in an analogous way to a basin of attraction field for
network dynamics. A list of component sizes and the frequency of different sizes is shown in a window
on the right once the neutral field is complete. This example is for n=8, k=3, with 8d-hypercube
wiring (section 12.2). The first subtree (top right, order seed=0) is shown in detail in figure 29.9.5

29.10.1 Neutral subtree

The generate a neutral subtree, select backward for subtree-b in section 29.1, then return
in section 29.2 to ensure zero steps for forwards before backwards?. Then enter nto-o in
section 29.4 for a neutral subtree. A lower center window prompts for the neutral order seed, or
subtree root,

Select order seed, max=(dec)40319=(hex)9d7f prtx-x
rnd-r bits1d-b birs2d-B hex-h dec-d (def-d): (for n=8)

Enter an order-index, 0 to n!-1 as the seed, in decimal, hex, as a bitstring, etc. (as in
section 29.9.4). The selection works in the same way as selecting a network seed, described at
length in chapter 21. A selection greater than n!-1 will be rejected, with the message,

order-index 44444 > max(4318) cont-ret: (for n=8), for example)

The following examples relate to figure 29.9.5, for n=8, k=3, with 8d-hypercube wiring,

435

(section 12.2). As the subtree is dawn, a message appears in a window at the bottom of the
screen,

one neutral component 8d-hypercube

When the subtree is complete, a top-right window gives some data on the subtree as follows,

neutral component size=48 root(hex)=00 00
g=16=0.333 ml=8 mp=3 0.006sec

29.10.2 Neutral field

Enter nto-o in section 29.4 for a neutral field. All neutral order components making up sequence
space will be generated11 (figure 29.12). The order components are drawn as a series of “subtrees”
(figure 29.9.5), and the data on each subtree appears in a top-right window while the next subtree
is being drawn (section 29.10.1 describes the data). In order to pause to see the data for each
subtree, select a pause in section 27.1.2.

Once the neutral field is complete, a top-right window shows data on the last subtree, and
component types are listed on the right of the screen. The list gives the type according to size,
the size itself, and the frequency of different sizes. As many component types as will fit will be
listed, followed by further options. For example, for n=8, k=3, with 8d-hypercube wiring, shown
in figure 29.12, the list is as follows,

total components=1862
type: size freq
1: 1 144
2: 2 144
3: 3 96
4: 4 216

. . . (the list continues, the last three types are shown below)

25: 152 12
26: 228 16
27: 720 2
quit-q jump-j top-ret: (top-ret if on the last page)

or
quit-q jump-j more-ret: (more-ret if more than one window is required)

The prompts on the bottom line are explained below,

options . . . what they mean

quit-q . . . Enter q to backtrack and show a summary of the neutral field in a top-right
window, as in figure 29.12, for example,

total neutral components=1862
n=8 field=40320 g=14585=0.362 1.345sec

The neutral field list will remain visible but inactive.

11Although all neutral order component subtrees are generated, you only see those that fit within the DDLab
screen, which depends on the layout and scale set in chapter 25.

436 CHAPTER 29. FINAL OPTIONS FOR ATTRACTOR BASINS

jump-j . . . to jump to a new type index (useful for a long list),

jump to index (0-100): (for example)

appears at the bottom of the list. Enter a type index, the list will be
redrawn with that index at the top.

more-ret . . . the default to show the next window of entries in a long list.

top-ret . . . the default if on the last page (or single page) to re-list from the top.

Its a good idea to drastically reduce the scale of the subtrees in section 25.2 as there are
usually many small neutral order components. To reserve a vacant space for the list window and
not to hide some subtrees, set the minimum right border at a high value in section 25.2.8.

Chapter 30

Drawing attractor basins, and
changes on-the-fly
not in TFO-mode.

Following the final options described in section 29.4, the drawing of attractor basins will commence,
according to the current presentation, layout and other settings. During the drawing, some of
these settings can be reset, either by pausing the drawing and responding to further prompts, or
immediately on-the-fly by various keyhits. Many network parameters may also be reset without
the need to backtrack to the early prompts. This chapter describes these options.

Note also that if one of various “pause” options was selected in section 27.1.2, the angular
orientation, spacing and/or position of each successive basin, tree or subtree can be amended
during the pause (section 25.3).

30.1 The progress bar for basin of attraction fields

For basin of attraction fields only, a horizontal green progress bar below the data window
(section 27.2) indicates how much of state-space has been used up so far. A bar that over-shoots
or under-shoots indicates an error. The vertical bars on the horizontal bar indicate the seeds (by
their decimal equivalent distance along the bar) for successive basins, starting with 0 on the left.

Figure 30.1: Examples of the basin of attraction field progress bar and the data window for an RBN.
Top: For a normal run without error. Bottom: An example of an ERROR excess states=, where
the size of the field exceeds state-space. This is caused if wiring was changed, or a tree or basin skipped,
during a pause (section 30.2). The progress bar has also overshot its scale on the right.

437

438 CHAPTER 30. DRAWING ATTRACTOR BASINS, AND CHANGES ON-THE-FLY

Figure 30.2: The DDLab screen showing a basin of attraction field. This example is for a 1d CA, n=15,
v2k5 tcode (dec)53. To achieve this layout, a pause was selected after each basin in section 27.1.2,
and the position and spacing of basins were amended as described in section 25.3. Various typical
indications on the screen are as follows,

top-left: . . . the “attractor basin complete” options window (section 30.4).
top-right: . . . the data window (section 27.2).

below top-right: . . . the progress bar (section 30.1).
bottom-center: . . . the rule window (section 16.19).
foot of screen: . . . the title bar (section 5.5). While attractor basins are being drawn, this

also shows reminders about on-the-fly options (section 30.3).

30.2 Attractor basins, interrupting and changing

Enter q to interrupt attractor basins while being drawn. A top right notice/prompt will appear
with content depending on where the reverse algorithm was interrupted:

(a): while computing the pre-image fan.
(b): between pre-image fans but before the tree is complete.
(c): while still looking for the attractor cycle.

439

early exit - in pre-image fan (2199 found) . . . (a)
level 31, incomplete tree=5063 . . . (b)
still looking for attractor cycle (1845 iterations) exit-q, cont-ret: . . . (c)

For (a) and (b) a second prompt line is presented, which depends on whether the attractor
basin is a subtree, single basin or a basin of attraction field,

for a subtree
options-o stopsubtree-q speed-V cont-ret:

for a single basin
next-tree-n options-o stopbasin-q speed-V cont-ret:

for a basin of attraction field
next-tree/basin-n options-o stopfield-q speed-V cont-ret:

If the in-degree histogram was set in section 24.6, a further option inhist-h is offered to view
the histogram as computed so far, for example,

inhist-h, options-o, stop subtree-q, cont-ret: (for a subtree)

There options are summarized below, with some described in more detail in the rest of this
section,

options . . . what they mean

inhist-h . . . to view the in-degree histogram (section 24.6).

next-tree-n . . . to abandon the tree that is currently being generated and start the next
tree. This will create errors in a basin of attraction field (section 30.2.1).

options-o . . . to show a truncated version of the top-left “attractor basin complete”
options (section 30.4).

speed-V . . . to slow down drawing attractor basins and backwards space-time patterns
or revert to full speed. See section 24.11, which also lists other stages in
DDLab where slow motion can be selected, including on-the-fly.

stopfield-q . . . (or stopbasin-q, or stopsubtree-q) to abandon the attractor basin that
was interrupted (section 30.2.3).

cont-ret . . . enter return to continue the attractor basin from the point of interrupt.

When the implementation of these options is finished, the attractor basin will either continue
from the point at which it was interrupted, or if certain parameters were changed, including a new
rule or seed, a new attractor basin will be started.

30.2.1 Abandoning a tree and continuing with the next tree

Enter n in section 30.2, to abandon the tree that is currently being generated and start the next
tree. This also applies to a subtree from the uniform states (section 26.2.2). If compression
(section 26.2) was not deactivated in section 26.2.1, all the equivalent trees (or subtrees from the
uniform states) will be abandoned, and the next set of equivalent trees started.

440 CHAPTER 30. DRAWING ATTRACTOR BASINS, AND CHANGES ON-THE-FLY

Abandoning a subtree before it is complete will result in errors in attractor basin data
(section 27.2). For a basin of attraction field, the progress bar is likely to go off its scale, with a
message such as ERROR excess states=19124 below it. This indicates that more states were
computed than the size of state-space.

30.2.2 Errors in attractor basins

Its important to note that any changes to the network parameters made during a pause or
interrupt will inevitably result in errors/inconsistencies in data and attractor basin structure.
The view/revise/learn-n option allows the network to be changed. If changes are made during
a pause, and the attractor basin is then continued, the result will be inconsistent with any given
network. For a basin of attraction field, the progress bar is likely to go off its scale. The size of
state-space as well as the field will be indicated in the data window. For example,

. . . sspace=1024 field=1486

A message will also appear below the progress bar. For example,

ERROR excess states=462

This indicates that more states were computed than the size of state-space.
Note also that although the wiring in a 1d CA may be examined and changed during the pause,

the change is only temporary, and will be automatically restored to allow the attractor basin of
the 1d CA to continue using the 1d CA reverse algorithm. For other networks, RBN and 2d or
3d CA this does not apply, and the wiring can be changed during a pause, but of course this will
lead to inconsistencies and errors as described earlier. Rule changes during a pause will remain in
effect for any network, again leading to inconsistencies and errors.

30.2.3 Abandon the attractor basin

Enter q in section 30.2 to abandon the attractor basin that was interrupted. The data on the
incomplete attractor basin is shown in a top-right window (section 27.2), preceded by the words
“EARLY EXIT” to indicate that the data applies to an incomplete attractor basin. For example,

EARLY EXIT PBC basin types=7 totalbasins=76
n=15 sspace=32768 field=23222 g=16711=0.72

At the same time the “attractor basin complete” prompt is presented in a top-left window
(section 30.4).

30.3 Attractor basin options, on-the-fly

A number of keyhits allow changing the presentation of attractor basins and backwards space-time
patterns on-the-fly — the following reminder is shown in the bottom title bar (section 5.5),
depending on the type of system selected in section 29.4,

not for the jump-graph or ibaf-graph (chapter 20), ppstack:tog-P for nonlocal wiring only

matrix-m STP:tog/scroll/exp/contr-s/#/e/c ppstack:tog-P slow/max</> basinsize: E/C

DDLab c©1993-2024 advance-ret back/interrupt-q matrix-m STP:tog/scroll/exp/contr-s/#/e/c ppstack:tog-P slow/max-</> basinsize: E/C

441

These options do not apply for basins during the jump-graph or ibaf-graph (chapter 20),
ppstack:tog-P applies only for the nonlocal wiring reverse algorithm (section 29.6.2), matrix-m
does not apply for neutral order components (section 29.10). The keyhits are described below,

on-the-fly keyhits . . . what they mean

matrix-m . . . Toggle the state-space matrix (section 24.5) on and off.

tog/scroll/exp/contr-s/#/e/c. . . Enter s to toggle backwards space-time patterns on and off
(section 24.10),# to toggle between scrolling (the default) and sweeping
the patterns, e/c to expand or contract the scale of both the backwards
space-time patterns and the nodes of the basins when shown as bit/value
patterns (section 26.3).

ppstack:tog-P . . . (for the nonlocal reverse algorithm only) enter P to toggle showing the
partial pre-image histogram (section 29.6.2). The histogram will start
immediately and at the same time a top-right prompt is presented,

partial pre-image histogram: start pause-p:

Enter p to pause the histogram — section 29.6.2 gives further details.

slow/max:</> . . . slow down with < which halves computation speed each time its hit.
Enter > to revert to maximum speed. Slow motion can also be selected
at various other stages in DDLab, listed in section 24.11.

basinsize: E/C: . . . to expand/contract the scale of attractor basins. This option was added
for the screen-saver demo (section 4.11) but applies while any type of
attractor basin is run. For each keyhit, the scale for the next basin will
expand or contract by 10%.

These changes take effect as soon as the key is pressed, without return, but basins may be
drawn too fast to hit a key in time. To allow for this, computation may be slowed at various other
stages in DDLab, listed in section 24.11.

30.4 Attractor basin complete prompt

When the attractor basin is complete, or if abandoned (section 30.2.3), the following options are
presented in a top-left window,

graphics-g ops-o speed(max)-V (or speed(slow)-V if not currently max)

tog: single-field-t STP-P (or field-single-t whichever is active)

seed-e net-n, back-q cont-ret: (seed-e for single basin or subtree)

Enter q to backtrack to previous prompts. Enter return to generate another attractor basin,
for a mutated network according to the mutations set in chapter 28, all other parameters and
settings remaining unchanged.

If o was entered when interrupting in section 30.2, the prompt is truncated with fewer options
as follows,

speed(max)-V (or speed(slow)-s if not currently max)

STP-P
net-n, back-q cont-ret:

442 CHAPTER 30. DRAWING ATTRACTOR BASINS, AND CHANGES ON-THE-FLY

Enter q or return to revert to the interrupt prompt (section 30.2).
The other options are summarized below,

options . . . what they mean

graphics-g . . . to alter the graphics setup described in section 6.3.

ops-o . . . to open up a range of further rule, network and seed options, which are
presented in a top-right window (section 30.5).

speed-V . . . the current speed status is either (max) or (slow). Enter V to slow down
drawing attractor basins and backwards space-time patterns or revert to full
speed. See section 24.11, which also lists other stages in DDLab where slow
motion can be selected, including on-the-fly.

single-field-t . . . (or field-single-t) to toggle between a single basin and the basin of attrac-
tion field. When changing to a single basin the prompt sequence restarts at
the seed prompt (chapter 21). When changing to a field the prompt sequence
restarts at the first output parameters prompt (section 24.1). Note that the
“layout” defaults (chapter 25) may need to be reset.

STP-P . . . to toggle between showing and not showing “backwards” space-time patterns
(section 24.10).

seed-e . . . (for a single basin or subtree) to revise the seed for a single basin or subtree.
The seed options described in chapter 21 are presented in a lower central
window. This option does not appear for a basin of attraction field.

net-n . . . for the many network architecture options described in chapter 17, including
viewing, revising and filing, the Derrida plot (chapter 22), and learning
(chapter 34). Following this, DDLab reverts to the option in section 30.4.

30.5 Further attractor basin complete options

Enter o in section 30.4 above to display a range of further (context dependent) options for
amending the rule, the network, or seed for a single basin or subtree only. A top-right prompt
similar to the following is presented,

rule:save/load/revise/rnd/trans-s/l/v/r/t net-n
valueflip-1 allv-b Z:higher/lower-Z/z canal-C (Z: for single rule networks only)

seed:rev-e rnd/blk-R/k sng:pos/neg-5/6 save/load-S/L (for a single basin or subtree)

back-q cont-ret:

Enter q to backtrack to previous prompts in section 30.4. Enter return to generate another
attractor basin, for a mutated network according to the mutations set (chapter 28). Mutations are
only put into effect if the rule and seed parameters were not revised (below).

The remaining options are listed in two categories, revising the rule (section 30.5.1), or the
seed (section 30.5.2) for single basins or subtrees only. Changes to rules or seeds generally result
in new attractor basins being started. However, changes made during an interrupt when attractor
basins are incomplete, and continue from the point of interrupt, will result in errors as described
in sections 30.2.2.

443

30.5.1 Attractor basin — revising rule/s

Part of the prompt (section 30.5) for revising the rule, or rules in mixed rule networks, is as follows,

rule:save/load/revise/rnd/trans-s/l/v/r/t net-n
valueflip-1 allv-b Z:higher/lower-Z/z canal-C (Z: for single rule networks only)

The meaning of the options are summarized below,

options . . . what they mean

save/load-s/l . . . enter s or l to save or load the rule (35.3). For mixed rule networks
this applies to the rule at cell index 0 only.

revise-v . . . to review/revise the rule in a lower right window as described in
chapter 16. For mixed rule networks the following prompt is presented
below the top-right window to select the cell index,

enter cell index, 9-0: (for example)

rnd-r . . . to reset a new random rule, or all rules at random in a rulemix.

trans-t . . . to transform the rule as described in chapter 18. For mixed rule net-
works the following prompt is presented below the top-right window to
select the cell index,

enter cell index, 9-0: (for example)

net-n . . . for the many network architecture options described in chapter 17,
including viewing, revising, transforming, filing, the Derrida plot
(chapter 22), and learning (chapter 34).

valueflip-1 . . . for a random bit/value-flip in the rule-table, or for all rule-tables in a
rulemix.

allv-b . . . to flip outputs of uniform neighborhoods to the neighborhood value,
all0s→0, all1s→1, all2s→2 etc. — in a single rule, or for all rules in a
rulemix.

Z:higher/lower-Z/z . . . (for single rule network only) enter Z to progressively force the
Z-parameter higher, or enter z to force it lower, as in section 16.3.

canal-C . . . to reset canalyzing inputs in one rule (as in section 18.6), or for all
rules in a rulemix (as in chapter 15).

Once the rule is revised it will be shown in the lower rule window described in section 16.19.

30.5.2 Attractor basin - revising the seed
for a single basin or subtree only

Part of the prompt (section 30.5) for revising the seed, which applies to a single basin or subtree
only, not for a basin of attraction field, is as follows,

seed:rev-e rnd/blk-R/k sng:pos/neg-5/6 save/load-S/L

The meaning of the options are summarized below,

444 CHAPTER 30. DRAWING ATTRACTOR BASINS, AND CHANGES ON-THE-FLY

options . . . what they mean

rev-e . . . to revise the seed (also available in section 30.4). A seed prompt
(section 21.1) is presented in a lower center window.

rnd-R . . . for a new random seed. The preset density-bias of the seed
(section 21.3) is respected.

blk-k . . . for a random central block of cells. The rest can be kept as is, or set
to zero. The block size was originally specified in section 21.3 but can
be changed here. The following top-right prompt is presented,

rnd block: change size (now 4), rest: keep-k, all 0s-(def):

If a new block size is entered the prompt reappears showing the new
size. Enter k to keep the rest of the seed, return for the new block
on a zero background. The preset density-bias (section 21.3.2) of the
block is are respected.

sng:pos/neg-5/6 . . . for v=2: enter 5 for a positive singleton seed, a central cell set to 1,
the remainder set to 0. Enter 6 for a negative singleton seed.
For v ≥ 3: enter 5 for a central cell set to any random value except
zero against a zero background. Enter 6 for a central cell with any
random value against a different uniform background.

save-S . . . to save the original seed, or the current state — the latest state in the
attractor basin. — the following top-right prompt is presented,

save seed: original-o, current-c:

The seed is saved as a .eed file (section 35.3).

load-L . . . to load a new seed, a .eed file (section 35.3), subject to the constraints
listed in section 21.7.

Chapter 31

Output parameters for space-time
patterns

The output parameters for space-time patterns (STP for short) allow various default settings to
be revised before STP start. Many of these settings, and some extra ones, can also be selected
on-the-fly — while STP are running (chapter 32), and from the interrupt window (section 32.16).
Space-time patterns (running forward) apply in the following circumstances:

• in TFO-mode (section 6.2.1): the first output parameter appears after setting the seed
(chapter 21).

• in SEED-mode (section 6.2.2): the first output parameter prompt appears . . .

– if space-time patterns only-s was selected at the “first output parameter prompt for
attractor basins” (section 24.1),

– or alternatively at a final stage, if space-time patterns only-S was selected at the “subtree
or single basin” prompt (section 29.1).

Its possible to jump directly to a particular category of options, namely boundaries, updating,
entropy, damage, attractors, and skeletons, apart from the first set of start/misc miscellaneous
options. Although there are many output parameter options and sub-options relating to space-
time patterns, all have defaults — any remaining options can be skipped at any time by entering d.

31.1 The first output parameter prompt for space-time
patterns

The first output parameter prompt for space-time patterns is presented in a top-right window.
At the same time space-time parameters appears in a top-center window.

accept all space-time defaults-d
revise from: start/misc-ret boundaries-b updating-u
revise from: entropy-e damage-m attractors-a skeletons-s: (skeletons for v=2 only)

445

446 CHAPTER 31. OUTPUT PARAMETERS FOR SPACE-TIME PATTERNS

31.1.1 Output parameter prompt for space-time patterns — options
summary

The output parameter prompt options (section 31.1) may be looked at in turn (up to damage-m),
but they are divided into categories to allow jumping directly to the category where options need to
be set. The prompt categories are summarised below, together with subcategories where applicable
— and described in detail in the rest of this chapter. As soon as a “revise from” option is selected,
the reminder accept defaults-d appears in a top-center window — enter d (at any time) to accept
all remaining defaults, and skip further output parameter prompts. Enter q to backtrack. Options
marked with an asterisk (*) can also be modified on-the-fly (chapter 32) and with a carat (ˆ) from
the interrupt/pause prompt (section 32.16).

categories . . . what they mean, and section in this chapter

start/misc-ret . . . enter return to access all the options in turn, (except attractors-a and
skeletons-s) starting with the miscellaneous options 31.2.

*31.2.1 . . . cell color by neighborhood or value.
*31.2.2 . . . plotting the state-space matrix and return map.
*31.2.3 . . . the threshold for showing “frozen” cells.
*31.2.4 . . . cell-scale.
*31.2.5 . . . displaying space-time patterns in other than “native” dimensions

— 1d, 2d, or 3d.
*31.2.6 . . . sweeping or scrolling space-time patterns.

ˆ*31.2.7 . . . options for pausing or stepping through space-time patterns.
ˆ*31.2.8 . . . options for slowing down space-time patterns.
ˆ31.2.9 . . . (if the files are accessible) select sequential or random order for

loading lists of glider rules on-the-fly.
31.2.10 . . . (TFO-mode only) inverting the kcode.

boundaries-b . . . to set null boundary conditions instead of the default periodic boundary
conditions (section 31.3).

updating-u . . . jump directly to options for asynchronous or noisy ways to update the
network (section 31.4).

*31.4.1 . . . probabilistic updating.
*31.4.2 . . . sequential updating.
*31.4.3 . . . partial order updating.

entropy-e . . . jump directly to methods for analyzing space-time patterns by the
input-frequency histogram (IFH) (section 31.5) and its input-entropy,
and pattern density (section 31.5.1), and apply the IFH to an active
iso-rule (section 16.10).

31.5.3 . . . single cell input-entropy and pattern density.
*31.5.4 . . . generation size for input-entropy and pattern density - of the

moving window of trailing time-steps.

damage-m . . . jump directly to damage spread from perturbations — the difference
between two networks (section 31.6):

31.6.2 . . . a histogram of damage spread for a sample of initial states.

447

attractors-a . . . jump directly (the only way) to find attractors by running forwards and
creating a histogram of attractor types (section 31.7).

skeletons-s . . . (for binary systems, v=2, only) jump directly (the only way) to find
“skeletons” by running forwards and creating a histogram of skeleton
types. Skeletons are fuzzy attractors where a predefined proportion of
the network has stabilized (section 31.8).

31.2 Miscellaneous options — space-time patterns

Enter return at the first output parameter prompt (section 31.1) for the first category of
miscellaneous (hard to categorize) options, starting with section 31.2.1 below. All the output
parameter options in all categories could be accessed in turn if required.

31.2.1 Color cells by value or neighborhood

By default each cell is colored according to its value1 (chapter 7). Alternatively, cells may be
colored by neighborhood (or iso-group) coordinating with IFH colors (section 31.5). Color by value
or neighborhood can be toggled on-the-fly (key 3, section 32.9.5), but for color by neighborhood
from the start the following top-right prompt is presented,

start/misc: cellcolor: nhood-n value-(def):

Figures 31.1, 31.2 and 31.3 show the difference between the value and neighborhood display of
v2 space-time patterns, for 1d, 2d and 3d2 — these were all generated from a singleton seed, a
single central 1.

color by value (black/white) color by neighborhood

Figure 31.1: 1d space-time pattern, 40 time-steps from a singleton seed, for a CA n=50, v2k5, rule
8226dc23. Space is across, time is down the page. As the value-range is 2, color by value is simply
black and white.

1For v=2 the color of 1s starts black but changes between black and blue as various on-the-fly changes are
activated (section 32), and black-blue can be toggled (section 32.9.6).

2In 3d or 2d+time (section 32.10.2), cells with zero value are not shown — although the neighborhood rule-table
index may be positive. This allows a clearer view of the space-time structure which would otherwise be a solid mass.

448 CHAPTER 31. OUTPUT PARAMETERS FOR SPACE-TIME PATTERNS

color by value color by neighborhood

Figure 31.2: 2d space-time pattern. The 19th time-step from a singleton seed, for a CA n=38×38
hex lattice, v2k6 tcode (dec)114.

color by value color by neighborhood

Figure 31.3: 3d space-time pattern. The 90th time-step from a singleton seed, for a CA n=13×13×13,
v2k6 tcode (dec)114. Note that cells with zero value are not shown in either case to avoid a solid
mass.

31.2.2 State-space matrix and return map

The “state-space matrix” and “return map by value” in a 2d-phase plane are two methods for
representing states as dots on a scatter plot3. These plots provide a kind of signature of the
dynamics. To speed up the plots considerably, toggle the space-time pattern display off (on-the-fly
S, section 32.9.7). The following prompt is presented,

show state-space matrix-y, return map-D:

Enter y to show the state-space matrix, D to show the return map by value. Both options can
also be toggled on-the-fly (key y or D, sections 32.12.10 and 31.2.2.2).

31.2.2.1 State-space matrix

As in section 24.5 for attractor basins, the state-space matrix plots each state in the space-time
pattern on a 2d grid near the bottom of the screen, plotting decimal values representing the left
half of the bit/value string (x-axis) against the right half (y-axis). If n is odd, the extra bit/value

3Other types of state-space scatter-plots are the “entropy-density plot” (section 32.12.4), the “density return
map” (32.12.7, and the “Derrida plot” (chapter 22).

449

is included on the left, and the grid is a flat rectangle, otherwise the grid is square. Although
the state-space matrix will give an output for any network size and value-range, only a limited
number, X, of the most significant bits/values are included from each half of the string to find its
decimal value (an unsigned long int). X for different value-range v corresponds to table 7.2.

Figure 31.4: The state-space
matrix for v2k5 rcode 473ccf18,
n=62, plotting the left half
against the right half of each
state’s bit string — an attractor
was reached after about 1200
time-steps.
Left: an example of the space-
time pattern.
Right: the state-space matrix.

31.2.2.2 Return map by value

Figure 31.5: The return map for
v2k3 rcode 30, n=150, plotting the
state at each time-step, converted
into a decimal number 0-2, against
its successor, for about 50,000 time-
steps.
Left: an example of the space-time
pattern.
Right: the return map, note the
fractal structure characteristic of
chaotic dynamics.

The return map by value in a 2d-phase plane plots each state against its successor. For a binary
network, the state (bitstring) B0, B1, B2, B3 . . . Bn−1 is converted into a decimal number M(0-2)
as follows,

M = B0 +B1/2 +B2/4 +B3/8 + · · ·+Bn−1/2
n−1

For a mutli-value network, the bits are replaced by values, and each term is divided by v-1 for an
equivalent result. As the network is iterated, Mt at time-step t (x-axis) is plotted against Mt+1

at time-step t+1 (y-axis) in the bottom-center of the screen. From a classical dynamical systems
viewpoint, note the fractal structure of the resulting trajectories and attractors. An example is
shown in figure 31.5. The pixel pattern is very similar if not identical to the adjacency-matrix for
the ibaf-graph (section 20.19.3).

450 CHAPTER 31. OUTPUT PARAMETERS FOR SPACE-TIME PATTERNS

31.2.3 Frozen generation size

Once running, the space-time pattern presentation can be reset on-the-fly to highlight “frozen”
cells — that have not changed in the previous x time-steps, or that fall into preset “frequency
bins” (enter h, a 4-way toggle, section 32.11.1). The number of time-steps, or generations, making
up the frozen threshold may be reset from the initial default of 20. The new setting becomes the
default. The following prompt is presented,

enter new ’frozen’ generation size (now 20):

The frozen generation size (and frequency bins) can also be reset on-the-fly (key H,
section 32.11.2). The current sizes are shown in the “on-the-fly key index”.

31.2.4 Cell scale

The cell scale of space-time patterns is set automatically for different network sizes and dimensions,
but this can be altered. The following top-right prompt is presented,

cellscale (now 1 pixel): for a 1d network n=150

Enter the new cell scale in whole pixels. This can also be changed with on-the-fly keys e or c
to expand or contract (section 32.9.10).

31.2.5 Space-time patterns in other than the native dimension

Space-time pattern can be displayed in a dimension other than the “native” dimension. A 1d
network can be displayed in 2d or 3d, a 2d in 1d or 3d, and 3d in 1d or 2d. This can also be
changed on-the-fly (key T a 3-way toggle, in section 32.10.1). One of the following top-right prompt
is presented,

1d network, show STP in 1d-1 2d-2 3d-3 (def 1d): (for 1d)
2d network, show STP in 1d-1 2d-2 3d-3 (def 2d): (for 2d)
3d network, show STP in 1d-1 2d-2 3d-3 (def 3d): (for 3d)

If not the native dimension, the 2d and 3d axes i, j, (h) are set automatically by factorizing n.
A native 3d network will be displayed in 2d as a stack of horizontal 2d slices as in figure 32.18.
Note that if n is prime, i=n, and both j and h will equal 1. Then if 2d or 3d is selected, a single
row of cells will be displayed across the top of the screen in the 2d or 3d format.

31.2.6 Scrolling 1d space-time patterns

1d space-time patterns will scroll vertically by default on reaching the bottom of the screen.
Alternatively the patterns can be made to sweep instead of scroll – restart from the top on reaching
the bottom of the screen. For 1d space-time patterns presented in 1d, the following top-right
prompt is presented,

sweep space-time pattern-s, scroll-def:

Enter s to sweep. The two methods can also be toggled on-the-fly4 (enter #, section 32.13.3).
If the input-entropy or pattern density is set (section 31.5.1) these plots will also scroll or sweep.

42d presentations of space-time patterns can also be scrolled on-the-fly, either vertically (section 32.10.2), or
diagonally (section 32.13.3) — which can also include scrolling the network-graph (section 32.19 and figure 32.15).

451

31.2.7 Pause and step

DDLab offers various methods of scanning space-time patterns, some of which are also available
on-the-fly (section 32.13.4), and from the interrupt/pause prompt (section 32.13.4). From the
output parameters, options are offered to make single time-steps, to pause after a given number
of time-steps, or to always pause when 1d (or 2d isometric) space-time patterns reach the foot of
the screen. No pause is the default. The following top-right prompt is presented,

step-s, pause screen full-p, or enter time-step (no pause-def):

options . . . what they mean

step-s . . . to show each next iteration by pressing return. This can also be set on-the-
fly (key +, section 32.13.4).

screen full-p . . . to pause when the screen is full. This can also be set from the interrupt/pause
prompt (key N, section 32.13.4).

time-step . . . enter a number to specify a run of time-steps before a pause. At each pause,
enter x in the interrupt/pause prompt (section 32.16) for the next run of
time-steps, or return to stop pausing and continue as normal. The default
run equals the “frozen generation” size (default 20 time-steps, section 31.2.3).

31.2.8 Speed of iteration

To reduce the speed of space-time pattern iteration, the following top-right prompt is presented,

speed: max-(def), or slowmotion (try 300):

Enter return for full speed, or a number to slow down — the greater the slower.
Apart from this option, slow motion can also be selected on-the-fly (sections 32.2 and 32.13.5),

from the interupt prompt (section 32.16.8), and from the “Quit and further options” prompt
(section 32.17).

31.2.9 Glider rule order
if a list of complex rules is accessible

Collections of complex (or “glider”) rules — that produce emergent space-time structures including
interacting gliders are available with DDLab (section 3.6.1) for some combinations of rule type,
v, k, and lattice dimensions5. A rule from such a numbered collection can be loaded on-the-fly
(key g) while space-time patterns are running (section 32.6.1). If a collection is detected for the
current v, k, the following top-right prompt is presented for either a random or consecutive number
from the list,

v3k6 complex rules (select on-the-fly with “g”)
consecutive enter start index 1-54, rnd-def: (for example)

Enter return for a rule picked randomly from the list, or a mumber to start consecutive
selections, to be loaded later on-the-fly. Consecutive list numbers will cycle back to one on reach-
ing the maximum number. In the example above there are 55 rules in TFO-mode, for kcode

5Although the complex rules relate to specific dimensions, they often result in interesting dynamics in other
than the intended dimensions.

452 CHAPTER 31. OUTPUT PARAMETERS FOR SPACE-TIME PATTERNS

v3k6, intended for 2d. This option is also available from the interrupt/pause prompt (key G,
section 32.16.1).

31.2.10 Inverting the kcode in TFO-mode
for kcode in TFO-mode only

The kcode-table can be expressed according to two alternative conventions. In DDLab the highest
v-ary value of value-frequencies in the neighborhood is on the left (section 13.6.1) and the lowest on
the right. To allow kcode with the opposite convention to run as intended, the following top-right
prompt is presented,

invert kcode value order -i:

Enter i to run the kcode according to the inverted convention, or return for the standard
convention. The kcode itself is not changed, just the way it is accessed while running forward.
This is analogous to inverting the rcode in section 18.3 but in that case the rcode itself is changed.

31.3 Periodic or Null boundary conditions

Enter b at the first output parameter prompt (section 31.1) to skip directly to the “boundaries”
option for setting null boundary conditions (NBC) instead of the default periodic boundary con-
ditions (PBC). Space-time patterns with either PBC and NBC apply to 1d, 2d and 3d networks.
The difference between PBC and NBC is described in sections 2.7 and 26.1.

The following top-right prompt is presented,

boundaries: Periodic boundaries, set Null-N:

Enter N for null boundary conditions. Note that once running space-time patterns, PBC and
NBC can be toggle on-the-fly with key | (pipe or vertical bar).

31.4 Asynchronous and noisy updating

By default, updating the next time-step is deterministic and synchronous, but can be made noisy
and asynchronous.

Enter u at the first output parameter prompt (section 31.1) to skip directly to the “update”
category of options for probabilistic, sequential and partial order methods of updating, or arrive
there by viewing the output parameters in sequence. The following top-right prompt is presented,

updating: sequential-s, partial-order-p, probabilistic-def:

Enter return to move directly to the prompt for probabilistic updating (section 31.4.1) which
is also reached after sequential or partial-order prompts, or enter s or p for the prompts to set
various types of sequential or partial-order updating (sections 31.4.2 and 31.4.3). There can be
any combination of these settings, and they can also be toggled on-the-fly (section 32.4).

453

31.4.1 Probabilistic updating

default prob=100% output prob=99.8% output prob=98%

update prob=99.8% update prob=98% output+update=98%

Figure 31.6: Probabilistic updating: the “update” probability that a cell will be updated at all, and the
“output” probability that updating obeys the rule-table, otherwise update randomly (section 31.4.1).
For v2k5 CA rcode(hex)e9f6a815, n=150, 245 time-steps from the same initial state. Cells colors are
by neighborhood (section 31.2.1) and filtered (section 32.11) to emphasize gliders.

There are two types of probabilistic or noisy updating methods, where the probability, by default
100%, can be reset to a lower value,

update probability . . . where each cell updates with a given probability at each
time-step. This is very similar to partial order updating
(section 31.4.3). If this probability is set to P , there is a 1-P
chance that a cell is not updated but stays the same.

454 CHAPTER 31. OUTPUT PARAMETERS FOR SPACE-TIME PATTERNS

output probability . . . where each cell updates correctly with a given probability at
each time-step. If the probability is set to P , there is a 1-P
chance that a cell’s value will be randomly assigned instead of
respecting the dynamical rule, which introduces noise.

Enter return at the updating prompt (section 31.4) for the following top-right prompt, or
arrive there by viewing the output parameters in sequence,

update prob (def 95.00%) 0-100:
output prob update (def 95.00%) 0-100:

First set the required update probability, then the output probability. These are set as a
percentage, which may be a decimal number. If both probabilities are set to less than 100%, then
the update probability will be implemented first, and only cells that were updated will be subject
to the output probability. Figure 31.6 gives examples. Both probabilities can be toggled on-the-fly
(section 32.4). If a probability is set it will be active when space time-patterns start.

31.4.2 sequential updating — space-time patterns

In sequential updating, each cell is updated in turn in some arbitrary order — then the “state”
is the configuration when all n updates are complete. There are n! possible sequential updating
orders in a network of size n. As for attractor basins (section 29.9), DDLab provides simple default
orders, forward or backward along the network index, a random order (figure 31.7a), and a specific
order set by hand. A random order can also be set to change at each iteration. The order can be
saved and loaded from a .ord file. All possible orders can be listed (as in section 29.9.3) but this
applies for n ≤ 12 only.

These options are essentially the same as for setting sequential updating for attractor basins,
except that the limits on n in table 29.1 do not apply. Synchronous/sequential updating (whatever
order was set) can be toggled on-the-fly (section 32.4) as in figure 31.7. If sequential updating was
not selected, toggling will give the default left to right order.

Enter s at the updating prompt (section 31.4) for the following top-right sequential updating
prompt6,

sequential update: >-(def) <-b rnd-r rernd-R set-s all-S: (all-S if n ≤ 12)

These options are summarized below — the detailed descriptions are to be found in section 29.9.

options . . . what they mean
>-(def) . . . enter return for the default order from left to right in a 1d network, or in general

counting down the cell index n− 1 to 0 (section 10.2).
<-b . . . for the opposite order, from right to left, cell index 0 to n-1.

rnd-r . . . for a random order presented in a top-right window including saving and loading
the order (section 29.9.1).

rernd-R . . . for a new random order at each iteration.
set-s . . . to set a specific order by hand, including saving and loading the order

(section 29.9.2). n ≤ 630 normally fits into the “by hand” window.
all-S . . . (if n ≤ 12) to list all n! possible orders and select a specific order from the list

(section 29.9.3).

6The sequential updating prompt for space-time patterns is similar to the sequential updating prompt for
attractor basins (section 29.9).

455

(a) random sequential order (b) partial order 100-120 (c) sequential+partial order

Figure 31.7: Examples of updating with sequential, partial order, and both orders combined, for a 1d
CA v2k5 rcode(hex)bc82271c, n=150. In case (a) and (b) parallel updating was switched to the new
order on-the-fly, for about 180 time-steps, then back to parallel. In case (c) about 310 time-steps are
shown with combined sequential and partial order updating

31.4.3 partial order updating — space-time patterns

Partial order updating is when a subset of cells update in parallel, followed by the next subset —
then the “state” is the configuration after each updated subset. Lower and upper limits define an
“update subset” between 1 and network size n — the default is n. At each time-step, a random
size is set between these limits, and applied randomly to positions in the network — only these
are updated. This is very similar to “update probability” (section 31.4.1) but the partial order
method guarantees a fixed range of the update subset, including just one constant value if lower
and upper limits are the same (min=max).

Enter p in section 31.4 to set partial order updating. The following top-right prompt for the
minimum and maximum size limits of the update subset are presented in turn (for n=150),

partial order updating: update subset limits (def 1:150): min: 100 max:120

In this example (figure 31.7b), an update subset s of between 100 and 120 (s set randomly) will
be assigned at random to the network. Only these cells are updated to make the next state, and
the process is repeated at each iteration.

Synchronous/partial order updating can be toggled on-the-fly (section 32.4) — if partial or-
der updating was not defined, toggling gives the default update subset. Sequential updating
(section 31.4.2) can be active at the same time as partial order updating (figure 31.7c) — in this
case the partial order subset will be updated sequentially at each iteration to make the next state.

456 CHAPTER 31. OUTPUT PARAMETERS FOR SPACE-TIME PATTERNS

31.5 Input-Frequency Histogram (IFH)

game-of-Life

SapinR

Figure 31.8: The iso-rule IFH (the actual frequency but amplified) in a moving window of 100 time-
steps, for the glider-guns of the v2k9 game-of-Life[10] and SapinR[31, 56]. Pattern snapshots are colored
to match histogram colors. SapinR’s glider-gun emerges spontaneously, whereas Gosper’s game-of-Life
glider-gun is an elaborately constructed artifact.

While iterating space-time patterns (STP) DDLab is able to keep track of the frequency of rule-
table lookups in a moving window of time-steps (section 32.12) by means of a dynamic “input-
frequency histogram” (IFH), also know as “lookup-frequency”. As well as CA, the IFH applies
to RBN, and can be restricted to a selected single cell7, which would allows the IFH to work in
a k-mix. The IFH applies to any rule type (rcode, iso-rule, kcode, tcode) in 1d, 2d or 3d, and
is presented alongside the STP for a visual impression of how the IFH and STP interact, with
many options for the presentation of both, but also to calculate and plot the IFH input-entropy
(section 33.1, 31.5.1) and to cumulatively filter/unfilter (section 32.11) and mutate/unmutate IFH
bars with immediate effects on STP (section 32.5.4).

For complex rules the histogram reveals the key inputs (or lookups) of neighborhoods or iso-
groups that maintain gliders and glider-guns, as well as those that are rarely or never visited.
Figures 31.8, 31.9 show examples for iso-rules generated by the glider-guns shown alongside. The
IFH time-step window can be any size (section 32.12.8) but here it is set to 100 to allow the
histogram to stabilise. The input-frequency is the proportion of each iso-group (or neighborhood)
in this window, and is represented by bar height. The order of bars follows the iso-group index,
from all 1’s (left) to all 0’s (right), and a missing bar denotes iso-groups that have not been visited.
An analagous indexing order would apply to any other rule type.

There are two types IFH frequency plots: either the actual frequency but (possibly) amplified to
show up small bars of rarely visited iso-groups while the most visited are subject to a maximum cut-
off, or alternatively a log2 frequency plot to clearly show all bars but still distinguishes between
rare and frequent (section 32.12.2). There are also two main types of STP presentation: cells

7Restricting the IFH to a subset of cells will be a future update.

457

Variant

Precur

Sayab

left: the same Sayab
histogram as above but on
the alternative log2 plot

Figure 31.9: The iso-rule IFH (amplified actual, and log2 frequency) in a moving window of 100 time-
steps, for the glider-guns of the v2k9 rules: Variant, Precursor, and Sayab all from figure 16.14(b).
Pattern snapshots are colored to match histogram colors. The Sayab glider-gun emerges spontaneously,
the others are elaborately constructed artifacts.

colored according to their actual values, or colored8 according to the histogram bar responsable
for a given cell (section 32.9.5) as in these figures. These alternatives are toggled on-th-fly.

Figures 31.8 and 31.9 show histograms for some significant binary v2k9 glider-gun iso-rules[31,
56] on a 3×3 Moore neighborhood with 102 iso-groups. The Sayab histogram is shown both
according to actual frequency, and according to log2 frequency which is also employed in further
examples (figures 16.23, 32.30). As noted, some glider-guns emerge spontainiously while other are
elaborately constructed artifacts.

DDLab applies the IFH for a number of supplementary functions where a bar’s index is the
rule’s neighborhood or iso-rule index. Filtering/unfiltering (section 32.11.5) permits cross refer-

8Matching bar/cell colors cycle through 14 contrasting colors, which can be shuffled (sections .

458 CHAPTER 31. OUTPUT PARAMETERS FOR SPACE-TIME PATTERNS

encing a particular bar index with its occurrence in the space-time pattern, as well as revealing
structures within a repetitive background. The consequences of mutations (section 32.5.4) can be
monitored by flipping (and restoring) the output of a random or selected bar to another value.
Bars are marked/unmarked according to their filtered/mutated status. The IFH’s Shannon en-
tropy (section 33.1) is plotted alongside, its variability can be applied to automatically categorise
rule-space between order, complexity and chaos (chapter 33).

31.5.1 input-entropy and pattern density

To summarise section 31.5 and extend the discussion to pattern density, measures on space-time
patterns, taken over a window of time-steps and shown graphically, provide some useful insights
into dynamics and rule-space [40, 47, 44]. The measures are as follows,

input-frequency . . . the frequency of rule-table lookups or neighborhood size blocks, or iso-
groups for iso-rules — provide the basis for the input-frequency histogram
(IFH), filtering space-time patterns, and entropy measures. For rcode,
block size can be increased by transforming to an equivalent rcode with
a larger neighborhood (section 18.7.1).

input-entropy . . . the Shannon entropy (section 33.1) of the IFH can be plotted, allows the
entropy/density scatter plot 32.12.6, and provides the basis for classifying
rule-space (chapter 33).

pattern density . . . the fractions of different values can be plotted by toggling en-
tropy/density (section 32.12.4). and allows the density return map
scatter plot (section 32.12.7).

The measures apply either to the whole network or to one selected cell. Although the IFH
is intended for a homogeneous-rule network, it works for a rulemix provided k is homogeneous.
For a k-mix a single position in the network must be selected for both entropy and density. Note
that the entropy and density both become active if either is selected, but interactive plots of
the selected measure will appear first, alongside space-time patterns — thereafter the two can be
toggled on-the-fly (section 32.12.4).

31.5.2 entropy/density prompt

Enter e in the first output parameter prompt (section 31.1) to skip directly to the “entropy”
category of options, or arrive there by viewing the output parameters in sequence. The following
top-right prompt is presented,

for native 1d networks with homogeneous-k
entropy/density: none-n, pattern-density-p
input-frequency/entropy-(def) iso-i: (iso-i if iso-rule active)

for native 2d or 3d networks, or mixed-k
entropy/density: none-(def) pattern-density-p
input-frequency/entropy-e, iso-i: (iso-i if iso-rule active)

459

Pattern density plots of each value, along-
side space-time patterns in value colors

Input-Entropy plot and input-frequency histogram (and plots),
alongside space-time patterns in neighborhood colors.

Figure 31.10: The pattern density and input-entropy plots, for the same v3k3 1d CA, rcode
(hex)2698a14246a466, n=150, 300 time-steps from the same random initial state. Space is across
and time down as in figure 2.4. Measures were averaged over a moving window of 10 time-steps.
Left: the pattern density alongside space-time patterns in value colors — the density of each value is
plotted on the x-axis which has 4 divisions. The density plots correspond to value colors except zero
which is colored light green.
Right: the input-entropy (in red) alongside space-time patterns shown in neighborhood colors — the
entropy is on the x-axis, with zero entropy on the left and maximum entropy on the right. The input-
frequency histogram with 27 bars is on the extreme right showing the frequency of each neighborhood,
with the zero neighborhood at the bottom. In this example the input-frequencies are also plotted on
the input-entropy graph, toggled on-the-fly (section 32.12.5).

options . . . what they mean

none-n . . . (for 1d) enter n to not show entropy or density plots.

none-(def) . . . (for 2d or 3d) enter return to not show entropy or density plots.

...entropy-(def) . . . (for 1d) enter return to initialy show the plot/IFH based on the current
rule-table (not the iso-rule).

...entropy-e . . . (for 2d and 3d) enter e to initialy show the entropy plot/IFH based on
the current rule-table (not the iso-rule).

...density-d . . . enter d to initialy show the density plot. Toggling to entropy will be based
on the current rule-table (not the iso-rule).

iso-i . . . (if an iso-rule was activated in one of the following sections):

16.2 . . . rnd-iso-i from methods for setting a rule.
16.3 . . . >iso-i: from setting the rule at random.

16.4.1.1 . . . >iso-I/R/H/* from the bits/values reminder window.

enter iso-i to select the iso-rule as the basis for the input frequency
histogram (IFH) and classifying rule-space (section 33) instead of rcode.
.

460 CHAPTER 31. OUTPUT PARAMETERS FOR SPACE-TIME PATTERNS

Input-frequency and pattern-density (figure 31.10) can be toggled on-the-fly with keyhit s
(section 32.12.4), and other on-the-fly options relating to the entropy/density and the IFH are
summarised in section 31.5.5.

31.5.3 Single cell input-entropy and pattern density

If either input-entropy or pattern density was set, for homogeneous-k the next prompt allows a
single cell to be selected,

single-s all-(def): (for homogeneous-k)

If a single cell was selected above, or for a mixed-k network, the next prompt selects the position
of the cell in the network,

for a 1d network n=150
single: enter index (max 149 def 0):

for a 2d network 40× 0
single 2d: 2d index (max 39,39, now 0,0)
enter i: enter j:

for a 3d network 22×22×22
single 3d: 3d index (max 21,21,21, now 0,0,0)
enter i: enter j: enter h:

This can be amended on-the-fly (section 31.5.5).

31.5.4 Generation size - moving window of time-steps

The next prompt sets the analysis generation size, the size of the moving window of trailing
time-steps over which the measures are averaged. For input-entropy these are past time-steps,
for pattern-density the present time-step is also included. The initial default is 10 for the whole
network, and 500 for a single cell — the new setting becomes the default,

enter new ’analysis’ generation size (now 10): (for the whole network)

This can be amended on-the-fly (section 31.5.5).

31.5.5 On-the-fly changes to input-entropy and pattern density

Once space-time patterns are running, and either the input-entropy histogram (IDH) or pattern
density are active, many on-the-fly options (section 32.3) apply to make changes including the
following,

key . . . on-the-fly option

s . . . toggle between the input-entropy plot and pattern density.

G . . . change the current analysis generation size (section 32.12.8). which is displayed in
the on-the-fly key index (sections 32.1 and 32.3), for example, G..a-gens=10.
If a single cell was set above, its position is also shown and can be changed, for
example,

461

G..a-gens=10 pos=9 . . . for 1d
G..a-gens=10 pos=5,6 . . . for 2d
G..a-gens=10 pos=8,9,10 . . . for 3d

if input-entropy is displayed

0 . . . toggle IFH bars between normal width and 1 pixel — useful for large rule-tables
(section 32.12.1).

% . . . show the IFH with a time dimension — if the number of bars ≤ 64 (figure 32.31
and section 32.12.1).

)/(. . . amplify the IFH bars, restore, or show as log2 frequency (section 32.12.2).

/& . . . change the bar width, thus the scale of the IFH, or reduce number of bars.
(section 32.12.3).

j . . . 3-way toggle between input-entropy, input-frequencies as a set of graphs, and both
together (section 32.12.5).

u . . . tog entropy-density scatter plot, where rules have characteristic signatures
(figure 32.36 and section 32.12.6).

E . . . (while the entropy-density scatter plot is active) a plot of mean entropy against
entropy variability9 for a sample of rules, giving a 3d histogram that separates out
order, complexity and chaos (chapter 33).

31.6 Damage, the difference between two networks
1d and 2d networks only — not 3d

Its possible to graphically represent the difference, or the spread of “damage”, between the space-
time patterns of two networks. Typically the networks are identical except for a 1 bit/value
difference in their initial state, and the damage is shown as a “purple stain” on a third space-time
pattern, spreading from the different bit/value. This option applies to 1d and 2d networks only.

Damaged cells can be defined in two ways. Once damaged, keep the damage irrespective of
future dynamics, or simply the instantaneous difference at each time-step — this can be toggled
on-the-fly (key “=” section 32.12.11).

Methods are also provided for automatically gathering statistical data on the sizes of damage
spread from many random initial states that differ by one bit/value, shown as a histogram. This is
one method of characterizing order and chaos in network dynamics, especially in random Boolean
networks applied as idealized models of genetic regulatory networks [20, 43].

Enter m at the first output parameter prompt (section 31.1) to skip directly to the “damage”
category of options, or arrive there by viewing the output parameters in sequence. The following
top-right prompt is presented,

damage: show difference between 2 networks
keep damage-f, don’t keep-F, histograms: actual-a bins-b:

9Entropy variability is either a min-max measure — the maximum entropy up-slope found, or standard deviation.

462 CHAPTER 31. OUTPUT PARAMETERS FOR SPACE-TIME PATTERNS

Figure 31.11: The difference in the dynamics between two 1d CA. Left: the space-time patterns of
two identical CA (color by value), except that the random initial state differs by one bit. Right: the
instantaneous difference between the two at each time-step shown as a third space-time pattern. v2k3
rcode (dec)110, n=150+150.

Enter a or b to shown a histogram of damage spread for a sample of initial states generated
automatically (section 31.6.2) — a gives the actual damage sizes, b gives damage falling into a
number of preset bins. Keeping the damage applies — once damaged, a cell stays damaged.

Otherwise, for a manual version of damage spread (without a sample or histogram) enter f to
keep the damage, or F for the instantaneous difference at each time-step.

31.6.1 Duplicate the network and seed

A subsequent option, normally selected together with the “damage” option (section 31.6) above,
duplicates both the network and the initial state. This actually doubles the size of the original
network, making a network containing two identical sub-networks, each with the same initial state.
The following top-right prompt is presented,

duplicate network and seed-y:

Enter y to duplicate the network. Though normally used together, the ‘damage” option
(section 31.6) and duplicating the network can be used independently10. If “damage” was selected
and the network is not duplicated, the original network and its initial state will simply be notion-
ally divided in two, and the “damage” displayed will be between the two halves of the network.
However, the network can only be divided if n for 1d, or i for 2d, is even, otherwise the following
top-right message is displayed,

can’t divide odd width network, cont-ret:

10This can be repeated to re-double the network making 4, 8, etc independent networks, but the total cell count
cannot exceed nLim=65025 (section 8.3)

463

Once the network is duplicated, prompts are presented in turn to look at and possibly modify
the duplicated wiring (section 17.1), and the duplicated seed ((section 21.1). Figures 31.6.1 and
21.1 give examples. When the network is run with these options set, a third space-time pattern
shows the difference between the two sub-networks as in figures 31.11 and 31.6.1.

Note that if f or F, for a manual version of damage spread, was selected in section 31.6,
and the network was duplicated, then there will be no difference in the initial states, thus
no damage. To introduce a difference, a random bit/value flip can be made on-the-fly (key l,
section 32.8.2). A new random initial state (the same for each sub-network) can be set on-the-fly
(key 4, section 32.8.1).

39

19

0

0

2d cell=28,9=388 wiring=27,9 29,10 outwires=2 links:bi=76 self=82=5.1%

Figure 31.12: A duplicated 2d RBN,
40×20, v2k2, showing just links,
made up of two identical 20×20 sub-
networks. The original 20×20 network
was set with random wiring confined to
a 5 cell local zone (section 12.5.2) and
with periodic boundaries suppressed
(section 12.5.5).
The display shown here is achieved by first
defining a block equal to the whole network
(enter a, section 17.7.5), then applying a
5-way toggle to show links only (enter n,
section 17.7.3 and figure 17.11(5)).

Figure 31.13: A duplicated 2d
seed, 40×20 consisting of two
identical 20×20 sub-seeds

31.6.2 The Damage Histogram
1d and 2d networks only — not 3d

Enter a for actual, or b for bins, in section 31.6, to generate a histogram of damage spread
for a sample of initial states generated automatically. The prompt to duplicate the network
(section 31.6.1) is presented. Do not duplicate if this was done previously, otherwise the duplicated
network will be reduplicated, making 4 copies of the original.

Top-right prompts are presented in sequence as follows to set the histogram parameters.
The second line differs between actual or bins. The defaults may vary and some can also be reset
later during a histogram pause (section 31.6.4). This example is for two 20×20 sub-networks.

464 CHAPTER 31. OUTPUT PARAMETERS FOR SPACE-TIME PATTERNS

Figure 31.14: An example of
2d “damage”. The difference in
dynamics between two 2d RBN.
Above: the space-time patterns of
two identical 20×20 RBN (color
by value), except that one bit was
flipped in the initial state. The
RBN has k=2, with con-nections
as in figure 31.6.1. Below: the
“damage spread” between the
two, which has stabilized after a
number of time-steps, shown as a
third space-time pattern. In this
example keep-f was selected in
section 31.6, so that once a cell is
“damaged” - it stays “damaged”.

Damage Spread Histogram
cut-off size (min 20, def 400): (for actual damage, a entered in section 31.6)

delay damage, time-steps before damage start (def 0):
define damage, time-steps same damage (def 5):

(for damage bins, the second line is as follows, b entered in section 31.6)

no of bins (min 10, def 100):

These options are described below,

options . . . what they mean

cut-off size . . . (for actual damage only) set the cut-off or accept the default, where any
damage above the cut-off is lumped together in one excess bin.

no of bins . . . (for damage bins only) set the number of bins or accept the default.

delay damage . . . set the number of time-steps before the two sub-networks are compared and
the measure of the damage starts — the default is 0.

define damage . . . to define at what point the damage is deemed to have stopped spreading.
By default, if the damage has not changed for 5 consecutive time-steps, it is
considered to be complete - to have stabilized, but this number can be reset.

31.6.3 Drawing the damage histogram

The histogram is drawn in a window in the lower part of the screen, as in figure 31.15 and 31.16.
At each update, a new unbiased random initial state is assigned to the sub-networks, differing by
one bit/value at a random position. When the damage stops spreading (see “define damage” in
section 31.6.2), the histogram is updated — plotting the damage size (x axis) against the frequency
of each size (y axis). The y axis is rescaled automatically to allow the highest histogram bar to fit.
A top-right data window keeps track of the current damage, for example damage=11/400=2.8%.
To considerably speed up computation for generating these histograms, the display of space-time
pattern graphics can be toggled off on-the-fly (key S, section 32.9).

465

Figure 31.15: The DDLab screen, showing the automatic process for gathering statistics on (actual)
damage. This example is for two 20×20 RBN, k=5, with canalyzing inputs set to 50%, (chapter 15).
At each pass, a new random initial state is assigned to the sub-networks, differing by one bit at a
random position. When the damage stops spreading, the histogram of the damage size (x axis) against
the frequency of damage size (y axis), is updated. The process was paused with the = key.

Information and reminders shown within the histogram window, are described below,

info/reminders . . . what they mean (values shown are examples)
start=0 . . . number of time-steps before the measure of damage begins.
same=5 . . . number of time-steps defining damage as having stabilized.

pause/reset-= . . . enter = (the equals sign) to pause and reset the histogram parameters.
sample no=15671 . . . the size of the sample so far.

net=20×20 . . . network size.
k=5 . . . neighborhood size k, or “k=3 to 6” for mixed-k.

local wiring . . . local wiring, as in CA.
rand-wiring . . . random wiring, as in RBN.

zone diam=9 . . . the size of the local zone confining random wiring (section 12.5.2).
C-in=50.00% . . . the percentage of canalyzing inputs.

Enter = (the equals sign) to pause the histogram and pause options (section 31.6.4). Alterna-

466 CHAPTER 31. OUTPUT PARAMETERS FOR SPACE-TIME PATTERNS

Figure 31.16: The damage histogram showing actual damage, for the same network as in figure 31.15.
Top: with the damage cut-off set at 40, the frequency of damage of 41 and above is represented by
the blue bar on the extreme right. Bottom: the damage histogram as a log-log plot.

tively, pause by entering q for the general pause options for space-time patterns (section 32.14).
Most on-the-fly options (chapter 32) can be activated during the histogram routine. To speed the
damage histogram, toggle the space-time graphics off with the on-the-fly option S (section 32.9.7),
which also helps to avoid a graphics clash in 1d.

31.6.4 Pausing the damage histogram

While the histogram is being drawn (section 31.6.3), enter = (the equals sign) to pause, the
following top-right prompt is presented to amend parameters and presentation,

stp-q undo-pause-u save/load-s/l next-ret, damage: delay-d same-m
redraw-r xcut-off-X logx-x logy-y log-both-b: (xcut-off-x for actual damage only)

These options are explained below,

options . . . what they mean

stp-q . . . for the space-time pause prompt with many options (section 32.14. Enter q
again to backtrack, or return to the histogram pause prompt.

undo pause-u . . . to continue the histogram without pause.

467

Figure 31.17: The damage histogram with the damage frequency allocated to 20 equal size bins, shown
with the y axis in log form. This is a similar network as in figure 31.15, but with canalyzing inputs set
to 35%, resulting in less ordered dynamics and a bimodal distribution of damage frequency.

save/load-l/s . . . enter s to save the histogram data as a .his file (section 35.3) — the file
holds the current frequencies (0 to max x-axis) in successive pairs of bytes.
Enter l to load and print the data in the terminal (not for DOS).

next-ret . . . enter return to continue the histogram, but pausing after each sample.

delay-d . . . to alter the damage delay (section 31.6.2).

same-m . . . to redefine damage, the number of time-steps defining damage as having
stabilized (section 31.6.2).

redraw-r . . . to redraw the histogram, which may have been overwritten by other graphics.

xcut-off-X . . . (for actual damage only) to re-scale the x-axis, the following top-right prompt
is presented,

revise x-cut-off, now 400 (min 20, def 400): (for example)

enter the new cut-off. Any damage above the cut-off is lumped together in
one excess bin.

logx-x, logx-y . . . to show the x-axis or y-axis separately in log form, with the following
top-right reminder,

x-axis log2, cont-ret: or y axis log2, cont-ret:

log-both-b . . . to show both the x and y-axis in log form, a log-log plot (as in
figure 31.16 Bottom), with the following top-right reminder,

xy axes log2, cont-ret:

468 CHAPTER 31. OUTPUT PARAMETERS FOR SPACE-TIME PATTERNS

31.7 Attractor histogram

A basin of attraction field cannot be computed for networks larger than the limits in section 7.3.
Even within these limits, larger sizes may not be practical because of probable time/memory
constraints. However, statistical data on the range of attractors and their relative sizes for networks
well beyond the limits in table 7.3 can be obtained by automatically running a network forwards
from many random initial states, identifying different attractors and creating a histogram of the
frequency of each type. The largest basins will be found the most frequently — small basins may
be missed. Attractors are identified by comparing and recording attractor states, and the data
gathered includes the period and the average transient length — the number of time-steps to reach

Figure 31.18: A snapshot of the DDLab screen, showing the attractor histogram for density classifi-
cation, applying the Raja Das rule (as in figure 24.8) to a 1d CA v2k7, n=200. Top left: a sample
space-time pattern (scale enlarged) leading to the all-0s point attractor (repeated in green). Top Right:
a window showing data on the three attractors found, giving the fraction densities (d < 0.5, d = 0.5,
d > 0.5) arriving at the all 0s and all 1s point attractors — the data is described in section 31.7.5.3.
Bottom center: the attractor histogram for a sample of 2615. As n is even, a third (infrequent) 2-state
attractor, consisting of alternating values 0101. . . and 1010. . . , is able to exist.

469

the attractor. A new feature analyses the transient data to record the set of unique transients
states to each attractor, without duplication (figure 31.21), giving a closer approximation to the
actual basin of attraction field than previous attractor histogram data.

The attractor histogram is suitable for ordered networks — that have short transients and
attractor cycles where the attractor can actually be reached and disclosed in a reasonable time,
so is not practical if the dynamics are too chaotic — in that case the “skeleton” histogram is
potentially an alternative method (section 31.8).

The method has been applied in RBN models of genetic regulatory networks [20, 42] with a
critical degree of canalyzing functions (chapter 15) as disclosed by the Derrida plot (chapter 22).
For CA, the method is also useful for ordered and complex (glider) rules11 with very high in-degree
— which is a limitation on reverse algorithm methods for generating attractor basins (section 2.19).

Enter a at the first output parameter prompt (section 31.1) to skip directly to the “attractor”
category of options (the only way to arrive there) to generate the attractor histogram. The following
top-right reminder prompt is presented,
.

attractors: histogram, include trans data-t, cancel-q cont-ret:

Enter return — for v ≥3 the histogram will commence, for v=2 there is a further option
(section 31.7.1, below).

31.7.1 Density classification problem — attractor histogram
for binary systems (v=2) only

For binary systems (v=2) only, there is a further top-right prompt for the inclusion of data on
initial state densities that fall into the all 0s or all 1s point attractors,

include seed density data for all=0/1s point attractors-a:

Enter a to include this data, which is intended mainly to check the fitness of rules that
have been evolved to solve the “density classification problem”, a favourite exercise in emergent
computation [12, 22], where initial states with densities d < 0.5 are evolved to fall into the all 0s
point attractor, and d > 0.5 to the all 1s point attractor (d = 0.5 for even n are also included in
DDLab). An alternative method for density classification based on attractor basins is described
in section 24.7.

31.7.2 Drawing the attractor histogram

The histogram is drawn in a lower-center window. Space-time patterns (in 1d or 2d) appear in the
top-left as usual, from each new initial state. The histogram is continuously updated (in black),
showing the attractor type (x axis) against the frequency of arriving at that type (y axis), which
indicates the relative size of the basin of attraction. The axes rescale automatically (and columns
turn green) on reaching the current scale limits.

At the same time, a top-right data window gives current data: the current total of attractors
found, the current type, its period and average transient length, for example,

11For example, ordered rules such as majority rules (section 16.7) or Altenberg rules (section 16.9), complex
(glider) rules (section 3.6.1), or the game-of-Life (sections 16.10.7 and 14.2.2).

470 CHAPTER 31. OUTPUT PARAMETERS FOR SPACE-TIME PATTERNS

types=44 this=8 attperiod=12 avtrans=14.0

Most space-time pattern on-the-fly options work during the histogram routine. To speed the
attractor histogram, toggle space-time graphics off with on-the-fly option S (section 32.9.7.

31.7.2.1 Histogram window information

Information is also displayed at the top of the histogram window (figure 31.20), including some
reminders about the network, decoded as follows (values shown are examples),

info . . . decode
pause/reset-= . . . reminder to enter = (the equals sign) to pause, reset, sort, show data, and

other options (section 31.7.3).
sample no=3914 . . . the size of the sample so far.

net=20×20 . . . network size for 2d, or net=200 for 1d.
k=5 . . . neighborhood size, k, or k=3-5 for a mixed-k.

local wiring . . . for local wiring, as in CA.
rand-wiring . . . for random wiring, as in RBN.

zone diam=20 . . . the size of the relative local zone within which random wiring is confined,
see section 12.5.2.

C-in=50.00% . . . the percentage of canalyzing inputs (section 15).

31.7.3 Pausing the attractor histogram

The space-time pattern on-the-fly pause (key q, section 32.14) applies while drawing the histogram.
However, there is a special pause for the histogram itself, enter = (the equals sign) for the

following top-right prompt which provides a range of histogram options,

attractors histogram: hist-h stp-q, data:show-d print-p save-S
redraw-r sort-s data-d undo-pause-u next-ret jump-graph-j:

These options are summarized below, some described further in the sections indicated12,

options . . . what they mean

hist-h . . . further histogram options: to save/load, rescale, and log-plot (section 31.7.4).

stp-q . . . for the space-time pause prompt with many options (section 32.14. Enter
q again to backtrack, or return to the histogram pause prompt.

data: . . . attractor data — for 1d networks print/save includes listing attractor states.

show-d . . . show attractor types in the DDLab screen (section 31.7.5).
print-p . . . print the attractor states in the terminal (section 31.7.6).
save-S . . . save the attractor states as a .dat file (section 31.7.6).

redraw-r . . . to redraw the histogram, which may have been overwritten by other graphics.

sort-s . . . sort the histogram by frequency and other measures (section 31.7.7).

undo-pause-u . . . to continue the histogram without pausing.

next-ret . . . enter return to continue the histogram, but pausing after each sample.

jump-graph-j . . . to construct a jump-graph from the histogram data (section 31.7.8).
12These option are the same or similar to the skeletons histogram options in section 31.8.3.

471

unsorted histogram, for a sample of 3194

sorted histogram, according to frequency, for a sample of 30001, with 111 attractors

The sorted histogram, shown as a log-log plot

Figure 31.19: The attractor frequency histogram, for a 20×20 RBN, v2k5, with unbiased random
wiring, and canalyzing inputs set to 50% (chapter 15). Each sample starts with a new unbiased
random initial state, and the attractor type into which the transient falls is identified, either as an
existing type, or a new type which is added to the list of existing types. The histogram columns are
continuously updated, in black, showing the attractor type (x-axis) against the frequency of arriving
at that type (y-axis). Given a large enough sample, bar height indicates the relative size of the basin
of attraction. The axes rescale automatically on reaching the current scale limits. Columns turn green
when rescaled, redrawn, or sorted.

472 CHAPTER 31. OUTPUT PARAMETERS FOR SPACE-TIME PATTERNS

first sorted by frequency (figure 31.19), center) then by period

first sorted by frequency (figure 31.19), center) then by average transient

Figure 31.20: The attractor histogram for a sample of 30001 and 111 attractors, sorted by attractor
period and average transient length, with log y-axis. (section 31.7.4).

31.7.4 Rescaling the attractor histogram

If h for further histogram options is entered in section 31.8.3, or after sorting (enter s), the following
top right prompts are presented,

save/load-l/s undo-pause-u cont-ret
x-axis-x logx-X logy-y log-both-b:

These options are explained below,

options . . . what they mean

save/load-l/s . . . enter s to save the histogram data as a .his file (section 35.3). Enter l
to load the data and see it in the terminal (not for DOS). The file holds
frequencies (0-max) in successive pairs of bytes.

undo-pause-u . . . continue the histogram without pause.

cont-ret . . . return to the histogram pause prompt (section 31.7.3).

x-axis-X . . . rescale the x-axis — zoom into the left of the histogram. The following
top-right prompt is presented for example),

revise x-cut-off, now 63 (min 20, def 63):

473

logx-x, logx-y . . . to show the x-axis or y-axis separately in log form, with the following
top-right reminder,

x-axis log2, cont-ret: or y axis log2, cont-ret:

log-both-b . . . show both the x and y-axis in log form (as in figure 31.19, bottom), with
the following top-right reminder,

xy axis log2, cont-ret:

31.7.5 Attractor histogram data

Enter d, p or s in section 31.7.3 to show the data in the DDLab screen (section 31.7.5.1), or
print to the terminal (DOS only) or save to file 31.7.6. The data gives a summary for each
attractor according to the histogram order, so sorting the histogram beforehand is advisable. For
1d networks, print/save data also includes a list of the states in each attractor.

31.7.5.1 Attractor histogram screen data

Enter d in section 31.7.3 to show a list of attractor types, as many as will fit, displayed in a window
on the right of the screen, followed by further options. The list order depends on whether the list
was sorted in section 31.7.7, if not, the list is ranked in the order that attractor types were found.

The following example is for the sorted histogram in figure 31.19,

attractor types so far=111 sample=30001
type no freq period trans
1 13041 0.4347 4 54.1
2 3610 0.1203 8 77.0
3 3095 0.1032 6 40.0
. . . (the list continues)
39 22 0.0007 12 33.3
40 21 0.0007 12 24.8
41 20 0.0007 16 27.4
more-ret quit-q jump-j:
(or, if the end of the list fits)
cont-ret jump-j:

Enter q to quit the data, j to jump to a new type index — with the prompt index (111-1):, or return
to see more of a long list or to quit the data if the end of the list is visible.

31.7.5.2 Attractor histogram data decode

The column headings in section 31.7.5.1 and the labels in section 31.7.6 denote the following,

type . . . the attractor type index.
no . . . the number of this attractor type found.

freq . . . the frequency of this type.
period . . . the attractor period.
trans . . . the average transient (or run-in) length.

474 CHAPTER 31. OUTPUT PARAMETERS FOR SPACE-TIME PATTERNS

31.7.5.3 Histogram data for density rules
for binary systems (v=2) only

Enter a in section 31.7.1 to include extra data on initial state densities that fall into the all 0s or all 1s
point attractors,

An additional column, headed den-/50%/+, shows the percentage of initial states with densities
(d < 0.5, d = 0.5, d > 0.5) arriving at the all 0s and all 1s point attractors, and e= the % error in density
classification. For example, the data in figure 31.18 is as follows,

attractor types so far=3 sample=2615
type no freq period den-/50%/+ trans
1 1551 0.5931 1(all 0s) 1091/102/358 e=23% 108.4
2 1054 0.4031 1(all 1s) 130/40/884 e=12% 118.4
3 10 0.0038 2 97.2
cont-ret jump-j:

31.7.6 Print/Save attractor state data

Enter p or S in section 31.7.3 to print to the terminal, or to save, attractor state data. If saving (to a
.dat ASCII file) further prompts will appear to set the file name (section 35.3). For 1d networks, the data
includes a list of states for each attractor, and if transient data was set in 31.7 (include trans data-t) a
list of transient states, without duplication, is also included for each attractor (figure 31.21).

The example below is some of the data (without transient data) for the sorted histogram in figure 31.22
showing heading information, a summary for each attractor, and the attractor list, whereas figure 31.21
includes the transient data.

For 2d network the list of attractor states is omitted – the data consists of just of the heading in-
formation and a summary for each attractor. For example, below is the start of the data for the sorted
histogram in figure 31.19,

2d net=20x20 v=2 k=5 rand-wiring att-types=111 sample=30001

att-type 1: freq=13041=0.4347 period=4 trans=54.1
att-type 2: freq=3610=0.1203 period=8 trans=77.0
att-type 3: freq=3095=0.1032 period=6 trans=40.0
...

(the list of attractor types continues)

...
att-type 109: freq=1=0.0000 period=6 trans=41.0
att-type 110: freq=1=0.0000 period=16 trans=16.0
att-type 111: freq=1=0.0000 period=12 trans=27.0
To decode the labels in each attractor summary refer to section 31.7.5.2.

31.7.7 Sorting the attractor histogram

Enter s in section 31.7.3 to sort the histogram. The following top-right prompt is presented,

sort by: attperiod-a avtrans-t frequency-def:

Initially the attractor types are ranked in the order they were found, as in figure 31.19 (top). Enter
return to sort by frequency. An example is shown in figure 31.19 (center). This corresponds to sorting
according to the size of the basin of attraction, as the probability of falling into a basin depends on its
size.

Enter a to sort by attractor period, t to sort by average transient (run-in) length. The result of the
new sorting depends on how the list is currently sorted. Having first sorted by frequency, the examples in
figure 31.20 show the data sorted first by the attractor period, then by the average transient.

475

att-type 1: freq=1003/2376=0.4221 period=9 av-trans=1.1 k=3
110111
011100
110100
111101
000111
001101
011111
110001
010011
transients to att-type 1
011110
110010
100111
101100
001011
010111
101000
111001
110000
011101
000100
001100
000001
000011
110101
100010
010000
001010
transients att-type 1: 18 so far, basin=27

att-type 2: freq=993/2376=0.4179 period=9 av-trans=1.1 k=3
111000
101001
111011
001110
011010
111110
100011
100110
101111
transients to att-type 2
001000
011000
101011
001111
011001
101110
110011
010110
000101
000110
100000
100001
100101
111010
111100
010001
010100
000010
transients att-type 2: 18 so far, basin=27

att-type 3: freq=380/2376=0.1599 period=1 av-trans=2.0 k=3
000000
transients to att-type 3
110110
111111
101010
010101
100100
101101
011011
001001
010010
transients att-type 3: 9 so far, basin=10

Figure 31.21: If transient data was set in 31.7 (include trans data–t) it will be included with attractor
data in section 31.7.6. This example is for a very small CA v2k3 (elementary rule) n=6 rcode 110.
The basins of attraction with nodes as bits are inset on the right for comparison (see also figure 24.2).
In this case the sample has revealed all attractor states, and all transient states — without duplication.
The same type of data can be listed for larger networks, or for RBN and DDN.

476 CHAPTER 31. OUTPUT PARAMETERS FOR SPACE-TIME PATTERNS

31.7.8 Attractor histogram jump-graph
see also section 20.7

The jump-graph can be applied to the attractor histogram — refered to as the “h-jump-graph”
(section 20.7.2), as opposed to the “f-jump-graph”which is computed directly from the basin of attraction
field (section 20.7.1).

Enter jump-graph-j in section 31.7.3 to show the h-jump-graph. Although the example in figure 31.22
took just a few seconds to compute, a h-jump-graph with many long period attractors would take longer.
While the h-jump-graph is being computed the following top-right message is shown, including an inset
box on the right giving the percentage complete (enter q to abandon),

computing jump-graph, 63 basins, quit-q, or wait... 35%

Once the h-jump-graph is drawn, it can be rearranged, unravelled, rescaled, including dragging vertices
and defined components to new positions with elastic links – all jump-graph functions in chapter 20 apply
except redrawing basins at jump-graph nodes (section 20.14).

18
1716

15
14

13
12

11
10

9

8

7

6

5

4
3

2

1

Figure 31.22: The attractor histogram jump-graph, for a 1d CA, v2k3 rcode(dec)54, n=15. Top left:
a sample space-time pattern showing the attractor repeated. Top Right: The attractor histogram with
log y-axis, all 63 attractors were found after a sample of 15579. Above: the h-jump-graph (section 20.7)
— nodes scaled by basin volume and links jump probability, and the graph rearranged (section 20.10)
starting from a circle layout.

477

1d net=15 v=2 k=3 local wiring att-types=63 sample=15579

att-type 1: freq=3646=0.2340 period=330 trans=6.6
010001111110000
111010000001000
000111000011101
101000100100011
011101111110100
100010000001110
... continues

(the list of attractor types and their states continues)

att-type 63: freq=2=0.0001 period=4 trans=1.0
111111000111110
000000101000001
100001111100011
010010000010100

Table 31.1: List of attractors in the terminal relating to figure 31.22 (print-p in section 31.7.3).

31.8 Skeleton (fuzzy attractor) histogram
(for binary systems, v=2, only)

The dynamics on large RBN where k ≥ 3 typically result in extremely (astronomically) long transients and
attractor periods, making it impractical to find attractors by the attractor histogram method (section 31.7),
even if a significant fraction of the network is stabilized (frozen) by tuning canalyzing inputs (chapter 15),
because the rest of the dynamics remains chaotic. To overcome this problem in RBN models of genetic
regulatory networks13 each different frozen sub-pattern is treated as a fuzzy attractor, called the “skele-
ton” [20, 42]. In this context network elements are referred to as “genes” — though the method can also
be applied to CA.

The degree of stability of a frozen sub-pattern to qualify as a skeleton is first defined. The network is
run forwards from many random initial states. If the stability threshold is reached, the particular pattern
of frozen genes is identified as either a new or previously found skeleton type, and a histogram is built
up of the frequency of each type. As for the attractor histogram (section 31.7), various data are recorded
(section 31.8.4), including the average transient length.

Enter s at the first output parameter prompt (section 31.1) to skip directly to the “skeletons” category
of options (the only way to arrive there) to generate the skeleton histogram. The following top-right
prompt is presented,

skeletons: histogram, cancel-q cont-ret:

Enter return to continue and set the parameters to define a skeleton (section 31.8.1).

31.8.1 Skeleton parameters prompt

Five parameters are required to define a skeleton. A series of prompts are presented in turn in a top-right
window to reset the parameters or accept defaults, as follows,

frozen skeletons: 0s-0 1s-def both-b:
no of steps frozen: gene (def-20): skeleton (def-20):
% frozen (def-100): % same type (def-100):

13In RBN models of genetic regulatory networks in eukaryotic cells, the different patterns of active genes making
cell types in multi-cellular organisms are interpreted as dynamical attractors [24, 32, 43, 46]. RBN attractor skeletons
represent the most stable sub-patterns of active genes. The strong overlap between skeletons parallel overlaps in
gene expression between eukaryotic cell types [20].

478 CHAPTER 31. OUTPUT PARAMETERS FOR SPACE-TIME PATTERNS

Figure 31.23: A snapshot of the DDLab screen, showing the skeleton histogram at sample 803 with 94
skeletons found.. The network is a 36×36 v2k5 RBN with unbiased random wiring and 20% canalyzing
inputs (chapter 15). The parameters in section 31.8 (1s only), labelled g/s/sp/tp, are 50, 10, 97.5%,
97.5%. Each sample starts with a new random initial state, and the skeleton into which the transient
falls is identified (if any). A skeleton that cannot be matched with a pre-existing type is added as a new
type. The histogram columns are continuously updated (in black), showing the skeleton type (x axis)
against the frequency of arriving at that type (y axis). The axes rescale automatically (and columns
turn green) on reaching the current scale limits. Top left: a snapshot of the space-time pattern.
Top center: the skeleton, pattern of frozen 1s. Bottom: the unsorted histogram.
The snapshot was grabbed without pausing, but by slowing down updating with on-the-fly option < (section 32.2).

Figure 31.24: Examples of different skeletons, consisting of frozen 1s, from the histogram in
figure 31.23. The current skeleton is shown in the top-center of the screen as the histogram is updated.

479

options . . . what they mean

0s-0 1s-def both-b: . . . The frozen pattern value. Enter return for 1s only, 0 for 0s only, or b
for both, which is not a good choice if the entire pattern freezes, as in a
majority rule.

gene (def-20) . . . (g) The number of time-steps that a gene must remain unchanged to be
considered frozen. This is the same parameter as frozen generation size
(sections 31.2.3 and 32.11.2).

skeleton (def-20) . . . (s) The number of time-steps the sub-pattern of frozen genes must remain
unchanged (within a set Hamming distance) to be considered a frozen
skeleton.

% frozen (def-100) . . . (sp) The skeleton percentage Hamming distance limits in (s) above.

% same type (def-100) . . . (tp) How close (within a percentage Hamming distance) must a skeleton
type be to a pre-established type to qualify as that type, otherwise a new
type is established.

The frozen pattern value (0s, 1s or both) and the other parameters, labelled “g/s/sp/tp” as noted
above, are also shown in the histogram window (section 31.8.2).

31.8.2 Drawing the Skeleton histogram

Just like the attractor histogram (section 31.7.2), the skeleton histogram is drawn in a lower-center window.
Space-time patterns (in 1d or 2d) appear in the top-left as usual, from each new initial state. The histogram
is continuously updated (in black), showing the attractor type (x axis) against the frequency of arriving
at that type (y axis), which indicates the relative size of the basin of the quasi attractor. The axes rescale
automatically (and columns turn green) on reaching the current scale limits.

As the histogram is updated, for each sample a representation of the skeleton is shown in the top-center
of the screen, noting if the skeleton consists of frozen 0s, 1s, or both (figures 31.23 and 31.24). At the same
time, a top-right data window gives current data, the current total of skeletons found, the current type,
and average transient length, and the percentage of frozen 1s and 0s, for example,

types=83 this=4 avtrans=52.9 %fr:1s=5.4 0s=4.8

Just as for the attractor histogram, information is displayed at the top of the skeleton histogram
window (figure 31.25, decoded in section 31.7.2.1. Skeletons include the following extra items,

info . . . decode
(1s only) . . . or (0s only) or (0s & 1s) — the skeleton frozen pattern value.
g/s/sp/tp . . . other skeleton parameters, as listed in section 31.8.

Most space-time pattern on-the-fly options work during the histogram routine. To speed the skeleton
histogram, toggle space-time graphics off with on-the-fly option S (section 32.9.7.

31.8.3 Pausing the skeleton histogram

The space-time pattern on-the-fly pause (key q, section 32.14) applies while drawing the histogram.

However, there is a special pause for the histogram itself, enter = (the equals sign) for the following
top-right prompt which provides a range of histogram options,

skeletons histogram: hist-h stp-q data-d
redraw-r sort-s undo-pause-u next-ret:

These options are summarized below, most are the same as for the attractors histogram (section 31.7.3)
— some are described further in the sections indicated,

480 CHAPTER 31. OUTPUT PARAMETERS FOR SPACE-TIME PATTERNS

sorted according to frequency

shown as log-log

sorted according to average transient

Figure 31.25: The skeleton histogram for the same network as in figure 31.23 but paused at sample
3000 with 181 skeletons found, showning different presentations.

options . . . what they mean

hist-h . . . further histogram options: to save/load, rescale, and log-plot — the same as in
“Rescaling the attractor histogram” (section 31.7.4).

stp-q . . . for the space-time pause prompt with many options (section 32.14. Enter q again
to backtrack, or return to the histogram pause prompt.

data-d . . . show attractor data in the DDLab screen (section 31.8.4.

redraw-r . . . to redraw the histogram, which may have been overwritten by other graphics.

sort-s . . . sort the histogram by frequency and other measures (section 31.8.5).

undo-pause-u . . . to continue the histogram without pausing.

next-ret . . . enter return to continue the histogram, but pausing after each sample.

481

31.8.4 Skeleton histogram data

Enter d in section 31.8.3 to show a list of skeleton types, as many as will fit, displayed in a window on the
right of the screen, followed by further options. The list order depends on whether the list was sorted (as
in section 31.8.5), if not, the list is ranked in the order that attractor types were found.

The following example is for the sorted histogram in figure 31.19,

1s skeleton types so far=181 sample=3000
type no freq %fr-0s-1s trans
1 1302 0.4340 5.5 5.9 53.0
2 385 0.1283 5.0 5.1 53.1
3 157 0.0557 4.8 5.5 53.0
. . . (the list continues)
179 1 0.0003 5.1 5.2 52.0
180 1 0.0003 4.5 5.6 52.0
181 1 0.0003 4.3 5.5 52.0
more-ret quit-q jump-j:
(or, if the end of the list fits)
cont-ret jump-j:

Enter q to quit the data, j to jump to a new type index — with the prompt index (181-1):, or return
to see more of a long list or to quit the data if the end of the list is visible.

31.8.4.1 Skeleton histogram data decode

The column headings in section 31.8.4 denote the following,

type . . . the skeleton type index.
no . . . the number of this skeleton type found.

freq . . . the frequency of this type.
%fr-0s-1s . . . the percentage of frozen 0s and 1s making up the skeleton.

trans . . . the average transient (or run-in) length.

31.8.5 Sorting the skeleton histogram

Enter s in section 31.8.3 to sort the histogram. The following top-right prompt is presented,

sort by: frozen-0-1-b avtrans-t frequency-def:

Initialy the skeleton types are ranked in the order they were found, as in figure 31.23. Enter return to
sort by frequency. as in figure 31.25. This corresponds to sorting according to the fraction of state-space
“drained” by the skeleton. Enter t to sort by average transient (run-in) length. The histogram can also
be sorted by the number of frozen 0s, 1s or both 0s and 1s, enter 0, 1 or b. The result of the new sorting
depends on how the list is currently sorted. Having first sorted by frequency, the examples in figure 31.25
show the data sorted first by the attractor period, then by the average transient.

Chapter 32

Drawing space-time patterns, and
changes on-the-fly

Following the output parameters for space-time patterns (STP) in chapter 31, STP1 will start in the top-
left of the DDLab screen. This chapter describes parameters and options (including many from chapter 31)
that can be reset or activated while STP are running, either immediately on-the-fly by various keyhits, or
by pausing the drawing and responding to further prompts.

On-the-fly options include changes to updating, rules, wiring, seed, scale, dimensions, presentation,
“frozen” regions, filtering, and various methods of analysis. There are also options for loading glider rules,
and automatically classifying rule-space (chapter 33).

If STP are paused/interrupted (section 32.16), pause options include rules (chapter 16), network archi-
tecture (chapter 17), vector PostScript (chapter 36), canalyzing (chapter 15), the state (chapter 21), and
the network-graph (chapter 20) — to run a concurrent STP according to the network-graph presentation.
On-the-fly options can also be activated during the pause. Many relevant changes and functions in the
DDLab manual can therefore be implemented without backtracking.

32.1 On-the-fly key index

An “on-the-fly key index” window is usually displayed while space-time patterns are running, as a reminder
of the various options which are activated directly by keyhits. The window appears on the right of the
screen and can be toggled on-off the X key.

The items listed are context dependent — an example is shown in figure 32.1, and in DDLab screen
snapshots in chapters 31, 32 and 33. The options are divided into categories, with subheadings in red,
and may vary for different types of network and current settings. These include the dimensions of the
underlying network and STP-dimensions — the dimensions of the space-time pattern presentation, which
are not necessarily the same. On-the-fly options are summarized in section 32.3 and explained in greater
detail in sections 32.4—32.13.6.

Note that the same options can be activated during a pause (sections 32.16, 32.17).

1In TFO-mode, running forward to draw STP is the only possibility. In SEED-mode STP needs to be selected
because the default is to draw attractor basins. If not in TFO-mode, the following steps are required: Enter s in
section 6.2 for SEED-mode. Then for “space-time patterns only”, enter s in section 24.1, or S in section 29.1.

482

483

Figure 32.1: An example of the “on-the-fly key index”
for space-time patterns — a reminder of the options which
can be activated directly by keyhits.
The window appears on the right of the DDLab screen
and can be toggled on-off with the X key.
In TFO-mode the top heading reads
on-the-fly key index: TFO-mode
otherwise the heading in SEED-mode is as shown.
The options are divided into subcategories, with sub-
headings in red. They are context dependent, and
may vary for different types of network, current settings,
network dimensions, and STP-dimensions, so some options
may be missing or different in an actual run of space-time
patterns. This example is for SEED-mode, v=2, a 1d
network with local wiring, presented in 1d (1d-STP), with
input-entropy active. Because of this setup, the options
below are not included.

xchange rule
8..rulemix/single (if mixed-rule network)

xchange wiring
?..re-rnd(off) (toggle on/off if nonlocal active, section 32.7.3)

xpresentation
@..tog balls outline (if “balls” or network-graph active)
d/-..tog shuffle colors/restore (for v ≥ 3)

x1d 2d 3d (section 32.10)
t..tog 2d-2d+time (if 2d-STP)
t..tog grid3d(if 3d-STP)
p/I..plane/balls (if 2d+time only)
I..tog balls (if 3d-STP)
p/I/J..plane/balls/invisible (for 2d-STP scrolling diagonally)

xanalysis
=..tog diff(keep) (if “damage” is active, section 31.6)
u/,/”..entropy-density/link/wavelength (if “entropy/density
plot” is active, section 32.12.6)

xmiscellaneous
$..make sound (for DOS only)
;..density return map (if “pattern density” is active,
section 32.12.4)
;/,..density return map/link (if “density return map” is
active, section 32.12.7)
*..tog endpause (on) (if scrolling not active, section 32.13.2)

on-the-fly key index

x updating (tog)
U/Y..sync-seq/sync-porder
{/}..prob:update1-0.95/output1-0.95
xchange rule
r,R/K/k..rnd/vrnd/tcode/kcode
[/]..iso/togflip(off)
O/A/M/C..Orig/Alt/Maj/Chain
1/2/?..rnd bitflip/restore/select
Z/z..force Z higher/lower
b/B..flip all0s->0/allVs->V

xrule samples
g..load glider rule (rnd)
V..load,jmp,scan
w/:/9..next/prev/rnd
uE..create sample
xchange wiring
m/W..move1 wire/revise
7/|..local-nonlocal/periodic-null
xchange seed/size
4/v/\//..rnd seed/block/vseed/vblock
l/L..rnd value/block flip
o/∼..original/last
5/6..singleton pos/neg
N/n..inc/decrease 1 cell
xpresentation
x..tog slant(off)
i/!..tog divs(off)/color
3/./∧..tog incolor/dot/bground
d/-..colors:swap/black-blue
S..tog space-time display
P..tog skip steps=1 (off)
e/c..exp/contr scale

x1d 2d 3d
T..tog 1d-2d-3d

xfrozen/filter
h..nor-dy-f1-f2-bin
H..f-gens(20)/bins(10)
f/F/a/=/-..filter/undo//all/anti/app

xanalysis
0/%..tog lookhist:1-2/1-time
)/(..lookhist: amplify/restore
/&...lookhist bars: shrink/inc&col
s..tog entropy-density
j..tog ent-in-both
u..entropy/density plot
G..a-gens (now 10)
D..value return map value
y..state-space matrix
xmiscellaneous
X..tog this index
#.. tog scrolling (on)
+.. tog time-step pause
</>..slower/max speed
q..pause

484 CHAPTER 32. DRAWING SPACE-TIME PATTERNS, AND CHANGES ON-THE-FLY

32.2 On-the-fly prompts — bottom title bar

The following on-the-fly prompts appear in the bottom title bar (SEED or TFO mode, section 5.5)
whenever space-time patterns are running — they are also displayed among the prompts in the on-the-fly
key index (figure 32.1, section 32.3).

STP:tog/exp/contr-S/e/c, tog index-X, slow/max speed:</>

DDLab c©1993-2024 SEED advance-ret back/interrupt-q STP:tog/scroll/exp/contr-S/e/c, tog index-X, slow/max-</>

The keyhits are described below,

on-the-fly keyhits . . . what they mean

STP:tog-S. . . to toggle space-time patterns on and off. If space-time patterns are off they
continue to run in the background — this considerably speeds up the “damage”,
“attractor” and “skeleton” histograms (sections 31.6.2, 31.7, 31.8), and “classi-
fying rule-space” (chapter 33).

STP: -e/c. . . to expand or contract the scale of space-time patterns.

slow/max:</> . . . slow down with < which halves computation speed each time its hit. Enter >

to revert to maximum speed. Slow motion can also be selected at various other
stages in DDLab, listed in section 31.2.8.

32.3 Summary of on-the-fly options for space-time patterns

On-the-fly key index options (section 32.1) are summarized below, divided into categories as in figure 32.1.
Further details are given in the sections indicated,

updating (tog) — section 32.4 ...

U/Y..sync-seq/sync-porder . . . sequential and partial order updating (sections 31.4.2 – 31.4.3).

U . . . toggle synchronous-sequential updating (section 32.4.1).
Y . . . toggle synchronous-partial order updating (section 32.4.1).

{/}..prob:update1-0.95/output1-0.95 . . . noisy updating with probability settings (section 31.4.1).

{ . . . toggle deterministic-update probability (section 32.4.2).
} . . . toggle deterministic-output probability (section 32.4.2).

change rule — section 32.5 ...

r,R/K/k..rnd/vrnd/tcode/kcode . . . new random rule/s (section 32.5.1) — preset density-bias (λ
parameter, section 16.3.1) or value-bias is respected, but with the all-0s
neighborhood output set to zero for a stable background,

r . . . for random rcode iso-rule.
R . . . for a random rcode or iso-rule according to value-bias section 16.3.2.
K . . . (SEED-mode only) random tcode expressed as rcode (t-rcode) or iso-rule.
k . . . (SEED-mode only) random kcode expressed as rcode (k-rcode) or iso-rule.

485

[/]..iso/togflip(on) . . . (rcode only, 1d, 2d: k=2 to 10, 3d: k=6 or 7)
random isotropic rcode (section 32.5.2). These options are somewhat su-
perseded by the iso-rule options (sections 16.10.4, 16.10.8).

[. . . set random isotropic rcode.
] . . . tog isotropic bit/value flip (on)/(off). If togflip(on) isotropic dynamics is conserved

when using on-the-fly 1/2/?..bitflip/restore/select (section 32.5.4), whereas
togflip(off) does not.

O/A/M/C..Orig/Alt/Maj/Chain . . . new rule/s (section 32.5.3).

O . . . restore original rule.
A . . . random Altenberg rule.
M . . . random majority rule.
C . . . random chain rule.

1/2/?..rnd bitflip/restore/select . . . mutate/restore rule/s (section 32.5.4).

1 . . . mutate rule-table by bit/value at a new random IFH position.
2 . . . restore the mutation in reverse order.
? . . . select the IFH index to mutate.

Z/z..force Z higher/lower . . . (for single rcode only) change rule’s Z-parameter (section 32.5.5).

Z . . . force Z higher.
z . . . force Z lower.

b/B..flip all0s->0/allVs->V . . . change the output of uniform neighborhoods or iso-groups (the
“hot bits”[29]) to the neighborhood or iso-group value (section 32.5.6).

b . . . flip output of all the all-0s neighborhood to 0.
B . . . flip the all-v’s output to v.

8..rulemix-single . . . (mixed rule network only, but not k-mix) toggle rulemix/single rule at cell
0 (section 32.5.7).

rule samples — section 32.6 ...

g..load glider rule (rnd) . . . load a glider rule from a collection (if available), either randomly (rnd)
or sequentially (seq) (section 32.6.1).

V..load,jmp,scan . . . if not currenty active load input-entropy rule sample, select indexs, and
type of scan. (section 32.6.2 and chapter 33).

w/:/9..next/prev/rnd . . . scan rules from an active input-entropy sample (section 32.6.3).

w . . . select the next index in the sample or patch.
: . . . (colon) select the previous index in the sample or patch.
9 . . . if the patch has not been activated — jump to a high variabilty random index. If

activated toggle patch ON/OFF.

uE..create sample . . . enter u followed by E to create a sample of classified rule-space
(section 33.2 and chapter 33). u initiates an entropy/density scatter plot
(section 32.12.6) — if this is already current, the on-the-fly prompt is
E..create sample.

486 CHAPTER 32. DRAWING SPACE-TIME PATTERNS, AND CHANGES ON-THE-FLY

change wiring — section 32.7 ...

m/W..move 1 wires . . . move x wires, the current x is shown (section 32.7.1).

m . . . randomly move (rewire) one or more wires.
W . . . change the number of wires to move with m, or set local (CA) wiring,

(1d, 2d, or 3d) depending on native network dimensions.

7/|..local-nonlocal/periodic-null . . . local and nonlocal wiring (section 32.7.2, or periodic and null
boundary conditions (section 32.7.4).

7 . . . toggle between local CA wiring and nonlocal (random) wiring. There is no change if
random wiring was not previously set, and toggling preserves this original nonlocal
(random) wiring.

| . . . (pipe or vertical bar) toggle periodic and null boundary conditions (NBC). NBC is
described in section 2.7).

?..re-rnd(off) . . . (section 32.7.3) if nonlocal is active, re-randomise the wiring at each time-
step – the (on)/(off) toggle indicates if this is active, which will also
be evident by the speed of iteration. The network will be re-randomised
according to any random wiring biases originally set in chapters 11 and 17.

change seed/size — section 32.8 ...

4/v/\//..rnd seed/block/vseed/vblock . . . random seed or block (section 32.8.1) — the preset
density-bias (section 21.3.2), or the preset value-bias (section 21.3.3) for a
vseed or vblock, and the preset size of the block (section 21.3) are respected.

4 . . . random seed according to density-bias.
v . . . random block according to density-bias.
\ . . . random seed according to value-bias (vseed).
/ . . . random block according to value-bias (vblock).

l/L..rnd value/block flip . . . random value or block (section 32.8.2).

l . . . mutate the current state by one random bit/value flip — one cell value randomly
changed at a random position.

L . . . flip a central block randomly in the current state. The block size (section 21.3) and
pre-set density-bias (section 21.3.2) are respected.

o/∼..original/last . . . restore previous seeds (section 32.8.3).

o . . . restore the original seed (chapter 21).
∼ . . . restore the latest seed that was changed on-the-fly.

5/6..singleton seed . . . (for v ≥ 3) set a singleton seed, a central cell against a uniform
background. (section 32.8.4).

5 . . . (for binary v=2): positive singleton seed, a one against zeros.
(for v ≥ 3): a random value against a uniform background of zeros.

6 . . . (for binary v=2): a negative singleton seed. a zero against ones.
(for v ≥ 3): a random value against a uniform background of a different random
value.

N/n..inc/decrease 1 cell . . . (for 1d single-rule networks presented in 1d) change network size
(section 32.8.5)....

N . . . increase network size by 1 cell.
n . . . decrease network size by 1 cell.

487

presentation — section 32.9 ...

x..tog slant(off) . . . (for 1d) a 3-way toggle to slant time-steps (off)-(on-right)-(on-left) — to
make asymmetric space-time patterns appear symmetric (section 32.9.1).

x..tog hex(off) . . . (for 2d) toggle between a square and hexagonal lattice (section 32.9.2).

@..tog balls outline . . . (if “balls” (section 32.10.4) or network-graph layout (section 32.19) is ac-
tive, toggle the balls outline (section 32.9.4).

i/!..tog divs(off)/color . . . (for 1d and 2d STP — takes effect if the cell scale ≥ 4) to change division
lines between cells (section 32.9.3).

i . . . toggle divisions on-off.
! . . . toggles division colors black-white.

3/./∧..incolor/dot/bground . . . for colors by neighborhood, and the presentation of zero cells
(section 32.9.5).

3 . . . toggles between cell color by value and by neighborhood.
. . . . (full stop) (for 1d and 2d STP — takes effect if the cell scale ≥ 4) toggles having a

dot on zero cells.
∧ . . . (for 1d and 2d STP, and value colors) toggles between white and light green for

zero cells.

d/-..tog shuffle colors/restore . . . (for v ≥ 3) to shuffle or restore colors (section 32.9.6).

d . . . for binary, v=2 value colors: swap 0/1 cell colors. Otherwise randomly shuffle colors,
value or IFH, and matching STP colors.

- . . . (dash) for binary, v=2: toggle color of 1s between black/blue. Otherwise restore
the default colors. Also toogles the appearance of filtering (section 32.11.5).

S..tog space-time display . . . toggle the display of space-time graphics on/off (section 32.9.7).

P..tog skip steps=1 (off) . . . toggle skipping time-steps (section 32.9.8).

$..tog sound . . . (DOS only) toggle sound generated by space-time patterns (section 32.9.9).

e/c..expand/contr scale . . . for normal space-time patterns: expand/contract the cell scale. For
diagonally scrolling network-graph space-time patterns (figures 32.15,
32.17): expand/contract the spacing between time-steps (section 32.9.10).

e . . . expand cell scale (or the spacing) by 1 pixel.
c . . . contract cell scale (or the spacing) by 1 pixel.

1d 2d 3d — section 32.10 ...

T..tog 1d-2d-3d . . . a 3-way toggle between 1d-2d-3d STP — the order changes to show which
is current and which is next in the toggle sequence, e.g. T..tog 2d-3d-1d.
(section 32.10.1).

t..tog 2d-2d+time . . . (for 2d STP) toggle between 2d and 2d+time the order changes to show
which is current, e.g. t..tog 2d+time-2d (section 32.10.2).

t..tog grid3d . . . (for 3d STP) toggle the background grid on/off

I..tog balls . . . (for 3d STP) toggle between balls and parallelograms (section 32.10.4).
p/I..plane/balls . . . (for 2d+time STP)

p . . . draw 2d plane — parallelogram grid (section 32.10.5).
I . . . toggle cells between balls and parallelograms (section 32.10.4).

488 CHAPTER 32. DRAWING SPACE-TIME PATTERNS, AND CHANGES ON-THE-FLY

p/I/J..plane/balls/invisible . . . (for 2d STP diagonal scrolling)

p . . . draw 2d plane — square or hex grid (section 32.10.5).
I . . . toggle cells between balls and squares/hexagons (section 32.10.4).

J . . . toggle the visibility of 2d diagonal scrolling STP to see just the scrolling network-
graph (sections 32.10.6, 32.13.3.3, figure 32.15).

frozen/filter — section 32.11 (if input-entropy is active) filter (otherwise) ...

h..nor-dy-f1-f2-bin . . . 5-way toggle to show, dynamic trace, and “frozen” cells in 3 different ways
(section 32.11.1).

H..f-gens (now 20)/bins(10) . . . change “frozen” parameters (section 32.11.2).

f/F/a/=/-..filter/undo/all/anti/app . . . (if input-entropy active) (section 32.11.5)

f . . . progressively filter from high frequency to low, and mark with a black block. Zero
frequencies are not filtered.

F . . . progressively unfilter in reverse order and remove the black block.
a . . . immediately restore, unfilter all filtering and remove black blocks.
= . . . (equals sign) toggle antifilter to reverse the filter scheme and black blocks.
- . . . (dash) toogle the appearance of filtering. Also restore the default colors

(section 32.9.6).

analysis — section 32.12 ...

0/%..tog lookuphist:1-2/1-time . . . (if input-entropy is active — section 32.12.1) the presentation of
the input-frequency histogram (IFH).

0 . . . (zero key) toggle between normal and 1 pixel width bars.
% . . . show with the IFH with a time dimension — if the number of bars ≤64.

)/(..lookhist: amplify/restore . . . (if input-entropy is active section 32.12.4) amplify the bar length in
the input-frequency histogram.

) . . . double the length of bars each time “)” is pressed.
(. . . restore the default length, then show as log2 frequency.

/&..lookhist: shrink/inc&col . . . (if input-entropy is active section 32.12.4) change the bar width,
thus the scale of the input-frequency histogram.

. . . decrease the bar width by 1 pixel each time “ ” (underscore) is pressed. Finaly the
default is restored.

& . . . increase the bar width by 1 pixel for a single column. For a multi-row histogram,
increase the number of bars by 25% which reduces the number of rows.

s..tog entropy-density . . . (if input-entropy is active) toggle between input-entropy and pattern
density plots (section 32.12.4). If pattern density is active, s..tog
density-entropy is shown.

j..tog ent-in-both . . . (if input-entropy is active section 32.12.4) a 3-way toggle to show the
input-entropy, the input-frequencies as a set of graphs, or both together
(section 32.12.5).

u..entropy-density plot . . . (if input-entropy is active section 32.12.4) toggle showing a scatter plot of
entropy-density where rules have characteristic signatures. (figure 32.36,
section 32.12.6).

489

u/,/”..entropy-density/link/wl . . . (if the entropy-density scatter plot is active, section 32.12.6),

, . . . (comma key) toggles connecting sucessive dots for a linked history (section 32.12.6.1).
“ . . . (inverted comma key) automatically recognises wavelength/waveheight (wl/wh) if

pulsing[54, 55] is present, and outputs the data in the terminal (section 32.12.6.2).

;..density return map . . . (if pattern density plot is active) ; (semi-colon) toggles the density return
map (section 32.12.7).

;/,..density return map/link . . . (if the density return map is active) , (comma key) toggles connecting
sucessive dots for a linked history.

G..a-gens (now 10) . . . change analysis generations (section 32.12.8).

D/;..return map value/density . . . toggle the value return map scatter plot (section 31.2.2.2..

D . . . the return map by value (section 31.2.2.2.
; . . . (semi-colon) the density return map (section 32.12.7) but only if the space-time

pattern density (section 32.12.4) is active.

y..state-space matrix . . . toggle state-space matrix (section 32.12.10).

=..tog diff (keep damage) . . . (if the “damage” is active, section 31.6), toggle between two definitions
of damage, (keep) — once damaged, keep the damage, and (inst) — the
instantaneous difference at each time-step.

miscellaneous — section 32.13 ...

X..tog this index . . . toggle the on-the-fly key index (section 32.13.1).

*..tog endpause (on) . . . toggle the endpause on/off if scrolling not active (section 32.13.2).

#..tog scrolling . . . toggle the scrolling on/off with the “hash” key # (section 32.13.3).

+..tog time-step pause . . . pause after each time-step (section 32.13.4).

</> ..slow/max speed . . . space-time pattern speed: < slow down, > restore full speed
(section 32.13.5).

q..pause . . . pause space-time patterns and display data/options (section 32.13.6).

32.4 Updating (tog)

These on-the-fly options toggle between synchronous and either sequential or partial order updating, and
between deterministic and two kinds of noisy updating. Any combination of settings is permissible.

32.4.1 U/Y..sync-seq/sync-porder

The current status of sequential and partial order updating, as opposed to synchronous, is given by the
prompt order — [sync-seq or seq-sync] and [sync-porder or porder-sync].

The following on-the-fly keyhits toggle the current status,

U . . . toggles between synchronous and sequential updating (defined in section 31.4.2).
Y . . . toggles between synchronous and partial order updating (defined in section 31.4.3).

32.4.2 {/}..prob:update1-0.95/output1-0.95

The values of the update and output probabilities (section 31.4.1) are shown in the prompt. The current
status is given by the prompt order, so update0.95-1 would mean update probability (0.95) is active.

{ . . . to toggle between deterministic updating and update probability.
} . . . to toggle between deterministic updating and output probability.

490 CHAPTER 32. DRAWING SPACE-TIME PATTERNS, AND CHANGES ON-THE-FLY

32.5 Change rule

Figure 32.2: Setting a random k-rcode on-the-fly with key k, showing Left: about 70 time-steps of
the 1d n=200 space-time pattern, and Right: information on the new rule that appears in a top-right
window when the key is hit. The label “k-rcode” indicates this is kcode expressed as rcode. If not in
TFO-mode, the Z-parameter is included. The rule-table is shown as a value-string and in hex, as much
as will fit in both cases. The same format is applied for other rule types. Other possible labels are:
rcode, tcode, kcode, k-rcode, t-rcode, iso rcode, k-iso-rule, t-iso-rule, Alt rcode, Alt kcode, Maj rcode,
Maj kcode, Maj tcode, or chain rcode – as noted in sections 32.5.1 — 32.5.3.

The following on-the-fly keyhits change the current rule, including setting random rules with or without
special biases and mutations to the current rule by bit/value flips — which can be restored. A top-right
window with the appropriate label (figure 32.2) shows the new rule. For mixed-rule networks, the random
rules or mutations apply to all the cells/rules in the network, but the top-right information will show the
rule at network index zero only.

32.5.1 r,R/K/k..rnd/vrnd/tcode/kcode

Set a new random rule (or rules for a rulemix) where the density-bias set in section 16.3.1 is respected.
If the iso-rule input-frequency histogram (IFH) is active (section 31.5.1) r and R apply to the iso-rule.
In TFO-mode r and R apply to kcode or tcode. Information about the new rule appears in a top-right
window similar to figure 32.2, with possible labels: rcode, tcode, kcode, k-rcode, t-rcode, iso rcode, k-iso-
rule, t-iso-rule. To summarise,

r . . . for a random rule according to the λ parameter, (section 16.3.1), but with the all-0s neighborhood
output set to zero for a stable background.

R . . . for a random rule according to value-bias section 16.3.2.

K . . . (if not in TFO-mode) random tcode expressed as rcode (t-rcode).

k . . . (if not in TFO-mode) random kcode expressed as rcode (k-rcode).

32.5.2 [/]..iso/togflip(on)
rcode only, 1d, 2d: k=3 to 10, 3d: k=6 or 7, n-templates as in figure 16.17

Set a new random isotropic rcode (or rcodes for a rulemix) where rotated/reflected neighborhoods have
the same output (figure 32.3). Information about a new single rule appears in a top-right window sim-
ilar to figure 32.2, labelled “iso rcode”. These options are somewhat superseded by the iso-rule options
(sections 16.10.4, 16.10.8).

[. . . (the left square bracket) sets a new random isotropic rcode (iso rcode). This would also activate
the iso-rule and its option for the IFH in section 31.5.2.

] . . . (the right square bracket) toggles between (on) and (off) for isotropic mutation. “togflip(on)”
in the on-the-fly key index (figure 32.1) indicates that the “bitflip/restore” on-the-fly func-
tion (section 32.5.4) will also flip/restore other relevant bits/values to preserve isotropic rcode.
“togflip(off)” indicates a normal single flip, which does not preserve isotropic rcode.

491

Figure 32.3: A snapshot of the DDLab screen, showing a 1d n=200 space-time pattern made up of
a series of v4k3 random isotropic rcodes, where reflected neighborhoods have the same output, set
on-the-fly with key [(left square bracket). Note that the symmetry is preserved. The start of each new
rule, which picks up the current state from the previous rule, is indicated by a horizontal line on the
entropy plot to the right of the space-time pattern. The last rule set is shown in a top-right window.

32.5.3 O/A/M/C..Orig/Alt/Maj/Chain

Reset the original rule, or set a new random rule (or rules for a rulemix) with special biases. Information
about the new rule appears in a top-right window similar to figure 32.2, with possible labels: Orig rcode,
Orig kcode, Orig tcode, Alt rcode, Alt tcode, Maj rcode, Maj kcode, Maj tcode, or chain rcode. For an
active iso-rule input-frequency historam (IFH) optios A/M/C (Alt, Maj, chain, iso-rule) still apply but
would disrupt isotropy making the IFH unreliable untill restored with O (Orig iso-rule).

O . . . to restore the rule that was originally selected (or reset) in chapter 16. For mixed-rule networks
the rule is assigned to cell index 0 only (Orig rcode, Orig kcode, Orig tcode).

A . . . (not for tcode) set a random Altenberg rule (Alt rcode, Alt tcode) (section 16.9).
M . . . set a random majority rule (Maj rcode, Maj kcode, Maj tcode) (section 16.7).
C . . . (not in TFO-mode) set random chain rule (chain rcode) (section 16.11).

492 CHAPTER 32. DRAWING SPACE-TIME PATTERNS, AND CHANGES ON-THE-FLY

Figure 32.4: Mutating on-the-fly by a random bit/value flip with key 1, restore (flipback) with key 2
— both can be done repeatedly so after multiple flips the original rule can be restored with multiple
flipbacks. A top-right window gives information in both cases — this example is for v4k3 kcode,
Left: mutation — showing the flip number and its position in the rule-table. Right: undoing the
mutation — showing the flipback number and its position in the rule-table.

32.5.4 1/?/2..rnd bitflip/restore

A mutation at a random rule-table index is made/restored on-the-fly with keyhits 1/2. A specific index
mutation can be made with ? (question mark). For binary systems the mutation is a simple bitflip, for
v>2 a randomly different value. It is recomended that the input-frequency histogram (IFH) is active, the
default for 1d, but otherwise the input-entropy and IFH should be activated (section 31.5.1).

If the IFH is present, mutations are marked as red blocks alongside IFH bars, but offset from (possibly)
closer black blocks which would mark filtered bars (section 32.11.5 and figure 16.23). Mutations positions
(indexes) for keyhit 1, are random but non-repeating, and will avoid filtered indexes until there are none
remaining. This allows a “mutation/filter game” for glider-gun rules and related dynamics (section 16.10.8).

To summarise the options,

1 . . . to mutate a rule-table bit/value at a new random IFH index, avoiding repeats and filtered
indexes, and mark the IFH bar with an offset red block.

? . . . to select the IFH index to mutate, with the following top right prompt, for example,

index to flip 0-91 (for a hex 2d v3k6 iso-rule)

once selected, the IFH bar will be marked with an offset red block.

2 . . . restores the mutations for 1/? above in reverse order and removes red blocks.

Information about the rule appears in a top-right window (figure 32.4). For a rulemix these options
only apply to the rule at network index zero.

32.5.5 Z/z..force Z higher/lower
for single rcode only

The current rcode can be adapted by tuning its Z-parameter, progressively forcing Z higher (towards chaos)
or lower (towards order) by selectively mutating the rcode. This is done on-the-fly with the following
keyhits,

Z . . . (upper case) to force Z higher.
z . . . (lower case) to force Z lower.

Information about the rule appears in a top-right window (figure 32.5). The algorithm flips bits/values
at random positions, and only retaining the flips that produce the desired change in Z. The algorithm for
forcing Z lower can get stuck, but can usually be unstuck with a random bit/value flip (section 32.5.4).
For an active iso-rule input-frequency historam (IFH) optios Z/z still apply but would disrupt isotropy
making the IFH unreliable untill restored with O (Orig iso-rule, section 32.5.3).

493

Figure 32.5: Info when changing the Z-parameter up and down on-the-fly with keys Z and z. Initial
dynamics with high Z was progressively changed towards order by repeated hits with key z – ordered
domains emerged. Left: about 70 time-steps of the 1d n=200 space-time pattern, and Right: infor-
mation on the new rule that appears in a top-right window when the key is hit, where zl is zleft and zr
is zright — the Z-parameter is the greater of the two[38, 50].

32.5.6 b/B..flip all0s->0/allVs->V

The “hot bits” in a v=2 rule-table, the outputs of the all-0s and all-1s neighborhoods, are especially
important in the dynamics[29]. This notion is extended for v ≥ 3, and the following on-the-fly keyhits flip
all-0s to 0, or flip the outputs of all uniform neighborhoods to the uniform value, which would provid a
stable background for singleton seeds or blocks (section 32.8.4).

b . . . flip output of all-0s to 0.
B . . . flip the output of all uniform neighborhoods to the neighborhood value.

Information about the new rule appears in a top-right window similar to figure 32.2, with possible
labels: rcode, iso-rule, kcode, tcode. All the rules in a rulemix are modified.

32.5.7 8..rulemix-single
mixed rule network only, but not k-mix

Enter 8 to toggle on-the-fly between running the network according to its rulemix or according to the single
rule at cell index 0. The current status is given by the prompt order, i.e. 8..single-rulemix indicates
that the single rule is current.

The rulemix is set in sections 14.4 – 14.9. The rulemix options allow for isotropic rcode do not at
present apply to the iso-rule paradigm (section 16.10).

32.6 Rule samples

These on-the-fly options relate to glider rule collections (section 32.6.1), and to automatically classifying
rule-space[44] (sections 32.6.2 — 32.6.4), including creating, sorting, analysing and probing the sample.
Automatically classifying rule-space is a larger topic described and illustrated in detail in “Classifying
Rule-Space” chapter 33.

32.6.1 g..load glider rule (rnd)
if a rcode or kcode glider file is detected

Glider rule collections (GRC files) are available for some combinations of [v, k] and lattice dimensions2.
The available GRC files are listed in section 3.6.1. If the current [v, k] corresponds to one of these files,
and if the directory/file is accessible (section 35.5), on-the-fly key g loads a rule from the collection while
space-time patterns are running (figure 32.8), either randomly (rnd) or in sequence (seq), depending on

2Although the complex rules relate to specific dimensions, they often result in interesting dynamics in other
than the intended dimensions.

494 CHAPTER 32. DRAWING SPACE-TIME PATTERNS, AND CHANGES ON-THE-FLY

Figure 32.6: Examples of 1d v2k5 complex space-time patterns with interacting gliders[40] from a GRC
file (g v2k5.r s, section 3.6.1) included with DDLab, which can be loaded on-the-fly while space-time
patterns are being drawn (cells colored by neighborhood, section 31.2.1). The rcodes are shown in hex.

4: 0002000220022001112200021110 9: 1202022101201121110121112101 16: 0001001121001121111200001000

31: 0122220200020200000200120210 32: 0121220020210200110200021210 54: 1202022101201121110121110101

Figure 32.7: Examples of 2d space-time snapshots of complex kcode on a 2d 40×40 lattice, from a
sample of glider rules (g v3k6.r v, section 3.6.1) included with DDLab, which can be loaded on-
the-fly. The sample number and kcode table are shown for each rule. The color of zero (background)
values were toggled to light-green with on-the-fly key ∧ (circumflex).

the setup in section 31.2.9 — this can also be toggled from the pause prompt (section 32.16). On-the-fly
key g loads a rule, and information is simultaneously shown in a top-right window, including the collection
size and sample number (figure 32.9). Otherwise a top-right inset shows glider sample not available .

If a rulemix is active (but not a k-mix) the rule is loaded at cell index 0 — this can be applied to the
whole network by toggling with key 8..rulemix-single (section 32.5.7).

495

Figure 32.8: A snapshot of the DDLab screen, showing 1d n=200 space-time patterns, a series of
rules from the v4k3 glider rcode collection loaded on-the-fly with key g. The start of each new rule,
which preserves the current state, is indicated by a horizontal line on the entropy plot to the right of
the space-time pattern. The last rule set is shown in a top-right window, including its sample number.

Figure 32.9: Info when loading a glider rule on-the-fly with key g. Left: about 70 time-steps of the 1d
n=200 space-time pattern, and Right: information on the new rule that appears in a top-right window
when the key is hit. “1d cplx sample(31)=7” means that rule number 7 from 31 rules in the v4k3
glider rcode collection is currently selected.

32.6.1.1 creating a glider rule collection

Glider rule collections (GRC) files are ordinary “rulemix-only” files (section 19.2) but with a special type
of filename, where x is the value-range, and y the neighborhood size,

g vxky.r s . . . for rcode, for example g v3k3.r s

g vxky.r v . . . for kcode, for example g v3k6.r v

496 CHAPTER 32. DRAWING SPACE-TIME PATTERNS, AND CHANGES ON-THE-FLY

The special name is recognized by DDLab. An available GRC file for the current [v, k] is automatically
loaded after the neighborhood k is set (chapter 9). New collections can be created, extended and modified
by loading single rule files or rulemix-only files into another rulemix, which must then be saved with the
correct special name. This is best done in a 1d wiring graphic (section 19.4). If the number of rules to be
loaded is g, the size of the 1d network n should be set at n=g+1 because index 0 is not referenced, and
this needs also to be taken into account when combining two rulemix-only files to make a larger GRC file.

32.6.2 V..load, jmp, scan

Automatically classified samples of rule-space (chapter 33) sorted by input-entropy and its variability[44],
either standard deviation or a min-max measure (section 33.1), can classify ordered, complex and chaotic
rules and show their distribution in rule-space.

Samples files (*.sta) are available (section 3.6.4) or can be created (section 33.4) for various combi-
nations of [v, k] and lattice dimensions, including iso-rules. If a sample is not currently active, on-the-fly
key V will load, then display, the sample with the following prompt,

load sample: entropy variability, sdev-s, min-max -(def):

The sample can also be loaded during a pause (section 32.16.2). Further details are in section 33.5.
If a sample is currently active (i.e. loaded), entering on-the-fly key V results in the following top-right
prompt,

rule sample: rule index/scan 1-15834: (kcode file v3k6bs.sta)

Enter a number within the range to select a rule index, or return for index 1 (the default). Successive
rules can be scanned on-the-fly from this index (section 32.6.3). Then enter return to scan in time-blocks
(section 33.7.2), return again to continue spce-time patterns.

32.6.3 w/:/9..next/prev/rnd

Once a rule sample is active (i.e. loaded) the sample or a predefined patch (section 33.6.2) can be scanned
with the following keyhits to select and immediately apply individual rules,

w . . . if the patch is OFF the next index in the sample. If the patch is ON the next index in the patch.
The start index may have been selected in section 32.6.2.

: . . . (colon) similar to the above, but the previous index in the sample or patch.

9 . . . if patch has not been activated — jump to a random index within 10% of the low index numbers
(the highest entropy-variability). If the patch is active, toggle the patch ON/OFF. To deactivate
the patch backtrack with q to the interupt prompt (section 32.16) and enter K to “keep” the
current rule sample (section 32.16.2).

Section 33.7 and 33.7.2 give further explanations. Each time a rule is changed, a top-right window
shows the sample index, the rule’s mean-entropy and variability, and the rule itself in hex, as in figure 33.16.
For further details see chapter 33.

32.6.4 uE..create sample

Enter u followed by E to create a sample of automatically classified rule-space. Prompts are presented
as described in sections 33.2. The initial u initiates an entropy/density scatter plot (section 32.12.6). If
this plot is current, the on-the-fly prompt is E..create sample, so enter just E. For further details see
chapter 33.

497

32.7 Change wiring

These on-the-fly options change (mutate) the wiring (section 32.7.1), toggle between local and nonlocal
dynamics in a nonlocal network section 32.7.2, randomly re-wire at each time-step, or toggle between
periodic and null boundary conditions (section 32.7.4).

32.7.1 m/W..move 1 wires

Enter m to randomly move one wire or a preset number of wires (selected at random), which can be
repeated for cumulative rewiring (figure 32.7.1).

Enter W to reset the number of wires to be randomly moved with m, or to localize the wiring. Prompts
similar to “mutate wiring” (section 28.2) will be presented in a top-right window, for example,

wires to move=1/9600=0.0104%: all-a number-n %-p:
local-L: (for a 2d 40×40 k=6 network)

options . . . what they mean

all-a . . . to select all wires, i.e. randomly rewiring the whole network when m is pressed.

number-n . . . to reset a given number of wires to move, selected with the following subsequent prompt,
. . . number of wires: — the new setting will show up in the on-the-fly prompt, for
example, m/W..move 25 wires

%-p . . . to specify the percentage of total wires to move, selected with the following subsequent
prompt, . . . % of total wires:

local-L . . . to restore local (CA) wiring (1d, 2d or 3d) depending on native network dimensions.
For mixed-k each cell is assigned the relevant local neighborhood.

Figure 32.10: Randomising the
wiring of a 1d CA by stages, for
v2k5 rcode(hex)6c1e53a8, n=150.
The wire moves were first re-
vised to 2% (15 out of 750
wires) with on-the-fly option W,
then the wiring was cumulatively
randomised with on-the-fly with
option m (section 32.7.1), at the
points indicated by color changes,
and horizontal lines in the input-
entropy plot. Note that glider
structure is progressively degraded.

498 CHAPTER 32. DRAWING SPACE-TIME PATTERNS, AND CHANGES ON-THE-FLY

32.7.2 7..local-nonlocal

Enter 7 on-the-fly to toggle between local CA wiring (1d, 2d or 3d, defined in chapter 10) and nonlocal
(random) wiring. There is no change if random wiring was not previously set, and toggling preserves this
original nonlocal (random) wiring.

The original nonlocal wiring held in memory remains intact when local wiring is toggled. The current
status is given by the prompt order, i.e. ..nonlocal-local. If the wiring held in memory is itself local,
there will be no difference between local and nonlocal. However, wire moves that perturb local wiring with
m in section 32.7.1 will only show up if nonlocal wiring is toggled.

For mixed-k with random wiring, toggling to local wiring treats each cell as having the relevant local
neighborhood.

32.7.3 ?..re-rnd(off)

If nonlocal is active, enter ? (question mark) on-the-fly to re-randomise the wiring at each time-step –
the (on)/(off) toggle indicates if this is active, which will also be evident by the speed of iteration. The
network will be re-randomised according to any random wiring biases originally set in chapters 11 and 17.
An application of this function is to check the robustness of pulsing dynamics in randomly wired glider
CA[54].

32.7.4 |..periodic-null
Enter | (pipe or vertical bar) to toggle between periodic boundary conditions (PBC) and null boundary
conditions (NBC). NBC is described in section 2.7). The current status is given by the prompt order, i.e.
..null-periodic indicates that NBC is current.

32.8 Change seed/size

These on-the-fly options amend (mutate) the current state or seed, and also (for 1d networks displayed in
1d) the of size of the network .

32.8.1 4/v/\//..rnd seed/block/vseed/vblock

There are two methods of setting a random seed or block on-the-fly in 1d, 2d or 3d. 4/v conserves the
preset density-bias (section 21.3.2). \// conserves the preset vseed or vblock value-bias (section 21.3.3).
In both cases the preset size of a block (section 21.3) is conserved.

To summarise, enter keyhits as follows,

4 . . . to reset the current network state at random.
v . . . to reset the network state as a central random block.

\ . . . random seed according to value-bias (vseed).
/ . . . random block according to value-bias (vblock).

32.8.2 l/L..rnd value/block

To mutate or perturb the current state, enter on-the-fly keyhits as follows,

l . . . to flip/change one bit/value randomly at a random position.
L . . . to flip a central block randomly in the current state. The block size (section 21.3) and

pre-set density-bias (section 21.3.2) are respected.

499

32.8.3 o/∼..original/last
To restore previous seeds/states, enter on-the-fly hits as follows,

o . . . to restore the original seed (chapter 21).
∼ . . . to restore the latest seed that was changed on-the-fly by any method in sections 32.8.

32.8.4 5/6..singleton seed

Figure 32.11: Left: a positive singleton seed, a central 1 surrounded by 0s, and Right: a negative
singleton seed, a central 0 surrounded by 1s, set on-the-fly with keyhits 5 and 6 (section 32.8.4).
Left: v2k5 rcode(hex) 968c4f76, Right: v2k5 rcode(hex) rule d28f022c. n=150, 150 about time-steps,
color by neighborhood (section 32.9.5).

Enter 5 or 6 on-the-fly for a singleton seed, which differs between a binary or multi-value space-thime
pattern (STP).

(for binary v=2): to reset the seed as a positive or negative singleton seed, 5 for a central 1 surrounded
by 0s, 6 for a central 0 surrounded by 1s (figure 32.11).

(for v ≥ 3): 5 for a random non-zero value against a uniform background of zeros, 6 for a random
value against a uniform background of a different random value.

32.8.5 N/n..inc/decrease 1 cell
only for 1d single-rule networks shown in 1d

Enter N or n on-the-fly to increase or decrease the size of the network by 1 cell. The original network is
preserved as far as possible. The extra cell is assigned local wiring for networks that were originally defined
as local, otherwise random wiring is assigned. For a mixed rule homogeneous-k network, one of the rules
from the current set is assigned to the extra cell. For a mixed-k network, a random k in the current range
is assigned, and a random rule. The change in size is indicated in a top-right window, for example,

n increased 166 -> 167 or n decreased 167 -> 166.

500 CHAPTER 32. DRAWING SPACE-TIME PATTERNS, AND CHANGES ON-THE-FLY

32.9 Presentation
These on-the-fly options amend various aspects of the space-time pattern presentation, including color
and scale.

32.9.1 x..tog slant(off)
for 1d networks only, shown in 1d

slant(off) slant(on-right) slant(on-left)

Figure 32.12: Slanting 1d space-time patterns with key x, a 3-way toggle (section 32.9.1). If the slant
is on, successive time-steps are shifted by half a cell-width either right or left. In this example, left
slant produces symmetry — for the elementary CA v2k3 rcode(dec)60.

Enter x for a 3-way toggle to slant time-steps (off)-(on-right)-(on-left) — shown in the on-the-fly index.
This can make asymmetric space-time patterns appear symmetric or reveal the underlying symmetry of
1d iso-rules (figure 16.15). If the slant is on, successive time-steps are shifted by half a cell-width either
right or left as in figure 32.123.

32.9.2 x..tog hex(off)
for 2d networks only, and 2d STP

hex(on) hex(off)

Figure 32.13: Toggling between a hex or square 2d lattice with key x (section 32.9.2). A proper hex
presentation requires an even number of rows

Enter x on-the-fly to toggle between a square or hexagonal lattice (figure 32.13). An even number of rows
is required for a hexagonal lattice to avoid an inconsistent presentation. The on-the-fly index gives the
current status: hex(off) or hex(on).

32.9.3 i/!.tog divs(off)
for 1d and 2d STP — takes effect if the cell scale ≥ 4
To set division lines between cells, or change division line color, (figure 32.14) enter on-the-fly keyhits as
follows,

3For the vector PostScript image of slanted space-time patterns, an odd number of time-steps should be selected
to avoid distortion.

501

a) b) c) d)

Figure 32.14: Changing the division line presentation/color between cells: a) no lines — cells
touch. b) white. c) black. d) light blue. 2d square layout 6×3 (for a hex layout see figure 21.7).

i . . . to toggle divisions on-off. The on-the-fly index gives the current status — divs(off) or
divs(on).

! . . . for a 3-way toggle of the to division color — white, black, and light blue.

32.9.4 @..tog balls outline
if “balls” or network-graph layout is active

If cells are shown as “balls”, which always applies in a network-graph (section 32.19), enter @ on-the-fly
to toggle balls with and without an outline (figure 32.15).

Figure 32.15: Toggling the cell outline in network-graph space-time patterns (section 20.20) with on-
the-fly key @. This example is a 1d (scrolling) ring of cells (as figure 4.10). The cell outline is active
for the leading 14 time-steps only, showing up the zero-value cells in particular. n=150, v8k3 kcode,
index 7 from the rule sample in figure 33.5. Figure 32.42 shows the circle layout without scrolling.

502 CHAPTER 32. DRAWING SPACE-TIME PATTERNS, AND CHANGES ON-THE-FLY

32.9.5 3/./∧..incolor/dot/bground
On-the-fly keyhits for cell colors by neighborhood, and the presentation of zero (background) cells, are as
follows,

3 . . . to toggle between cell colors according to cell value (default) and the neighborhood or iso-group
“looked up” in the IFH (section 31.5). This can also be preset in section 31.2.1. Examples are
shown in figure 32.23 (a,b), and figures 31.1 — 31.3 for 1d, 2d and 3d networks.

. . . . (for 1d and 2d STP) (full stop) toggles putting a dot on zero cells. Dots appear if the cell scale
≥ 4 pixels.

∧ . . . (for 1d and 2d STP, and value colors) (circumflex) to toggle between white and light green for
zero cells, sometimes necessary to show up the background (figure 32.7).

32.9.6 d/-..tog shuffle colors/restore

Depending on whether STP colors are set according to value or IFH (section 31.5), swap or shuffle colors
with on-the-fly keyhits as follows. For value STP a color key as in figure 7.1 is displayed top-right.

d . . . for binary, v=2 value colors: swap 0/1 cell colors. Otherwise randomly shuffle colors, value or
IFH, and matching STP colors.

- . . . (dash) for binary, v=2: toggle color of 1s between black/blue. Otherwise restore the default
colors. Also toogles the appearance of filtering (section 32.11.5).

32.9.7 S..tog space-time display

Enter S on-the-fly to toggle the display of space-time graphics on/off. Not showing space-time patterns,
which continue to run in the background, speeds up other processes, for example creating a sample of
automatically classified rule-space (chapter 33), histograms of “damage” (section 31.6.2), and histograms
of attractors (section 31.7).

32.9.8 P..tog skip steps=1 (off)

Enter P on-the-fly to toggle skipping time-steps on/off (figure 32.16). The number of time-steps to be
skipped can be changed in section 32.16.8. The default is 1, i.e. showing every second time-step. The
current number of time-steps, and whether skipping is currently on or off, is indicated in the prompt, for
example, P..tog skip steps=3 (on).

32.9.9 $..tog sound
DOS only

Enter $ on-the-fly to toggle sound generated by space-time patterns. Both the pitch and delay are generated
by 8 bits near the center of the network.

32.9.10 e/c..expand/contr scale

Enter e on-the-fly to expand the scale of cells in the space-time pattern (1d, 2d or 3d) by 1 pixel, enter c
to contract by 1 pixel. The minumum scale is 1 pixel, max is 127. The current scale is displayed on the
right of the bottom title bar, e.g. scale=4. The initial scale can be preset in section 31.2.4.

Keys e/c have a different effect for diagonally scrolling network-graph space-time patterns
(section 20.20), as in figure 32.15 — the spacing between time-steps is expanded or contracted by one
pixel in figure 32.17.

503

Figure 32.16: Skipping time-steps in a 1d CA with the default steps=1 (section 32.9.8), activated
on-the-fly with keyhit P at about the mid point of the space-time pattern (after about 100 time-steps)
— indicated by a horizontal line in the input-entropy plot — so skipping alternate time-steps thereafter.
The space-time pattern is shown according to neighborhood color, and is also filtered — indicated by
square dots in the input-frequency histogram. v2k5 rcode(hex)968c4f76, n=150.

Figure 32.17: For diagonally scrolling network-graph space-time patterns, as in figure 32.15, keyhits
e/c expand/contract the spacing between time-steps by one pixel. These examples each have the same
number of time-steps, but with expanded spacing — shown in 1d circle layout, n=66, 10 time-steps.

32.10 1d 2d 3d
Space-time patterns (STP) can be displayed in a dimension other than the “native” dimension. A 1d
native network can be displayed in 2d or 3d, a 2d native in 1d or 3d, and a 3d native in 1d or 2d. The
STP dimension can be preset to something other than the native dimension in section 31.2.5, or changes
can be toggled on-the-fly, described here.

In addition, 2d STP can be toggled to 2d+time, or scrolled diagonally — this and 3d STP have
additional on-the-fly options. A 3d native network when toggled to 2d STP results a stack of 2d horizontal
slices (figure 32.18) following the method in figure 21.3 Left.

504 CHAPTER 32. DRAWING SPACE-TIME PATTERNS, AND CHANGES ON-THE-FLY

32.10.1 T..tog 1d-2d-3d
if 2d+time is not active (section 32.10.2)

T is a 3-way toggle between 1d-2d-3d STP — the order changes to show which is current and which is next
in the toggle sequence, i.e. if 2d is active the prompt is 2d-3d-1d, if 3d is active the prompt is 3d-1d-2d.
Note that 1d and 2d STP can be scrolled (section 32.13.3).

On-the-fly methods for converting between STP dimensions are as follows:

1d to 2d: i = the smallest factor ≥ √n, j = n/i

1d or 2d to 3d: i = the smallest factor ≥ 3
√
n, j = the smallest factor ≥

√

n/i, h = n/(i× j) For 1d
prime n, the 2d and 3d representation will be a long string length n.

3d to 2d: The 2d representation consists of h horizontal slices (levels), i × j, stacked one below
the other starting from the top, i.e. a series of horizontal cross-sections through the 3d
volume (figures 32.18, 21.3 Left).

2d or 3d to 1d: This will be represented as normal 1d space-time patterns, were the cells are indexed
n− 1 to 0 from left to right. The cell scale is automatically reduced to 1 pixel.

Figure 32.18: A 3d network shown in 2d by toggling 3d to 1d to 2d
on-the-fly. Below: The 3d space-pattern, 40×20×10. The projection
is isometric seen from below, as if looking up into a cage.
Left: the 2d representation consists of 10 horizontal slices, one below
the other, starting at the top, i.e. a series of horizontal cross-sections
through the 3d volume. v8k6 majority kcode but with shifted uniform
outputs (section 16.8). The seed was a random central block which
settled to this semi-stable pattern.

505

32.10.2 t..tog 2d-2d+time
for 2d STP

(a) 2d+time — keyhit-t then # to scroll (b) 2d diagonal scrolling — keyhit-#

Figure 32.19: For 2d+time and 2d diagonal scrolling, keyhit I toggles between the normal display and
“balls”, here done at a halfway point in the time series. This example is for v3k6 kcode 19a08920520264,
22×22 with the pattern having settled from a singleton seed.

Enter t to toggle between 2d STP, and 2d plus a vertical time dimension, drawn as a 3d isometric projection.
(figures 32.19(a), 4.12). The current status is shown by the prompt sequence, i.e. if 2d+time is active
the prompt is t..2d+time-2d. By default 2d+time will “sweep” – restart at the top on reaching the
bottom of the screen — toggle scrolling with keyhit #. For a simple 2d pattern, keyhit # toggles diagonal
scrolling (section 32.13.3.2 as in figures 32.19(b) and 4.14. For binary (v=2) networks, this is best seen
when cells are colored according to the neighborhood (section 32.9.5).

32.10.3 t..tog grid3d
for 3d STP

Enter t to toggle the background grid3d on/off. The default is to show the grid, as in figures 32.18, 32.20,
and elsewhere.

32.10.4 I..tog balls
if 3d STP, 2d+time, 2d diagonal scrolling

cells as balls cells as parallelogram

Figure 32.20: Toggling on-the-fly be-
tween showing 3d cells, Left: as balls
or circles, or Right: as flat parallelo-
grams. v=8, n=5×5×5. Only the balls
presentation can be captured as vector
PostScript (section 21.4.11).

If STP, 2d+time, or 2d diagonal scrolling is active, enter I on-the-fly to toggle between showing the normal
current cell presentation and showing cells as balls (circles). or as flat parallelograms (figure 32.20) – also
applies to 2d+time (section 32.10.2, figure 32.19).

506 CHAPTER 32. DRAWING SPACE-TIME PATTERNS, AND CHANGES ON-THE-FLY

32.10.5 p..plane
for 2d+time or diagonal scrolling

Enter p on-the-fly to draw a plane grid within the space-time patterns at the current time-step to highlight
the geometry. This plane is also drawn whenever the seed, rule/s or wiring are changed. Figures 4.12 and
4.14 give examples.

32.10.6 J..invisible
if 2d diagonal scrolling is active (section 32.13.3.2)

Enter J on-the-fly to toggle (make invisible) normal diagonally scrolling space-time patterns. The purpose
of this option is to see just the scrolling network-graph, if set (section 32.13.3.3 and figure 32.15).

32.11 Frozen/Filter
filter — if input-entropy histogram (IFH) is active (section 31.5.1)

“Frozen” options allow visualizing the activity/stability of cells. “Filter” options (section 32.11.5) allow
progressively filtering categories of cells of the most frequent neighborhood, or iso-group for an iso-rule,
to show up interacting configurations such as gliders more clearly. Note the frozen and filter options can
be used together, and work for 1d, 2d and 3d (including RBN and DDN), but filtering relies on data from
the input-entropy histogram (IFH), so the IFH option must be active, the default for 1d networks. For
2d and 3d networks IFH requires activation (section 31.5.1).

32.11.1 h..nor-dy-f1-f2-bin

Figure 32.21: Glider-guns
shooting interacting gliders,
from the X-rule[14]. The
green dynamic time-trails of
20 time-steps are activated
with on-the-fly toggle/cycle
key h (dy — dynamic
trace, section 32.11). Enter
H on-the-fly to change
the length of time-trails
(section 32.11.3).

Enter h on-the-fly to toggle/cycle through the following five ways (figure 32.23 b,c,d,e,f) of displaying
cells in space-time patterns: nor — the normal display — cells by value, dy — dynamic trace, showing
dynamic time-trails (figure 32.21) – the most effective way of showing the path of gliders in 2d, f1 and f2
— two ways of showing “frozen” cells, and bin — frequency bins, then back to nor. Gliders time-trails
also appear in f1, f2 and bin, for example figure 4.13.

507

nor . . . “normal” colors. The 5-way toggle at nor shows cells according to their actual cell value,
even if color by neighborhood “lookup” was previously active.

v=2 v=8

dy . . . “dynamic trace” on a zero background, a new option, where gliders leave dynamic green
trails, and the present moment is shown as “normal”. (figure 32.23 c).

v=2 to 8

f1 . . . “frozen” (method 1): frozen cells are colored purple. Dynamic, unfrozen cells, are show
as “normal” (figure 32.23 c). The following color key reminder is shown in a top-right
window,

v=2 v=8

f2 . . . “frozen” (method 2): for binary, v=2: frozen 1s are colored red, frozen 0s green. For v ≥ 3:
frozen (v-1)’s are colored red, frozen (v-2 to 0)’s green. Dynamic, unfrozen, cells are white
(figure 32.23 d). The color key reminder also shows an updating percentage of reds, greens,
and the total frozen.

v=2 v=8

bin . . . colors are assigned from a spectrum representing the fraction of time each cell have been
“on” in a (frozen generation) time window of x time-steps, so falling into a preset number
of frequency bins, and bin boundaries (figure 32.23 e). For binary, v=2, “on” signifies 1.
For v ≥ 3, “on” signifies the maximum value (v-1). The top-right reminder shows the bin
color scheme, and bin boundaries defined by their upper limits (these parameters can be
reset in section 32.11.2,

v=2 v=8 .

Figure 32.22: Top-right information and color keys for the 5-way toggle/cycle with on-the-fly key h
for alternative presentations of space-time patterns .

508 CHAPTER 32. DRAWING SPACE-TIME PATTERNS, AND CHANGES ON-THE-FLY

(a) cells by neighborhood (b) nor — cells by value

(c) dy — dynamic green trails,

otherwise value colors, v3k5 CA

(d) f1 — frozen purple,

otherwise value colors

(e) f2 — frozen 1s red, 0s green,

otherwise white

(f) bin — frequency bin colors

Figure 32.23: Toggling between (a,b) with key 3 — cells by value or neighborhood (section 32.9.5),
and 5-way toggling/cycling between (b/c/d/e/f) with key h — cells by value, dynamic traces (v3k5
CA), two different “frozen” presentations, and frequency bins (section 32.11.1). All examples are on
a 2D 60×60 lattice. (c) is a “dynamic trail” option where gliders leave green trails (v3k5 CA (hex)
004a8a2a8254). (a,b,d,e,f) are the same v2k5 RBN showing 5 alternative snapshots of the same
stabilized dynamics with wiring restricted to an 8 cell radius, and mixed rules with canalyzing inputs
set to 51%.

509

The current status is given by the prompt order in the on-the-fly key index, for example,

7..dy-f1-f2-bin-nor

indicates that the dy presentation is current. At the same time a top-right window gives the relevant
color key and other information, figure 32.22. To qualify as “frozen” a cell’s value must remain unchanged
according to parameters in section 32.11.3. Frequency bins are defined in section 32.11.4. Figure 32.23
gives space-time pattern examples. this option would need to be set in section 31.5.1.

32.11.2 H..f-gens (now 20)/bins(10)

Enter H on-the-fly to change “frozen” parameters, the default number of frozen generations (20), or the
number of default bins (10) and bin boundaries (equal), related to section 32.11.1 above. The following
top-right prompts are presented in turn (showing the initial defaults),

enter new ’frozen’ Generation size (now 20):
reset bin boundaries, enter new total (max 20, now 10):

Frozen generations are explained in section 32.11.3.
Bins, bin boundaries and related further prompts are covered in section 32.11.4.

Figure 32.24: Space-time snapshot of a 2d CA inside another 2d CA with different k, the same space-
time pattern as figure 19.6 (where rule details are given) but colored according to (default) frequency
bins (section 32.11.4). The 2d (80×80) v3k7 CA spiral-rule[48] was loaded into a 2d (120×120) v3k6
complex CA which generates spiral structures.

510 CHAPTER 32. DRAWING SPACE-TIME PATTERNS, AND CHANGES ON-THE-FLY

Figure 32.25: Frequency bins set by hand — shown in the
top-right bin window (for figure 32.24). Frozen generation
size=100, no of bins=5, bin boundaries: 1, 5, 20, 100.

32.11.3 frozen generations

The “frozen” generation size is the number of time-steps that a cell must remain unchanged to qual-
ify as “frozen”, and also sets the length of dynamic-trails (figure 32.21). It is reset with on-the-fly H
(section 32.11.2) giving the following prompt,

enter new ’frozen’ Generation size (now 20):

Enter a new frozen generation size, which also sets the maximum number of frequency bins
(section 32.11.4). The current frozen generation size is shown in the on-the-fly index and becomes the
new default.

32.11.4 frequency bins

Frequency bins represent fractions of time each cell have been “on” in a (frozen generation) time window
of x time-steps. For binary, v=2, “on” signifies 1. For v ≥ 3, “on” signifies the maximum value (v-1). A
space-time pattern cell falls into one of the preset number of frequency bins and is colored according to a
bin color scheme (figure 32.22bin).

On-the-fly H (section 32.11.2) allows changes to the number of bins and bin boundaries. The following
top-right prompt is presented after the frozen generation prompt in section 32.11.3,

reset bin boundaries, enter new total (max 20, now 10):

The current number of bins is shown in both the on-the-fly window and in this prompt. First enter
the new bin number, which cannot be greater than the frozen generation size (otherwise it is reduced
automatically) – a subsequent top-right prompt sets the bin boundaries,

unequal bins-u, equal-def:

Enter return to set equal size bins (or as equal as possible) automatically. Otherwise enter u to set
the bin boundaries by hand (example in figure 32.25). A frequency bin is the interval above the previous
bin and its own upper limit. To define the bins, enter successive upper limits — each entry should be
greater than the last. The following top-right prompts are presented in sequence,

enter bin boundary 1 (def 2):
enter bin boundary 2 (def 4):
etc... invalid entries are corrected, by may also result in the following top-right warning
invalid bin boundaries, cont-ret: (enter return to backtrack)

32.11.5 f/F/a/=/-..filter/undo/all/anti/app
if input-entropy is active (section 31.5.1)

On-the-fly filtering algorithms take streaming data from the input-frequency histogram (IFH)
(section 31.5), then suppress — filter — the printing of cells of the most frequent (unfiltered) bar
representing the neighborhood, or iso-group for an iso-rule. Adjacent black blocks indicate currently
filtered bars (figure 32.27).

Keyhit ’f’ progressively filters from high to low IFH frequency, ’F’ unfilters in reverse order, ’a’ unfilters
all simultaneously, ’=’ (equals sign) toggles antifilter (swaps filtered/unfiltered), and ’-’ (dash) toogles just
the appearance of filtering (and also restores default colors (section 32.9.6)).

511

Figure 32.26: Examples of filtering space-time patterns to show up gliders more clearly (n=150, about
200 time-steps). Left: unfiltered space-time patterns of v2k3 rcode 110, transformed to the equivalent
v2k5 rcode 3cfc3cfc, n=150 (cells by value). Centre: the same space-time patterns — filtered (cells
by neighborhood lookup). Right: space-time patterns of the v2k5 rcode 360a96f9. Cells are shown by
neighborhood lookup, and are progressively filtered in 2 stages.

Figure 32.27: The lookup-frequency
histogram relating to figure 32.26.
Left Above: v2k5 rcode(hex)360a96f9.
Left Below: v2k3 rcode(dec)110 trans-
formed to v2k5 rcode(hex)3cfc3cfc.
Filtered neighborhoods are indicated
with a black block. Note that the lookup
frequency histogram is shown vertically
in DDLab.

To ensure that very low frquencies can be filtered, the analysis generation size can be increased
(section 32.12.8). Background domains are filtered first, being the most frequent. Gliders and other
rare structures are left until last, so can be isolated and seen more clearly (figures 32.26, 32.28, 32.29,
32.30, 4.9). The method works for any type of network (1d, 2d or 3d) provided that the IFH is active, the
default for 1d, but for 2d and 3d networks IFH requires activation (section 31.5.1).

Filtering can be combined with on-the-fly mutation (section 32.5.4) to explore the landscape of related
rules, especilally 2d iso-rules (section 16.10.8).

To summarise, filtering is implemented on-the-fly with the following keyhits,

f . . . progressively filter from high frequency to low, and mark with a black block. Zero frequencies
are not filtered.

F . . . progressively unfilter in reverse order and remove the black block.
a . . . immediately restore, unfilter all filtering and remove black blocks.

512 CHAPTER 32. DRAWING SPACE-TIME PATTERNS, AND CHANGES ON-THE-FLY

= . . . (equals sign4) toggle antifilter to reverse the filter scheme and black blocks.
- . . . (dash) toggle just the apearance of filtering without affecting black blocks (section 32.9.6). Also

restore the default colors (section 32.9.6).

As well as progressively filtering/unfiltering on-the-fly, specific bars can be selected to be fil-
tered/unfilytered in section 32.16.7 from the STP pause prompt (section 32.16), enter q then f.

For most glider rules, only a few bars need to be filtered to filter background domains. Rules with very
complicated domains, such as the v2k3 rcode(dec) 54 and 110, must first be transformed to equivalent
rules with greater k (k=5 in this case) for successful filtering, which requires filtering a number of the k=5
neighborhoods (figures 32.26, 32.27, 32.28).

The method can also filter chaotic domains, and reveal discontinuities within or between chaotic
domains (figure 32.29).

Figure 32.28: Space-time patterns from the same initial state showing interacting gliders, which are
embedded in a complicated background. Left: unfiltered, cells by value. Right: cells by neighborhood
lookup, with the background domain filtered. The k=3 rule 54 was transformed to its equivalent
v2k5=5 rcode(hex) 0f3c0f3c, n=150.

Figure 32.29: Unfiltered and partly filtered space-time patterns of v2k3 rule 18, transformed to
v2k5 rcode(hex) 030c030c. n=150, about 130 time-steps from the same random initial state, showing
discontinuities within the chaotic domain.

4Keyhit = (equals sign) has another use in the context of “damage spread” between two networks
(section 32.12.11).

513

f1-3

f3-6

Figure 32.30: 2d filtering with a log2 iso-histogram size 92 in a moving window of 100 time-steps, with
cells (60×60) colored by lookup. 6 stages of filtering f1 to f6 (high to low frequency) are marked by
black blocks. This v3k6 kcode (file v3k6x2.vso) is the same as in figure 32.7(4) where spirals emerge
from interacring gliders. The kcode is first transformed to rcode then to the iso-rule (iso-hex) 8a 20 01
60 2a 20 aa aa a9 aa 2a 99 2a a9 28 0a 2a 2a 69 80 2a 62 84.

32.12 Analysis

These on-the-fly options relate to various methods of real-time analysis of space-time patterns, including
the input-frequency histogram (IFH) (section 31.5) in sections 32.12.1 to 32.12.3, input-entropy, pattern
density, entropy/density scatter plot, density return map, return map by value, state-space matrix, and
alternative presentations of the above.

514 CHAPTER 32. DRAWING SPACE-TIME PATTERNS, AND CHANGES ON-THE-FLY

32.12.1 0/%..tog lookuphist:1-2/1-time
if input-entropy is active (section 31.5.1)

These on-the-fly keyhits transform the IFH presentation as follows,

0 . . . (zero key) to toggle between any IFH presentation and its most compact form, a single-row
with 1-pixel black bars (figure 32.33(e)). This is useful for a quick view of large multi-row IFH.
Filter/mutation marks do not appear.

% . . . to toggle between the usual 2d histogram, expanded to 3d with a diagonal time axis — if the
number of bars ≤ 64 (figure 32.33(b).

Figure 32.31: A snapshot of the DDLab screen, showing the input-frequency histogram in 3d with
an added time dimension (see also figure 32.32). Various sections of the screen show the following:
Far Left: a scrolling space-time pattern of a rule by Wentian Li,[28] v2k5 rcode(hex) c3bce390, (com-
plex collection 33) n=150. Near Left: three alternative scrolling graphs (toggled with j, section 32.12.5)
— input-entropy — the lookup frequency of each neighborhood — both simultaneously. Center:
the input-frequency histogram in 3d (section 32.12.1). Top Right: the interrupt/pause prompt
(section 32.16). Far Right: on-the-fly key index (section 32.1). .

515

32.12.2)/(..lookhist: amplify/restore
if input-entropy is active (section 31.5.1)

Enter on-the-fly keyhit ’)’ to double the length of IFH bars (which can be repeated, there is a maximum
cutoff) — enter ’(’ to restore the default length. Enter ’(’ again to show the bar lengths as log2 of their
actual values which clearly shows all bars but still distinguishes between rare and frequent (figure 32.30).
Enter ’)’ to recover the actual values. The full sequence is explained in figure 32.32(a)-(e).

(a) log2 (b) default (c) b×2 (d) c×2 (e) d×2 (f) e×2

Examples of the IFH within the IFH window, with the 6 longest bars filtered — marked with black
blocks. There are 25=32 bars for this v2k5 rcode. The length of bars (shown relative to a 100 time-step
window) can be adjusted by on-the-fly keyhits as follows:
(a) the log2 presentation by keyhit ’(’ from the default which clearly shows all bars but still distinguishes
between rare and frequent (see also figure 32.30).
(b) the default presentation where rare bars would be inconspicuous.
(c) the default×2. Each keyhit ’)’ doubles the previous bar length, so (d) is default×4, (e) is default×8,
(f) is default×16, etc. Bars longer than the IFH window are cut off. Keyhit ’(’ work in reverse order,
halving the bar length until the (b) the default, then the next keyhit ’(’ gives the log2 presentation.

(1) the default presentation (2) IFH colors (3) IFH colors filtered 6 times.

Figure 32.32: Tap: (a)-(f) adjusting IFH bar length with 32 bars of the 1d v2k5 rcode, and filtered
6 times with keyhit ’f’ (section 32.11.5). Above: (1)-(3) alternative presentations of the same 1d
STP, size n=150, 223 time-steps, from the same initial state. The rule is Wentian Li’s[28] v2k5 rcode
(hex)c3bce390 (complex collection 33) also shown in figure 32.31.

516 CHAPTER 32. DRAWING SPACE-TIME PATTERNS, AND CHANGES ON-THE-FLY

32.12.3 /&..lookhist: shrink/inc&col
if input-entropy is active (section 31.5.1)

These on-the-fly keyhits enable extra manipulation of the input-frequency histogram (IFH) to modify a
multi-row histogram to a single row (figure 32.33) and to contract/expand the IFH bar width (figure 32.34).
The precise number of intervals and sizes will depend on screen resolution.

. . . (underscore key) to decrease the bar width by 1 pixel for each keyhit. After reaching a very thin
limit (which depends on screen resolution) the next keyhit restores the dedault bar width.

& . . . to increase the bar width by 1 pixel for a single row (and the IFH window) up to a maximum.
For a multi-row histogram, increase the IFH window by 25% which increases the number of bars
(the loweer section will be off screen) which increases and reduces the number of rows.

(a) default (b) & +1 (c) ’&’ +4

(d) ’ ’ -2

(e) toggle 0

Figure 32.33: (a)-(e) adjusting a multi-row log2 IFH to
one complete row, for the v3k7 “spiral” iso-rule. with
276 bars.
(a) the default presentation has 3 rows.
(b) 1 keyhit ’&’ thickens bars by +1 pixel in 2 rows, and
expands IFH window with the lower part off the screen.
(c) 4 keyhits ’&’ bars by +4 pixels in a single long row.
(d) 2 keyhits ’ ’ (underscore) shrinks bars to fit in one
complete row.
(e) at any time keyhit ’0’ toggles to 1 pixel black bars.
Left: 80×80 snapshot of v3k7 spiral-iso-rule dynamics
colored according to the IFH. .

517

+7
+6

+5

+4

+3

+2
+1

0

-1

-2
-3

-4
-5

-6

Figure 32.34: changing the bar width of the
input-frequency histogram (IFH) for the same
system as figure 32.31, v2k5 rcode with 32
bars. The default presentation is labeled 0.
Each keyhit ’ ’ (underscore) reduces bar width
by one pixel labeled -1 to -6 reducing the IFH
length. Each keyhit ’&’ increases bar width by
one pixel labeled +1 to +7 increasing the IFH
length. The number of intervals and sizes will
depend on screen resolution.

32.12.4 s..tog entropy-density
if either input-entropy or pattern density is active (section 31.5.1)

(a) entropy plot (b) density plot

Figure 32.35: On-the-fly ’s’ toggles entropy/density plots. 1d v4k3 rcode (complex collection 27)
n=150, 450 time-steps, filtered 4 times, from the same initial state. (a) the entropy plot between STP
(IFH colors) and the IFH log2. (b) density plot of 4 values with STP (value colors).

518 CHAPTER 32. DRAWING SPACE-TIME PATTERNS, AND CHANGES ON-THE-FLY

Enter s on-the-fly to toggle between showing the input-entropy, or the pattern densities as a set
of v value-density graphs (figures 32.35, 31.10 and section 31.5.1). The current status is given by
the prompt order, i.e. density-entropy would indicate that density is current. These measures
relate to a moving window of time-steps (default 10) that can be reset in section 32.12.8.

32.12.5 j..tog ent-in-both
if input-entropy is active (section 31.5.1)

On-the-fly keyhit j is a 3-way toggle for plotting the input-entropy, with current status given by the
prompt order in the on-the-fly key index (figure 32.1): ent-in-both — the default input-entropy,
in-both-ent — the input-frequencies as a set of v superimposed graphs following IFH bar length
and color, both-ent-in — both together (figures 31.10, 32.31).

32.12.6 u..tog entropy/density plot
if input-entropy is active (section 31.5.1)

Enter u on-the-fly to toggle showing the density/entropy scatter plot (figures 32.36, 32.37Top) in
a lower central window, where the entropy (y-axis) is plotted against the density (x-axis), relative
to a moving window of time-steps (default 10), which can be reset in section 32.12.8).

Glider rules have distinctive scatter plot signatures, with high input-entropy variability, which
lie within a parabolic envelope because high entropy is most probable at medium density, low
entropy at either low or high density.

16 1d CA v2k5 glider rcodes, n=150 16 1d CA v3k3 glider rcodes, n=150

Figure 32.36: Entropy/density scatter plots[44]. The density is defined as follows: for binary, v=2, the
fraction of 1s; for v ≥ 3, the fraction of non-zero values. Input-entropy is plotted against the density
relative to a moving window of time-steps, which can be reset in section 32.12.8. Plots for the first 16
rcodes in the glider rule collections (GRC files, section 32.6.1) are show superimposed — each has its
own distinctive signature, with high input-entropy variability. For each rule, about 1000 time-steps are
plotted from several random initial states.

519

(a) Entropy/density scatter plot (b) Entropy/density plot with time-history links

(a) Density return map scatter plot (b) Density return map with time-history links

Figure 32.37: Top: The entropy/density plot (section 32.12.6). Bottom: The density return map
(section 32.12.7). Colors green, red, and black, represent values 0, 1, 2.
(a) The scatter plot ≈300000 time-steps.
(b) The plot with sucessive dots linked for a time-history, for a few time-steps. Showing links toggled
with keyhit ’,’ (coma) on-the-fly.
The plots relate to a 2d hexagonal lattice 222x222, v3k6, kcode=(hex) 020282815a0254, with fully
random wiring (as in figure 32.38) from the complex rule collection g v3k6.r v (g4) (section 3.6.2). The
window of time-step window is set to 1 (section 32.12.8) and both plots reveal “pulsing” dynamics[54,
55] — similar results can be obtained with other complex, and “glider” rules, selected on-the-fly with
key g (section 32.6.1).

520 CHAPTER 32. DRAWING SPACE-TIME PATTERNS, AND CHANGES ON-THE-FLY

Figure 32.38: Left: A space-time snapshot of a 2d 222x222 cellular automaton with emergent spirals —
the same complex rule as in (figure 32.37). Center: All connections were randomised (section 17.9.5)
— the wiring of one central cell is shown. Right: A space-time snapshot of the resulting dynamics,
which has immediately dissolved into chaos but with a pulsing density following periodic oscillation,
captured in the entropy/density scatter plot and the density return-map (figure 32.37).

Chaotic rules, on the other hand, give a compact scatter at high entropy (at the top of the
parabola). For ordered rules the entropy rapidly falls off with very few data points because the
system moves rapidly to an attractor.

For “pulsing” dynamics[54, 55] where random wiring is applied to a 2d “glider” rule running in
a 3-value k-totalistic CA, the plot will appear as a closed loop as in figure 32.37Top. Each glider
rule maintains a distinctive waveform and density/entropy plot signature.

32.12.6.1 entropy/density plot — linked history

While the entropy/density plot (section 32.12.6) in active, the comma key ’,’ will toggle connecting
sucessive dots for a linked history, as in figure 32.37Top(b). The same applies for the density return
plot (section 32.12.7).

32.12.6.2 entropy/density plot — output/save data

For “pulsing” dynamics[54, 55] the wavelength (wl) and wave height (wh) can be recognized
and measured automatically. The output appears in the terminal and can be saved. While the
entropy/density plot is active, key-press ’“’ (inverted coma) to toggle showing running data in the
terminal, as in figure 32.39(b)..

To save the data as an ASCII file to enable analysis or visualization in alternative software,
first pause space-time patterns (on-the-fly q) (average values will appear in the terminal), then
enter entropy-d (section 32.16). The following top-right prompt appears,

start new entropy data file-n:

If n is entered, a top-right filing prompt will appear (section 35.3) — the default filename is
my entr.dat. The data will be output in the terminal as it is being saved.

If saving the entropy data is already in progress the following top-right prompt appears,

now saving entropy: stop-s, start new file-n, cont-ret:

521

(a) entropy w=1

NEW RULE
v3k6 kcodeSize=27
(hex)020282815a0254 w=1
min=55 wh==0.580
max=59
min=62 wl=7 wh==0.545
max=66 wl=7
min=70 wl=8 wh==0.563
max=75 wl=9
min=78 wl=8 wh==0.586
max=82 wl=7
min=86 wl=8 wh==0.526
max=89 wl=7
min=93 wl=7 wh==0.574
max=97 wl=8
min=101 wl=8 wh==0.519
max=104 wl=7
min=108 wl=7 wh==0.593
max=112 wl=8
min=116 wl=8 wh==0.598
max=120 wl=8
min=123 wl=7 wh==0.556
max=128 wl=8
min=131 wl=8 wh==0.549
max=136 wl=8
min=139 wl=8 wh==0.573
max=144 wl=8
min=147 wl=8 wh==0.579
max=152 wl=8
av-wl=7.68, av-wh=0.568, sample=147

(b) data output

Figure 32.39: For “pulsing” dynamics[54, 55] the wavelength (wl) and wave height (wh) can be
recognized and measured automatically. (a) The input-entropy plot (stretched vertically) which includes
the input-frequencies as a set of superimposed dots (section 32.12.5). (b) If the entropy/density plot
is active, keyhit “ (inverted coma) will toggle data output in the terminal. The rule details are shown
at the top, and the size of the moving window of time-steps (w=1), then the time-step of the max and
min entropy values, recognised automatically, which cuts in after 50 time-steps, and the corresponding
wavelength (wl), waveheight (wh). This example is for the v3k6 kcode (g4) in (figure 32.37). Other
pulsing rules can produce jagged stretches in the plot giving false min/max results, but increasing the
time-step window (section 32.12.8) smooths the plot to fix this problem without affecting wl, though
wh will be reduced. If interrupted, the average values so far are shown, and the data can be saved as
described in section 32.12.6.2.

32.12.7 ;..density return map

If the space-time pattern density (section 32.12.4) is active, enter ; (the semi-colon key) on-the-fly
to toggle a scatter plot of the density return map, plotting the density of each value at t−1 y-axis,
against t0 x-axis, as in figure 32.37 Bottom. This is interesting when the densities follow quasi-
periodic oscillations giving a plot of closed loops. Spontaneous “pulsing” dynamics[54, 55] occurs
for a network with v≥3 and random wiring but one complex rule, for example rules from the glider
rule collections5 selected on-the-fly with key g (section 32.6.1).

The best results are revealed if the generation size of the moving window of time-steps
(section 32.12.8) is reduced to one. The periodic density oscillations can be seen by the naked
eye in the pulsingf space-time pattern itself, or in the entropy plot section 32.12.4, but if the

5To see the glider dynamics, toggle between CA and random wiring with key 7 (section 32.7.2).

522 CHAPTER 32. DRAWING SPACE-TIME PATTERNS, AND CHANGES ON-THE-FLY

random wiring is localised (section 12.5.2), pulsing dissipates but density waves reminiscent of
reaction-diffusion are observed. To speed up the plot considerably, toggle the space-time pattern
display off (on-the-fly S, section 32.9.7).

32.12.7.1 density return map — linked history

while the density return plot (section 32.12.7) in active, the comma key , will toggle connect-
ing sucessive dots for a linked history, as in figure 32.38Bottom(b). The same applies for the
entropy/density plot (section 32.12.6).

32.12.7.2 density return map — saving the data

The return map density data can be saved to a file to enable analysis or visualization in alternative
software. To save the data, first pause space-time patterns (on-the-fly q), then enter dnsty-d
(section 32.16). If saving the density is already in progress the following top-right prompt appears,

now saving dnsty: stop-s, start new file-n, cont-ret:

Otherwise, or if n is entered, a top-right filing prompt will appear (section 35.3) — the default
filename is my dnsty.dat. This an ASCII file — the first line gives the title “density return map:”
and the start time-step, then an indefinite sequence (until interrupted) of densities for 0, 1, 2, . . .
n-1 where the values in each row must add up to one. For example, here are a few lines of data
for from figure 32.37 where v=3 so for densities of 0, 1, and 2,

density return map: start time-step=318
0.238171 0.263209 0.498620
0.442801 0.061460 0.495739
0.820956 0.009638 0.169406
0.953291 0.021873 0.024836
... continues

32.12.8 G..a-gens (now 10)
if either input-entropy or pattern density is active (section 31.5.1)

Enter G on-the-fly to change the default number of analysis generations, the size of the moving
window of time-steps relating the input-frequency histogram (IFH), filtering (section 32.11.5),
input-entropy and pattern density (sections 32.12.4, 32.12.6). The following top-right prompt is
presented,

enter new ’analysis’ Generation size (now 10):

The current analysis generation size is shown in both the on-the-fly window and in this prompt.
The initial default is 10 time-steps for the whole network, or 500 time-steps for a single cell —
in his case there will be a subsequent prompt to change the single cell position as described in
section 31.5.3.

32.12.9 D..return map by value

Enter D on-the-fly to toggle a scatter plot of the return map by value (in a 2d-phase plane),
described in section 31.2.2.2 and figure 31.5, providing characteristic fractal signatures for chaotic
rules.

523

32.12.10 y..state-space

Enter y on-the-fly to toggle the “state-space matrix” which plots each state in the space-time
pattern on a 2d grid plotting the left half of the bit string against the right half, described in
section 24.5 and figure 31.4, providing a kind of signature of the dynamics.

32.12.11 =..tog diff (keep damage)
if the “damage” is active (section 31.6)

The method to graphically represent and analyse the difference, or the spread of “damage”, between
the space-time patterns of two networks is described in section 31.6.

Enter ’=’ (equals sign6) on-the-fly to toggle between two definitions of damage, (keep damage)
— once damaged keep the damage, and (dontkeep damage) — the instantaneous difference at
each time-step. The on-the-fly index shows the current status.

32.13 Miscellaneous
These final miscellaneous on-the-fly options include pausing, scrolling, stepping, and changing the
speed of space-time patterns.

32.13.1 X..index display

Enter X on-the-fly to toggle the on-the-fly key index itself.

32.13.2 *..tog endpause (on)
for 1d or 2d+time space-time patterns and scrolling is not active

Enter * (the star key) on-the-fly to toggle the end pause on/off. If scrolling is not active, 1d
space-time patterns (and 2d+time) are displayed in successive vertical sweeps. If the end pause
is on, when the iterations reach the foot of the screen the interrupt/pause options (section 32.16)
are presented in a top-right window. If the end pause is off, the sweeps continue indefinitely. The
current status is shown in the prompt by (on) or (off).

32.13.3 #..tog scrolling
for 1d, 2d, or 2d+time space-time patterns

Enter #, the hash key7, on-the-fly to toggle space-time pattern scrolling on/off, for 1d, 2d
(including the network-graph), or 2d+time. These dimensions can be different from the network’s
native dimension (section 32.10.1).

6Keyhit = (equals sign) has another use in the context of filtering (section 32.11.5).
7The hash key, #, to toggle scrolling, may not give # on some keyboard settings (noticed in DOS) — in this

case the “pounds” key, £, will probably give #, so try using £ to toggle scrolling instead.

524 CHAPTER 32. DRAWING SPACE-TIME PATTERNS, AND CHANGES ON-THE-FLY

32.13.3.1 1d scrolling

The # key will toggle a 1d space-time presentation between scrolling upwards or making successive
vertical sweeps (section 31.2.6). If set, the input-entropy or pattern density plots (sections 32.12.4
and 31.5.1) will also scroll or sweep.

32.13.3.2 2d diagonal scrolling

The # key will toggle a 2d space-time presentation between a 2d movie and scrolling diagonally
upwards. When scrolling is set, successive 2d snapshots will move diagonally towards the bottom-
right, then scroll diagonally upward, so that the present moment is the movie at the bottom-right
(figure 4.14). An active network-graph will scroll simultaneously (section 32.13.3.3 below).

32.13.3.3 network-graph scrolling

If normal 2d space-time patterns (STP) are toggled (with the # key) to scroll diagonally upwards
(section 32.13.3.2), an active network-graph (section 32.19) will also scroll simultaneously. Scrolling
of both starts once normal 2d STP reaches the foot of the DDLab screen, with the present moment
of both at the bottom-right. Enter J on-the-fly (section 32.10.6) to make the original 2d invisible
and see just the scrolling network-graph (figures 4.10, 20.27).

32.13.3.4 2d+time scrolling

The # key will toggle a 2d+time presentation (section 32.10.2) between successive vertical sweeps
and scrolling.

32.13.4 +..tog time-step pause

Enter + (the plus key) on-the-fly to pause after each time-step and other options (also available
from the pause prompt, section 32.16.8). A top-right prompt is presented similar to the following,

time-step 6828, next-ret, reset count-r, save current-s: stepback x time-
steps (max=frazen-gens=19
on-the-fly/interrupt options=y/i, end pause-q: (values shown are examples)

Enter return for the next time-step. The prompt will reappear until end pause-q is entered.
The full list of options is described below,

options and info . . . what they mean

time-step 6828 . . . the current time-step (for example).

next-ret . . . enter return for the next time-step.

reset count-r . . . to reset the count to 1.

save current-s . . . to save the current space-time pattern.

stepback x time-steps (max=frozen-gens=19 . . . enter the number of time-steps to
stepback and restart from a previous time-step.
The maximum stepback is the frozen generation
size, preset in section 31.2.3, or reset on-the-fly
in section 32.11.2.

525

on-the-fly/interrupt options=y/i . . . enter y to select any on-the-fly option presented
in a small top-right window. Enter i to reselect
the interrupt/pause prompt (section 32.16).

end pause-q . . . to exit the prompt and continue.

32.13.5 </>..slow/max speed

Enter < (left arrow key) on-the-fly to slow down the iteration speed of space-time patterns by half
(eventually iteration will stop). Enter > to restore iteration back to full speed. Slow motion can
also be selected at various other stages in DDLab, listed in section 31.2.8.

32.13.6 q..pause

Enter q on-the-fly to pause space-time patterns. The top-right interrupt/pause window will appear
(section 32.16). The window can be temporally removed to uncover the hidden part of the screen
with option hide-W — the flashing cursor remains active. Enter any key to restore the window,
except keys @/>/< which still function, to print/save/load the screen (section 5.6).

32.14 Interrupting space-time patterns

If the space-time pattern iteration is interrupted on-the-fly with q, or if “end pause” is set in
section 32.13.2 and space-time patterns reach the foot of the DDLab screen, the program will
pause — a large top-right pause window is then displayed8 in two sections; the upper section
shows network, time-step and rule data — described in section 32.15; the lower section presents a
number of interrupt/pause options — described in sections 32.16 to 32.16.9.

32.15 Rule details for space-time patterns

On pausing space-time patterns (on-the-fly q) the upper section of the top-right pause window
shows network and time-step data, and data9 about the current single rule (or the rule at cell
index 0 for a mixed-rule network). An example of the data for v2k5 rcode is shown below,

rcode(dec)=2702950694 (the rule)
a1 1b c1 26

rcode v2k5 ld=0.406 ld-r=0.812 zl=0.617 zr=0.578 Z=0.617188
C=0/5 1d=150 time-step=1597

network and time-step data
1d=150 . . . the network dimension and size for 1d, or the equivalent for 2d or 3d, for

example, 2d=40x40 or 3d=20x20x20.
time-step . . . the current time-step number.

8The display of the pause window can be suppressed in section 32.13.6.
9This data is similar to the data in the rule window (section 16.19).

526 CHAPTER 32. DRAWING SPACE-TIME PATTERNS, AND CHANGES ON-THE-FLY

key to rule data
(the rule) . . . its bit/value pattern (as much as will fit), in decimal (for small tables), and in

hex (as much as will fit).
rcode . . . or kcode or tcode — the rule type.
v2k5 . . . the value-range v and neighborhood size k. A k-mix will be indicated, for

example v2k(2-7).

for a full rule-table (rcode) only
ld, ld-r . . . λ parameter[26], λ ratio[38].
zl, zr, Z . . . Zleft, Zright, the Z parameter[38, 44].
C=0/5 . . . the number of canalyzing inputs, in this case none, out a possible 5 (k=5).
*3*** . . . shows exactly which of the k inputs are canalyzing (if none this is not shown)

— for example, 1 canalyzing input, at neighborhood index 3.

For a mixed-k network, rule data are omitted, so an example of the remaining data would be
similar to the following,

rcode v2k(1-9) 1d-150 time-step=256

32.16 Space-time pattern interrupt/pause prompt

On pausing space-time patterns (on-the-fly q) the lower section of the top-right pause window10

provides a range of context dependent interrupt/pause options11 for amending/saving/loading the
rule and state, and other functions including displaying the network, network-graph and generating
a PostScript file, as well as any on-the-fly options from section 32.3.

The following context dependent prompts are presented in a top-right window,

rule:save/load/revise/rnd/trans-s/l/v/r/t net-n sample:load/keep-E/K
PScript-P Z:high/low-Z/z canal-C g-rules(rnd/seq)-G
state:rev-e rnd/Ham/blk/orig/last-R/H/k/o/∼ sng:pos/neg-5/6 save/load-S/L
graph-g/p, border-B filter-f skip-X pause-N step-x/+ speed(max)-V entropy-d (or dnsty-d)

top-T on-the-fly-y hide-W back-q cont-ret:

Note that some of the options depend on the context, and only appear as follows,

options . . . context

trans-t . . . not in TFO-mode.

Z:high/low-Z/z . . . single rule networks, and not in TFO-mode.

canal-C . . . not in TFO-mode.

g-rules(rnd/seq)-G . . . if a complex rule collection is detected for the current rule type,
v and k (section 32.6.1).

PScript-P . . . for 1d or 2d STP, irrespective of the native dimension. This includes
3d shown as 2d (sections 32.16.3, 32.18).

10The window can be temporally removed to uncover the hidden part of the screen with option hide-W
(section 32.13.6.

11Some of these options are similar to “further attractor basin complete” options in section 30.5.

527

graph-g or graph-g/p . . . enter g for space-time patterns within the network-graph
(sections 32.19, 20.20). g/p appears if a network graph is al-
ready active — enter g to deactivate, or p to save the current
network-graph image to vector PostScript (section 32.19.2).

entropy-d or dnsty-d . . . d appears if either the “density/entropy plot” (section 32.12.6) or the
“density return map” (section 32.12.7) is active — to save the data
for either plot (sections 32.12.6.2 and 32.12.7.2). These options are
particularly relevant for “pulsing” dynamics[54, 55].

Enter q to backtrack (initially to section 32.17). Enter return to continue space-time patterns,
including any changes. The interrupt/pause options are described in the following categories,

category . . . section
revising rule/net . . . 32.16.1

classified samples of rule-space . . . 32.16.2
capturing space-time patterns as a vector PostScript file . . . 32.16.3

revising the seed . . . 32.16.4
space-time patterns on the network-graph . . . 32.16.5

fixed borders . . . 32.16.6
finer control of filtering . . . 32.16.7

skip, pause, step and speed. . . 32.16.8
miscellaneous options . . . 32.16.9

32.16.1 Revising rule/net

The following rule and network options in section 32.16, are explained below,

rule:save/load/revise/rnd/trans-s/l/v/r/t net-n . . . (trans-t not in TFO-mode)

canal-C . . . (not in TFO-mode)

Z:higher/lower-Z/z . . . (single rule networks only, and not in TFO-mode)

options . . . what they mean

save/load-s/l . . . enter s or l to save or load the rule (section 35.3). For mixed rule networks
this applies to the rule at cell index 0 only.

revise-v . . . to review/revise the rule in a lower-right window as described in chapter
16. For mixed rule networks the following prompt is presented below the
top-right window to select the cell index,

enter cell index, 149-0: (for example)

rnd-r . . . to reset a new random rule, or all rules at random in a rulemix.

trans-t . . . (rcode only) to transform the rule as described in chapter 18. For mixed
rule networks the following prompt is presented below the top-right
window to select the cell index,

enter cell index, 149-0: (for example)

Note that the transform options allow canalyzing inputs to be set for the
whole network as well as for the selected rule (chapter 15).

528 CHAPTER 32. DRAWING SPACE-TIME PATTERNS, AND CHANGES ON-THE-FLY

net-n . . . for the many network architecture options described in chapter 17,
including viewing, revising, transforming, filing, rewiring, the Derrida
plot (chapter 22), and learning (chapter 34).

canal-C . . . (not in TFO-mode) to change or set canalyzing inputs. For a single
rule network the canalyzing prompts comply with section 18.6 but
are presented in a lower-right window. For a mixed rule network the
canalyzing prompts are described in chapter 15.

g-rules(rnd/consec)-G . . . (if a collections of complex rules is detected) to choose either a
random or consecutive rule from the collection (loaded on-the-fly with
g — section 32.6.1). The current status is shown in the prompt order
(i.e. consec/rnd). The same can be set in section 31.2.9.

Z:higher/lower-Z/z . . . (single rule networks only, and not in TFO-mode) enter Z to
progressively force the Z-parameter higher, or enter z to force it lower,
as in section 32.5.5 and 16.3.

32.16.2 Classified samples of rule-space — load/keep

The following options for loading/displaying samples of automatically classified rule-space
(chapter 33) are explained below.

sample:load/keep-E/K

options . . . what they mean
load-E . . . to load, then display, a new sample (section 33.5).
keep-K . . . to keep, then display, a sample that is already loaded (section 33.5).

The samples can also be loaded on-the-fly (section 32.6.2), and scanned (section 32.6.3).

32.16.3 Directly scanning for PostScript

option . . . what it means

PScript-P . . . (for 1d STP, or a snapshot of 2d or the 2d version of 3d) enter P
in section 32.16 to directly capture 1d space-time patterns (STP), or a
snapshot of 2d STP, as a vector PostScript file, by directly scanning the
DDLab image on the screen irrespective of the native dimensions — fur-
ther detail in section 32.18. An advantage of direct scanning is that the
PostScript colors will be the same as the screen image, according to the
many alternative on-the-fly presentations. For a native PostScript snap-
shot (1d, 2d or 3d) taken from memory see section 32.16.4 (rev-e) below,
or section 21.4.8.

32.16.4 Revising the seed and native PostScript

The following network state (seed) options in section 32.16, are explained below,

state: rev-e rnd/Ham/blk/orig/last-R/H/k/o/∼ sng:pos/neg-5/6 save/load-S/L

529

options . . . what they mean

rev-e . . . to review/revise/save/load the state (seed) and many other options, which
are presented in a lower center window (section 21.1). When e is entered,
the following top-right prompt gives a choice of three possibilities, as
follows,

revise/reset seed: original-o last-l current-c:

Enter o for the original seed, set or reset (here) in section 21.1. Enter
l for the latest seed that was changed, either on-the-fly with any keyhit
in section 32.8, or in section 21.1. Enter c for the current state, at the
time-step of the pause (section 32.16).

These options include vector PostScript capture (1d, 2d and 3d)
according to native dimensions (sections 21.4.8, 21.4.11) — the only
method method for the 3d isometric as in figure 32.20 Left.

rnd-R . . . for a new random seed. The preset density-bias (section 21.3.2) of
the seed (section 21.3) is respected — the same as on-the-fly keyhit 4
(section 32.8.1).

Ham-H . . . to change the values of a percentage of cells in the current state distributed
at random. For binary networks (v=2), the number of changed, H, is
known as the Hamming distance. For v ≥ 3 the H cells will be assigned
values at random that differ from the original values. The following top-
right prompt is presented,

enter % random Hamming change to current state:

blk-k . . . for a central random central block of cells. The rest can be kept as is, or
set to zero. The block size was originally specified in section 21.3 but can
be changed here, and this will remain the block size for on-the-fly blocks
set with v (section 32.8.1). The following top-right prompt is presented,

rnd block: change size (now 30), rest: keep-k, all 0s-(def):

If a new block size is entered the prompt reappears showing the new size.
Enter k to keep the rest of the state, return for the new block on a
zero background. The preset density-bias (section 21.3.2) block is are
respected.

orig-o . . . to restore the original seed set (or reset) in section 21.1.

last-∼ . . . to restore the latest seed that was changed, either on-the-fly with any
keyhit in section 32.8, or in section 21.1.

sng:pos/neg-5/6 . . . for v=2: enter 5 for a positive singleton seed, a central cell set to 1, the
remainder set to 0. Enter 6 for a negative singleton seed.
For v ≥ 3: enter 5 for a central cell set to any random value except zero
against a zero background. Enter 6 for a central cell with any random
value against a different uniform background.

save-S . . . to enter the state (seed). When S is entered, the following top-right
prompt gives a choice of three possibilities (as for rev-e) as follows,

530 CHAPTER 32. DRAWING SPACE-TIME PATTERNS, AND CHANGES ON-THE-FLY

save seed: original-o last-l current-c:

Enter o for the original seed, set or reset in section 21.1. Enter l for
the latest seed that was changed, either on-the-fly with any keyhit in
section 32.8, or in section 21.1. Enter c for the current state, at the
time-step of the pause (section 32.16).
Then save the state/seed — .eed file (section 35.3).

load-L . . . to load a new seed — .eed file, (section 35.3).

32.16.5 Space-time patterns on the network-graph

graph-g/p . . . (p if the network-graph is active)
Enter g to set up a network-graph (chapter 20), then run space-time
patterns within it according to the graph layout and node sizes. This
allows considerable presentation flexibility. Section 32.19 gives further
details. The network-graph can be scrolled on-the-fly (section 32.13.3.3).
Normal space-time patterns will continue to run simultaneously in the
usual way unless disabled with on-the-fly (keyhits S, or J if scrolling the
network-graph). Enter g to deactivate graph space-time patterns if active.

Enter p to capture a snapshot of the current network-graph as a vector
PostScript file (section 32.19.2 and chapter 36).

32.16.6 Fixed borders

border-B . . . By default, networks in 1d, 2d and 3d have periodic boundaries, but this
can be effectively eliminated if required, creating “falling off the edge”
boundaries by fixing the value of border (edge) cells. This can be useful
to absorb glider and other propagating structure which would otherwise
“wrap around” and disturb the central space-time pattern.
If B is entered in section 32.16, the following consecutive prompts are
presented to set the border width and value, in a top-right window,

fixed border: width(0-9, now 1): (for example)

border value: (0-2), now 0): (for v=3)

32.16.7 Finer control of filtering
if input-entropy is active (section 31.5.1)

filter-f . . . Enter f in section 32.16 for finer control of filtering than in section 32.11.5.
The following top-right prompt is presented (for example, for the v2k5 CA
in figures 32.26 and 32.27),

filtered: 21 10 (if unfiltered none shown here)

filter/undo enter +/- k-index (31-0), max-m reset-r:

filtered: 21 10 show the neighborhood indexes that are currently filtered,
otherwise none is shown. Specific neighborhoods can be filtered and
unfiltered. For example, to filter neighborhood index 26 enter +26, to
unfilter neighborhood index 21 enter -21. Enter m to filter the current

531

most frequent unsuppressed neighborhood. Enter r to reset, i.e. unfilter
all neighborhoods. Any change is immediately indicated in the top line of
the prompt. Enter return to accept. On resuming space-time patterns
the changes will be applied, and filtered neighborhoods will be indicated
by dots alongside the bars in the lookup-frequency histogram.

32.16.8 Space-time — skip, pause, step and speed

The following options to skip, pause, backtrack and step through time-steps, in section 32.16, are
explained below, (see also section 31.2.7),

skip-X pause-N step-x/+ speed(max)-V (or speed(slow)-V if not max)

options . . . what they mean

skip-X . . . to change the number of time-steps to be skipped with on-the-fly with
keyhit P (section 32.9.8). The following top-right prompt is presented,

skip time-steps (now 1): (for example)

The default is (now 1) to skip 1 time-step, i.e. showing every second
time-step, so if changed to (now 2), every third time-step will be shown,
etc. To see the effect, toggle skipping steps to P..tog skip steps=1 (on)
— shown in the on-the-fly key index (section 32.1). Figure 32.16 gives an
example.

pause-N . . . to set a pause in the space-time pattern after a preset number time-steps.
The following top-right prompt is presented,

pause: screen full-p, after f-gens(20)-f
or enter time-step (no pause-def):

Enter p to set the end pause on, so a pause always occurs when the
screen is full, as in section 32.13.2 (takes effect only for 1d and 2d+time
space-time if not scrolling), or return set the end pause off.
Enter f for a one time pause after the frozen generation number of time-
steps set in section 32.11.2 (default 20), or enter a number for a one time
pause after that number of time-steps.

step-x . . . to step through space-time patterns in blocks of time-steps separated by
a pause. The block size is the number of time-steps that were set with
pause-N above (default 20).

step-+. . . to pause after each time-step and other options. A top-right prompt is
presented similar to the following,

time-step 66, next-ret, reset count-r, save current-s
stepback x time-steps (max=frozen-gens=19
on-the-fly/interrupt options=y/i, end pause-q:

Enter return for the next time-step. The prompt will reappear until end
pause-q is entered. This is also an on-the-fly prompt (section 32.13.4)
where the full list of options is described.

532 CHAPTER 32. DRAWING SPACE-TIME PATTERNS, AND CHANGES ON-THE-FLY

speed-V . . . the current speed status is either (max) or (slow). Enter V to reduce
the speed of space-time pattern iteration, or to restore full speed, as in
section 31.2.8, which also points to other stages in DDLab where slow
motion can be selected, including on-the-fly.

32.16.9 Miscellaneous options

options . . . what they mean

top-T . . . to continue 1d (and 2d+time) space-time patterns starting at the top of
the screen. This also resets the time-step count.

on-the-fly-y . . . to activate any on-the-fly option during a pause.
The following top-right prompt is presented in a short window,

enter on-the-fly option:

Enter any key listed in the current on-the-fly key index (as in figure 32.1).
The pause prompt (section 32.16) will reappear to make other changes if
required — enter return to continue the space-time pattern, where the
on-the-fly option selected will take effect.

hide-W . . . to reveal what’s hidden beneath the pause/interrupt window — enter W
– any key will restore the window (see also section 32.13.6).

back-q . . . to backtrack from space-time patterns, initially giving top-left options
described in section 32.17.

cont-ret . . . resume space-time patterns from before the pause, with changes taking
effect.

32.17 Quit and further options

Enter q in section 32.16 to quit space-time patterns and backtrack. The following top-left prompt
is first presented,

graphics-g speed(max)-V (or speed(slow)-V if not max)

seed-e
net-n back-q cont-ret:

Enter q to backtrack to previous options, return to continue the space-time pattern, or select
an option below,

options . . . what they mean

graphics-g . . . to alter the graphics setup described in section 6.3.

speed-V . . . the current speed status is either (max) or (slow). Enter V to reduce
the speed of space-time pattern iteration, or to restore full speed, as in
section 31.2.8, which also points to other stages in DDLab where slow
motion can be selected, including on-the-fly.

533

seed-e . . . to revise the seed. The seed options described in chapter 21 are presented
in a lower central window, a repeat of rev-e in section 32.16.4.

net-n . . . for the many network architecture options described in chapter 17,
including viewing, revising and filing, the Derrida plot (chapter 22), and
learning (chapter 34), a repeat of net-n in section 32.16.1.

32.18 Directly scanning STP for vector PostScript
1d STP, or a snapshot of 2d, or the 2d version of 3d

The space-time image on the screen can be directly scanned to generate a vector PostScript (*.ps)
file (default filename my sPS.ps). This is the only method available for 1d space-time patterns
(i.e. including time-steps), and one of the possible methods for a snapshot of 2d or the 2d version
of 3d. An of advantage of direct scanning as opposed to using information about a state held in
memory12 is that the PostScript colors will be exactly as presented at that moment, according to
the many alternative on-the-fly presentations options, such as color by neighborhood, filtering, and
frozen cells. For 1d there could be new seeds and rules within one space-time pattern (figure 32.40).

Direct scanning still allows resetting the scale, divisions between cells, dots on zero cells, and
selecting greyscale or color, and follows the current screen dimensions (section 32.10) irrespective
of the native dimensions.

Enter P in section 32.16 for the top-right PostScript options.
For 1d space-time patterns, direct scanning is the only method, and just part of the space-time

pattern can be scanned — the prompt starts as follows,

create PostScript image for 1d space-time patterns, exit-q
1d size (max/def=150): time-steps (max/def=669): (values shown are examples)

options . . . what they mean
1d size (max/def=150) . . . enter the space to include, the number of cells horizontally

from the left, the maximum and default is what is visible.
time-steps (max/def=669) . . . enter the number of time-steps from the top of the screen

down, the maximum and default is what is visible.

For a 2d snapshot (figures 32.7, 32.23, 32.24), direct scanning (direct-d) is just one of several
possible methods, the others are described in section 21.4.10, – the prompt starts as follows,

create PostScript image for 2d, 40x40 (values shown are examples)

symbols-s greyscale-g color-c direct-d exit-q (def-c):

Enter d for direct scanning.
For both 1d space-time patterns, and a 2d snapshot, the top-right prompts continue as follows,

greyscale-g color-c (def-c): (the default follows the last selection)

12For a PostScript snapshot of the native space-time pattern held in memory (1d, 2d or 3d), enter state:rev-e in
section 32.16, select the state required (original, last, or current), then follow the seed methods in sections 21.4.8
and 21.4.11.

534 CHAPTER 32. DRAWING SPACE-TIME PATTERNS, AND CHANGES ON-THE-FLY

time →

kcode changed on-the-fly

time →

filtered on-the-fly

Figure 32.40: Directly scanned 1d space-time patterns for vector PostScript, v4k3 kcode, n=150,
669 time-steps. The images shown are rotated by 90◦ so time flows from left to right.
Top: the rule was changed randomly on-the-fly (section 32.5.1) several times as the space-time pattern
scrolled. Each new rule picked up the current state as its initial state.
Bottom: the space-time pattern was allowed to run on keeping the last rule, v4k3 kcode (hex)
89d17b2278, and the space-time pattern was filtered 4 times on-the-fly (section 32.11).

time

↓

Figure 32.41: PostScript images from a scanned 1d space-time pattern, for the same v4k3 kcode as
in figure 32.40, n=50, 35 time-steps. Left: dots in zero cells. Right: black divisions between cells.

535

options . . . what they mean
greyscale-g: . . . for greyscale instead of color.

color-c (def-c): . . . for color instead of greyscale.

The colors of zero values will follow the current bits/values presentation. This is followed by
the prompt to amend other settings,

cellscale=1.00 dots(off)=0.70 divs(off), amend settings-a:

Enter return to accept the defaults, or enter a for the following prompts presented in sequence,

change: cellscale: togdots-x: dotscale: divs(0,1,2):

Enter changes required or return to accept defaults. The options are summarized below,

options . . . what they mean
cellscale . . . enter a new cell width in pixels.

togdots-x . . . to toggle zero dots on/off.
dotscale . . . (if dots are on) enter a new width, which can be a decimal number, for the

size of dots on cells with value zero.
divs(0,1,2) . . . enter the cell division color, 1 for black, and 2 for white, or 0 for none

— no division so adjoining cells touch. The new designation becomes the
default. The current status is shown in the previous prompt line, divs(1),
divs(2), or divs(off) for none.

Once these choices are complete, the *.ps file is saved from the filing prompt (section 35.3).
section 36.1 explains how to view, edit, and crop the PostScript image.

32.19 Network-graph layout of space-time patterns

Space-time patterns can be shown running within the network-graph layout (chapter 20) in addition
to the normal presentation described in this chapter and chapter 31. This allows enormous flexi-
bility, as the network-graph has a number of default layouts: circle, spiral, 1d, 2d (square or hex),
3d, as well as allowing dragging nodes and components, and many other options for rearranging
the graph.

Enter graph-g in section 32.16. The following top-right option is first displayed,

show links-L (avoid for large networks), layout only -def:

Enter return for the layout only, without links, which is much faster and more economical with
memory, and may be essential for large (2d or 3d) networks. This option only appears if space-time
patterns are interrupted. However, the links can be shown in the normal way by entering L. The
network-graph appears in a large central window, but for a layout only, the options in section 20.5
is abbreviated to omit link options.

In this case the initial-mode top-right options (compare with section 20.5) are as follows,

536 CHAPTER 32. DRAWING SPACE-TIME PATTERNS, AND CHANGES ON-THE-FLY

Figure 32.42: A snapshot of the DDLab screen, showing 1d CA space-time patterns (STP) according
to the (default) circle network-graph layout, which reflects the actual geometry of a 1d CA with periodic
boundary conditions. n=150, v8k3 kcode, index 8 from the rule sample in figure 33.5. The normal
space-time patterns are on the left of the screen. Many on-the-fly options apply simultaneously to the
normal and network-graph layout STP.

network-graph initial reminder if links are excluded
NET-graph(nolinks): drag-(def) PScript- win-w
settings-S rot-x/X flip-h/v nodes-(/)/= links-{/} both-[/]
nodes-N
layout: file-f circle/spiral-o/O 1d/2d(tog)/3d-1/2/3 rnd-r/R quit-q:

The top-right options for dragging nodes (but not fragments which reqire links) are as follows
(for example),

node 205, single(nolinks): leftb-drag PScript-P elstc/snap-d
not active?-rightb first, nodes-(/)= links-{/} both-[/]
block-B Label-L/+
single-s all-a exit-q:

Rearrange the graph and the node sizes by the methods described in chapter 20. On exiting

537

Figure 32.43: A snapshot of the DDLab screen, showing Center: 2d CA space-time patterns within
the network-graph. Top-Left: the normal 2d space-time patterns continue at the top-left of the screen.
Most on-the-fly options apply to both normal and network-graph space-time patterns. v2k7 tcode(dec)
232 (a modified majority rule) n=60×60 with hexagonal layout and color by neighborhood.

the graph routine, space-time patterns will be shown according to the final network-graph layout
in a large central window simultaneously with the normal space-time patterns.

32.19.1 On-the-fly options within the network-graph

Most current on-the-fly options (listed in figure 32.1) have the same simultaneous effect on both
normal space-time patterns and space-time patterns within the network-graph, including colors and
filtering. However some keyhits have no effect or have special functions within the network-graph,
as follows,

on-the-fly category . . . keyhits with no effect, or special functions in the network-graph

change seed/size . . . N/n..inc/decrease 1 cell (only for 1d single-rule networks presented in
1d, section 32.8.5) — turns off the network-graph. Otherwise no effect.

538 CHAPTER 32. DRAWING SPACE-TIME PATTERNS, AND CHANGES ON-THE-FLY

presentation . . . x..tog slant(off) or x..tog hex(off) (sections 32.9.1 or 32.9.2) — no
effect.

@..tog balls outline (sections 32.9.4 and 32.19) — applies only to the
network-graph.

i/!..tog divs(off)/color (section 32.9.3) — no effect.
3/./∧..incolor/dot/bground (section 32.9.5) — 3 and ∧ apply to the
network-graph, but “.” (dot) has no effect.

S..tog space-time display (section 32.9.7) — no effect.

e/c..expand/contr scale (section 32.9.10) — no effect unless diagonally
scrolling the network-graph — then e/c expands/contracts the spacing
between network-graph time-steps as in figure 32.17.

1d 2d 3d . . . no effect by any on-the-fly keyhits.

analysis . . . no effect by any on-the-fly keyhits.

miscellaneous . . . #..tog scrolling (section 32.13.3) — if 2d STP is active, scrolls both 2d
STP and the network-graph simultaneously (section 32.13.3.3) — otherwise
no effect.

32.19.2 Network-graph space-time pattern as vector PostScript

If the network-graph space-time pattern is active, the current time-step can be saved to a vector
PostScript file. Enter graph-p in the pause options (section 32.16). The following top-right prompt
is displayed,

save network-graph snapshot to PScript: abort-q greyscale-P color-def:

Enter return for color, P for greyscale (to toggle the cell outline enter @ on-the-fly
beforehand). The top-right filing prompt (section 35.3) will be displayed to select the filename
(default my sgPS.ps).

Chapter 33

Classifying rule-space

This chapter describes methods to automatically classify samples of CA rule-space by input-entropy
variability to distinguish between ordered, complex and chaotic rules (figure 2.8), to estimate their
distributionas in rule-space (e.g. figure 33.1), and to search for interesting rules. The methods in-
clude creating, sorting, plotting, analysing and probing the sample. Originally applied to 1d binary
rcode[42, 44], the methods apply equally to 2d and 3d, to v≥3, to iso-rules[56] (e.g. figure 33.6,
33.11), and to kcode and tcode in TFO-mode[47]. Sample files used as examples in this chapter are
provided with DDLab (section 3.6.4). The collections of complex rules with frequent occurance of
gliders[54] (sections 3.6.1, 32.6.1) were mostly picked out from these sample files.

Figure 33.1: A 2d pile-up histogram for a sample of 15800 2d hexagonal unbiased CA kcodes v3k6
(file v3k6bs.sta), plotting mean entropy against entropy variability (standard deviation). The method
automatically classifies rules between ordered, complex and chaotic dynamics [47]. The vertical axis
shows the frequency of rules on a 256×256 grid — most are chaotic.

539

540 CHAPTER 33. CLASSIFYING RULE-SPACE

Figure 33.2: Left: the space-time patterns of a 1d complex CA with interacting particles, v2k5 rcode
(hex)6c1e53a8, n=150 about 200 time-steps. Right: a snapshot of the input-frequency histogram
measured over a moving window of 10 time-steps. Center: the changing entropy of the histogram;
its variability, either min-max (maximum up-slope as indicated) or standard deviation (sdev), provides
a non-subjective measure to separate complexity from either order or chaos — high variability implies
complex dynamics.

Rules can be generated at random or with some bias. Biases include isotropic rcode now
superseeded by the new iso-rule paradigm[56] (section 16.10). Other rule biases include fixing the
λ parameter, fixing the proportions of different values in the rule-table, or for small rule-tables
expressible in decimal — consecutive rules in rule-space. In addition, the rule-table can be adapted
so that the all-zero neighborhood outputs zero, or more generally all-v neighborhoods output v.
These biases make complex dynamics more probable.

For each successive rule, the space-time pattern is run from a set of random initial states. For
each initial state, after a delay to allow the CA to settle into its typical behavior, the variabil-
ity of the input-entropy and the mean entropy are recorded — these measures are described in
section 33.1. Then the average results from the set of initial states are plotted — the entropy
variability (x-axis) against the mean entropy (y-axis) — and the data for each rule is appended to
a .sta file. The results of an automatic classification can be interpreted as follows,

order complexity chaos
mean entropy low medium high

entropy variability low high low

High variability implies large scale structural interactions, often produced by particles colliding,
because collisions create local chaos raising the entropy, from which particles re-emerge lowering
entropy. The basic argument is that if the entropy continues to vary sufficiently in typical dynamics,
moving both up and down, then some kind of self-organizing collective behavior must be unfolding.
This might include competing zones of order and chaos, or different types of competing chaos, as
well as glider dynamics.

So complexity can be separated by its high variability. Both order and chaos have low variability,
but can be separated from each other by mean entropy (figure 33.1), though the probability of
order diminishes with increased v and k in an unbiased sample. Once the sample is sorted, by
variability followed by mean entropy, rule dynamics can be scanned by decreasing variability, from
the highest at index 1 or any other starting point. The most interesting rules can be saved or
added to collections of glider rules (section 32.6.1).

541

Figure 33.3: A snapshot of the DDLab screen, showing a 1d tcode unbiased sample (TFO-mode)
with 234224 tcodes (file v8k5tm.sta), sorted by min-max entropy. Left: space-time pattern blocks
of n=150×100 time-steps showing increasing sample indexes starting at index 1 pausing at index 6
(section 33.7.2). Bottom Center: at the pause above, enter q then K to show the scatter plot, based
on the min-max entropy (the maximum up-slope), where the frequency of points falling on a 256×256
grid is indicated by colors (section 33.6). Top Center: at the prompt in section 33.6, enter q then f
for the 2d histogram showing the “pile-up” frequency of points in each grid square represented on the
z-axis, in this case in log2 form (section 33.6.3).

Figure 33.4: The 2d pile-up histogram in figure 33.3 can be presented according to Left: successive
y-axis (mean entropy) slices — paused at y=45. and Right: a normal z-axis (frequency of rules) —
the default.

542 CHAPTER 33. CLASSIFYING RULE-SPACE

Figure 33.5: A snapshot of the DDLab screen, showing a 1d kcode sample (TFO-mode) with 176398
rules (file v8k3B50.sta), sorted by min-max entropy. The random rules were biased by setting the
fraction of non-zero values in the rule-table (the λ-parameter) to 50% in section 16.3.1. An uneven
distribution of values in the rule-table is more likely to result in complex dynamics than an unbiased
rule-table (contrast with figure 33.3). This is borne out by the extensive spread of rules into the
high variability area of the plot. About 14% of this rule-space, with the highest entropy variability,
display particle interaction and other complex structures in space-time patterns. Left: space-time
patterns in blocks of n=150×150 time-steps showing sequential examples, pausing at sample 20079.
Bottom Center: the scatter plot with min-max entropy. Top Center: the 2d pile-up histogram with
the z-axis in log2 form.

33.1 Input entropy and variability (min-max or sdev)

The input-frequency histogram (IFH, section 31.5) tracks how frequently the different entries in a
rule-table are actually looked up and is usually averaged over a moving window of time-steps. The
input-entropy is the normalized Shannon entropy1 (0 to 1) which measures IFH heterogeneity.

1The Shannon entropy of the IFH, the input-entropy H, at time-step t, for one time-step (w=1), is given by

Ht = −
∑S−1

i=0

(

Qt
i/n× log2

(

Qt
i/n

))

, where Qt
i is the lookup frequency of neighborhood i at time t. S is the rule-

table size (section 13.2.1), and n is the CA lattice size. The normalised Shannon entropy HN is a value between 0
and 1, HN = Ht/log2n, used in the graphic display (figure 33.2). HN is usually averaged over a moving window of
(say w=10) time-steps.

543

One of two measures of input-entropy variability can be selected, either standard deviation2,
or a min-max measure — the maximum up-slope — the rise in entropy following a minimum
value found so far in a time-step window (figure 33.2, 33.6). When trawling for complex rules,
min-max is preferable because standard deviation would give a high value to monotonic entropy
decrease, characteristic of a foreground pattern gradually dying out, which would contaminate
a sorted sample of complex rules. Dying out dynamics give low min-max so this problem is avoided.

1−→ time-steps −→ 250

entropy1

entropy

0

↑↓
min-max

← ignore initial time-steps

Figure 33.6: Top: 250 time-steps of the game-of-Life iso-rule from a random 40×40 initial state with
a density of 30% shown as an axonometric projection where time-steps progress from left to right.
Colors follow the iso-IFH. Below: The entropy plot generated simultaneously: x-axis time-steps 1 to
250, y-axis normalised Shannon entropy HN from 0 to 1. The min-max entropy is the greatest upslope
found so far after ignoring a short initial run, in this case of 22 time-steps.

2The standard deviation is given by σ =

√

∑ x2
i

n
where xi is the deviation from mean input-entropy at time-

step i, and n is the number of time-steps measured.

544 CHAPTER 33. CLASSIFYING RULE-SPACE

33.2 Creating a rule sample — initial prompts

To automatically create a rule sample, or run a test, first set up any CA with the desired parameters:
— SEED-mode (rcode, iso-rule, kcode or tcode) or TFO-mode (kcode or tcode), v, k, and system
size — 1d, 2d or 3d. The size should be relatively small (say n=150 for 1d, 40×40 for 2d) to
amplify variability in complex dynamics because local order and chaos tend to balance each other
out in a large network. Then run the space-time patterns (chapter 32). For 1d, scrolling might be
turned off (for speed) in section 32.13.3. The input-entropy plot must be active; this is the default
for 1d, but for 2d or 3d it needs to be activated (sections 31.5.1, 32.12.4).

While the space-time patterns are iterating, select on-the-fly option uE..create sample,
enter u followed by E. The initial u initiates an entropy-density scatter plot (section 32.12.6).
If this plot is current, the on-the-fly prompt is E..create sample, so enter just E. Alterna-
tively, enter q for the space-time pattern pause interrupt (section 32.16), and enter y giving
a small top-right prompt (which allows any on-the-fly option) enter on-the-fly option:
enter u, then y again followed by E. The following prompts are presented in turn in a top-right
window (enter q to backtrack), and summarized below— with more detail in the sections indicated.

entropy sample, automatic-a test-(def): sdev-s min-max-(def):
record time-steps, start (def 30): end (def 430):
sample for each rule (def 5): bias rnd rules -b:

options . . . what they mean

automatic-a . . . to create an automatic sample (section 33.4).

test-(def): . . . enter return for a test (section 33.3) showing various measures
and the entropy/density scatter plot for successive rules. At the
test pause various options are also provided, including changing
to automatic.

sdev-s min-max-(def): . . . enter return for the min-max measure of variability, or s for
standard deviation (section 33.1).

start (def 30): . . . enter the time-step when measures should start. By not including
the initial time-steps the dynamics can be allowed to settle into
typical behavior before measures are recorded.

end (def 430): . . . enter time-step when space-time patterns and measures stop.

sample for each rule (def 5): . . . enter the number of runs from different random initial
seeds, from which measures are averaged.

bias rnd rules -b: . . . to bias the random rules (section 33.2.1).

33.2.1 Biasing random rules

A rule bias that was applied when setting a single rule in section 16.3, either a density-bias
(section 16.3.1), or a value-bias (section 16.3.2), will carry over to the random rule sample.
A density-bias (the proportion of non-zero values in the rule-table — λ-parameter) is always
present in the background, but if not deliberately altered gives an equal probability of each value
— effectively no bias. An active value-bias (the proportions of each value in the rule-table) will
override the density-bias.

545

Enter b in section 33.2.1 to reset the value-bias, and other biases — consecutive rule-space,
isotropic rcode if the iso-rule is active, and adapting the rule-table so that the all-0 neighborhood
outputs 0, or more generally all-v neighborhoods output v. A top-right prompt is presented, which
varies according to context. The initial bias options, if applicable, are for consecutive rules to
classifying the entire rule-space3, and isotropic rules (if not in TFO-mode because totalistic rules
are isotropic by definition),

rulespace-r iso-i: (-r if expressible in decimal, -i not for TFO-mode)

Options for the value-bias follow (if niether is applicable these are the first options). The
options depend on whether a value-bias is active or not,

if a value-bias is active — the values are shown, in this example for v8k3

value-bias, (p)7-0: 44 8 16 4 8 4 8 8 cancel-c set-v keep-(def):

if a value-bias is not active

value-bias, set-v:

For an active value-bias, enter c to cancel (deactivate), or return to keep.
Enter v to set (or reset) the value-bias — this results in a series of prompts, firstly to set the

value bias either as percentages, or as actual numbers of each value (if the rule-table size S≤255)
with the prompt %/value-p/v: or %/value-p:. If p (or v if applicable) is entered, prompts will
follow to set the percentage (or the number) of each value from 0 to v-2; the value for v-1 is set
automatically. The method is described in greater detail in section 16.3.2.

Following the value-bias, or if value-bias is cancelled, kept, or not set/reset, two final successive
prompts are presented as follows,

all0s-0: allVs-v:

Enter 0 to set the output of the all-0s neighborhood to 0. Enter v to set the outputs of all
uniform neighborhoods to the neighborhood value (the same can be done on-the-fly, section 32.5.6).
These options, which provide a stable background domain, apply on top of previous biases. If q is
entered, the prompts revert to the first bias option — this can be useful to reconfirm the value-bias.

33.3 Running a test

Enter return at the first prompt in section 33.2 to run a test, then enter return to accept other
parameter defaults, or change any of these if required.

Space-time patterns will run from different random initial states for the set sample of each same
active rule (without pause until the sample is complete), and for the set number of time-steps.
Initially, the active rule will be the current rule, thereafter a new random rule can be applied
according to any biases described in section 33.2.1, or the same rule can be repeated, or a rule
from a glider rule collection (section 3.6.1) can be set. The run can also be converted to automatic.

33.3.1 Test data

After each run from an initial state in the sample, the following top-right window with data on
the rule and measures is presented (for example),

3Applies to rule-tables expressible in decimal. Rule-tables with missing values, or were the all-0 neighborhood
does not outputs 0, will be skipped. The sample will stop on reaching the maximum decimal value.

546 CHAPTER 33. CLASSIFYING RULE-SPACE

Figure 33.7: A snapshot of the DDLab screen while running a test, showing mean entropy and min-max
entropy in a top-right window for a sample of random initial states. This example for a 1d n=150 v2k5
CA, rcode 6c1e53a8 from the glider rule collection (section 3.6.1). As space-time patterns (including the
input-frequency histogram and input-entropy plot, section 31.5.1) are being drawn, the entropy/density
scatter plot (section 32.12.6) is drawn in a lower-center window. The plot shows distinctive signatures
for complex rules, and is drawn in alternating colors for successive runs. The default parameters in
section 33.2 (start 30, end 430, size 5) were used, meaning the measures were started at time-step 30
and ended at 430 (401 time-steps), and the number of runs from different random initial states was 5.

run=5/5 v2k5-rcode=(dec)1813926824 (hex)6c 1e 53 a8

mean=0.673505, minmax=0.163594 (or sdev)

This remains unchanged until the next sample is complete.

data . . . what they mean

run=3/5 . . . the current sample (e.g. sample 3) out of the set sample of 5.
At run=5/5 there will be a pause for further prompts, see below.

single=33 . . . if single cell input-entropy was set in section 31.5.3 the cell index
will be indicated.

v2k5-rcode= . . . the rule in decimal (if applicable), and in hex.

547

mean= . . . the mean entropy.

minmax= . . . the min-max entropy, alternatively (sdev=) the standard deviation
if this was selected in section 33.2.

While a run is in progress, the entropy/density scatter plot (section 32.12.6) is drawn in a lower
center window. The plot shows distinctive signatures for complex rules, and is drawn in alternating
colors for successive sample runs.

33.3.2 Test options

When the sample runs are complete (i.e. run=5/5, figure 33.7), the top-right window will pause
to include the following options,

automatic-a glider+g, next rule: glider-g same-s rnd-def:

options . . . what they mean

automatic-a . . . abandon the test and initiate an automatic rule sample
(section 33.4).

glider+g . . . enter a followed by g for an automatic sample as above, but limited
to a glider rule collection (section 3.6.1).

next rule: . . . continue the test for the next rule which can be selected as follows:

glider-g . . . to test a rule from a glider rule collection (section 3.6.1).

same-s . . . to re-test the same rule (with different random initial states).

rnd-def . . . enter return to test a new rule set at random, or with a bias
(section 33.2.1).

33.4 Creating an automatic rule sample

Enter a in sections 33.2 or 33.3 to create an automatic sample. A filename for the sample (.sta)
will first be selected in a top-right window (default filename my stat.sta, section 35.3), followed
by a top-right prompt to append the data to an existing file, or start a new file,

my sta.sta: append data-a, new file-(def), add + to pause:
(or the selected filename)

To pause after each new rule, enter or add+, i.e. a+ to append data and pause. The automatic
sample will then start, plotting the mean entropy against the entropy variability, one point for each
new random rule in the scatter plot in a lower-center window (figure 33.8). After the set of runs
for each rule is complete, a small red square is plotted. This is replaced by a blue dot when the
next rule is complete, and so on.

For each run, the following top-right window keeps track of the count of rules so far, with a
reminder that a pause can be set on-the-fly with key p.

548 CHAPTER 33. CLASSIFYING RULE-SPACE

Figure 33.8: A snapshot of the DDLab screen while creating an automatic sample — this example for
1d n=150 v2k5 isotropic CA. The sample results are shown in figure 33.9. The default parameters in
section 33.2 were applied, except that the sample is biased for random isotropic rcode. The sample was
paused at rule-count 35738, at rcode(hex)9c602d94. The scatter-plot, mean entropy against entropy
variability, is continuously updated in a lower-center window. After the runs for each rule are complete,
a small red square is plotted. This is replace by a blue dot when the next rule is complete, and so on.
Information about the last rule is shown in a top-right window. Note that any variability above 0.18 is
rounded down to 0.18

rule count=1457 tog pause-p

Initially there is no pause between each new rule, however if a pause is activated with on-the-fly
key p, at the pause the top-right window will include the data as in section 33.3, for example,

rule count=24569 tog pause-p:
run=5/5 v2k5-rcode=(dec)3935933814 (hex)ea 99 95 76

mean=0.673505, minmax=0.163594 (or sdev — as in figure 33.8)

If the pause is set, enter return (or p to toggle the pause off) to continue with the next rule.
The sample will continue indefinitely until paused with p, or interrupted with q (section 32.14 —
enter q again to backtrack). If interrupted, the sample can always be continued later by appending
a new sample run to an existing filename. To considerably speed up computation, turn off the
space-time graphics with on-the-fly toggle S (section 32.9.7). Note that most on-the-fly options
such as “presentation” (section 32.9) and “frozen/filter” (section 32.11) will work while the sample

549

is in progress, but other on-the-fly options should be used with caution as the consequences are
unpredictable.

Figure 33.9: A snapshot of the DDLab screen after loading an automatic sample of 35738 1d v2k5
isotropic rcodes, created in figure 33.8 (file v2k5iso1.sta). The sample was sorted by min-max
entropy. Left: n=150 space-time pattern in blocks of 120 time-steps showing sequential examples,
pausing at sample index 117 (section 33.7.2). Bottom Center: the scatter plot based on min-max
entropy. Top Center: the 2d pile-up histogram with the z-axis in log2 form.

33.5 Loading, sorting and displaying a sample

To load an automatic sample, enter on-the-fly key V..load,jmp,scan while space-time patterns
are running, or when interrupting space-time patterns (section 32.14) enter E to load, or K to
“keep” a sample that is currently active (section 32.16.2).

One of the following top-right prompts are presented, depending on whether a sample is
currently active,

entropy variability, sdev-s, min-max -(def): (if a sample is not active)

rule sample: load new-n, rule index/scan 1-24589 (1-def): (an active sample, as figure 33.8)

If a sample is active, enter n for a new sample, or enter return or a number x to scan space-time

550 CHAPTER 33. CLASSIFYING RULE-SPACE

patterns of successive rules from rule index 1 (the default), or from rule index x, in the current he
sample (section 33.7.2).

If loading a new sample (section 35.3), note that any sample (.sta) file will load, so a file where
[v, k] conflicts with the base network will result in a meaningless scatter plot (section 33.10). Once
the file is loaded, the following top-right list/sort/display prompt is presented,

list: all-l patch-p coords-c, sort-s backtrack-q (sublist-S save-SS) (patch-p if a patch is active)

min-max plot: Z-Z lda-L ent-(def) smalldots+d: (Z and L for rcode only)

options . . . what they mean

list: . . . to list the sample (sections 33.8), which allows selecting a rule from the list
(section 33.8.1)).

all-l . . . to list the sample starting from index 1.

patch-p . . . if a patch was predefined in section 33.6.2, to list the sample confined to
rules within the patch starting from lowest index.

coords-c . . . to list the rules at, or near to, given scatter plot coordinates (section 33.9),
also done by probing with the mouse (section 33.6.1).

sort-s . . . to sort the sample — necessary for an unsorted sample for effective listing
or scanning space-time patterns. A prompt for a new filename (.sta) for
the sorted file will be presented (section 35.3), which can be the same as
before. The rules are sorted firstly by decreasing variability (min-max or
sdev), then by decreasing mean entropy for each measure of variability —
for a large sample this might take a little time.

backtrack-q . . . to backtrack to showing space-time pattern, keeping the active sample.

(sublist-S save+S) . . . to see or save a sublist of rules4 created from an existing sample.

min-max plot: . . . (or sdev plot:) show the scatter plot (variability, min-max or sdev on the
x axis) in a lower center window (section 33.6), which can then be “probed”
with the mouse (sections 33.6.1) to list and select rules.

Z-Z . . . (rcode only) to plot variability against the Z parameter (figure 33.15 Top).

lda-L . . . (rcode only) to plot variability against λ-ratio (figure 33.15 Bottom).

ent-(def) . . . (the default) enter return to plot variability against mean entropy.

smalldots+d . . . enter d (or Zd or Ld) for the above plots, but with smaller dots. For a
low resolution DDLab screen (less than 640 pixels wide) “small dots” is the
default, so the prompt reads bigdots+d.

Once the scatter plot is displayed, further options include probing the plot with the mouse and
listing/selecting rules (section 33.6.1), and displaying a 2d pile-up histogram, where the vertical
axis represents rule frequency.

4This function involves modifying and recompiling DDlab’s code. A sublist of selected items from a pre-existing
.sta file can be included in code to create a new sample. To see the sublist as in sections 33.8 or 33.6 enter S.
To also save the sublist as a new .sta file (enter SS). The sublist is inserted in function show list rules() in file
forvarx.c.

551

33.6 The rule sample scatter plot

Enter return in section 33.5 to display the scatter plot of mean entropy against entropy variability
(min-max or sdev) in a lower center window. For rcode only, Z or L can be entered for alternative
plots, where mean entropy is replaced by either the Z-parameter (figure 33.15 top), or by λ-ratio
(figure 33.15 below).

Rules are represented by colored square points on a 256×256 grid, and the scatter plot color
scheme indicates the frequency of rules falling on each square (figure 33.10).

>256 >128 >64 >32 >16 >8 >4 >2 1

Figure 33.10: The scatter plot color scheme indicates the frequency of rules falling on each square of
the 256×256 grid. Unoccupied squares remain white.

Scatter plot reminders/options appear in the following top-right prompt,

select rules - point-click mouse button: probe-left, patch-right
pile-up histogram or backtrack -q:

Click on or near a point with the left mouse button to “probe” the scatter plot (section 33.6.1),
or click twice with the right mouse button to define a rectangle containing rules to be examined
(section 33.6.2). Enter q to show the scatter plot as a pile-up frequency histogram (section 33.6.3),
or to backtrack to the list/sort/display prompt (section 33.5) where further backtracking restores
space-time patterns.

33.6.1 Probing the scatter plot with the mouse, and selecting rules

The mouse pointer changes direction (to North-West) within the scatter plot, and a small top-
center window shows the pointer coordinates, for example x=84 y=213 . Clicking the left
mouse button anywhere in the plot produces a top-right window (section 33.9) listing rules at
that point, if any. The list can be expanded by setting a radius around the point to expand
the coordinate area to include more rules — also useful to capture an isolated rule from a shaky
mouse click. A rule can be selected from the list, and its space-time patterns run, as described in
section 33.8.1. Enter q (or click again) to delete the list, and click the plot again at a new position
to show a new list. The same list can be produced by setting the coordinates (section 33.9).

33.6.2 Defining a scatter plot patch with the mouse or keyboard

The last two right mouse button clicks anywhere in the scatter plot will define a rectangular patch
of rules indicated in a top-right inset box. The very first click shows the clicked coordinates, for
example patch: y=68 x=60. Any subsequent click will define the patch with a top-right inset box,
for example, patch: 60 68 121 153, activate-p. Whatever order or position of the last two right clicks,
the patch will be defined by its (bottom-left (low value) its top-right (high value) corners. Once
satisfied with the two positions, enter p to accept the patch which draws a black rectangle on the
scatter plot, and gives the following top-right prompt,

552 CHAPTER 33. CLASSIFYING RULE-SPACE

hexagonal lattice v3k7, approx density 0/1/2: seed=70/15/15, iso-rule=60,20,20.

Figure 33.11: Left: v3k7 min-max scatter plot on a 256x256 grid showing 50001 iso-rules
(file i3k7s01s.sta). Inset rectangles show the patch chosen by right mouse clicks (black) and reset
by entering coordinates (red). Right: The log2 pile-up histogram. The sample is based on a 60×60
2d hex lattice. Measures were started after 22 initial time-steps and taken over the subsequent 200
time-steps. The approximate densities of the random initial state and the iso-rule are indicated. Note
the two rectangles defining a patch — in black according to right mouse clicks, and overridden in red
from the keyboard.

patch coords (def 60 153 121 68) keyboard-k accept-def: (for example)

Enter return to activate the black patch made by right mouse clicks. Alternatively enter k to
override the black patch by entering coordinates (x1, y1, x2, y2:) from the keyboard — then the
following additional prompt is presented,

keyboard: (max 255x255) x1: y1: x2: y2: (presented in order)

Enter the new coordinates (for example 50, 50, 100, 100) in any order, or enter return to
accept the listed defaults. A new patch demarcated by a red rectangle is drawn on the scatter plot
and is activated when entries are complete, though the black rectangle remains as in figure 33.11.

Once activated, rules in the patch can be listed (patch-p in section 33.5), and space-time
patterns can be perused on-the-fly — key w for the next sample index, and key : (colon) for the
previous index (section 33.7.1) will select rules only from within the scatter-plot rectangle. The
index order is the same as specified in section 33.8. Information on the new rule, including the
sample index, appears in a top-right window when the key is hit as in figure 33.16.

33.6.3 The scatter plot as a 2d pile-up frequency histogram

The 2d “pile-up” frequency histogram of the scatter plot includes a vertical axis showing the
frequency of rules falling on each square of a notional grid laid over the scatter plot — the maximum
resolution of this grid, 256×256, can be reduced.

If q is entered in section 33.6 the following top-right prompt is presented,

17680 v2k5 rcode: pile-up histogram-f, cont-ret: (for the sample in figure 33.12)

553

Figure 33.12: The rule sample scatter plot, showing a 1d rcode sample with 17680 unbiased random
rules (file v2k5ss.sta), sorted by standard deviation entropy. A color scheme indicates frequency. To
select a rule anywhere on the plot, click on a point with the left mouse button for a list, then select
the rule (sections 33.9, 33.5).

Figure 33.13: The 2d pile-up frequency histogram of the rule sample scatter plot in figure 33.12. The
vertical axis is the frequency of rules falling on each square of the grid — here 256x256.

554 CHAPTER 33. CLASSIFYING RULE-SPACE

scatter plot with grid, λ-ratio 2d pile-up histogram at a lower resolution

Figure 33.14: Left: The rule sample scatter plot — the same as in figure 33.12, but with a 16×16
superimposed grid — by entering grid-g in section 33.6.3. Right: The 2d frequency histogram of the
rule sample scatter plot in figure 33.12 redrawn at a lower resolution, 16×16, selected in subdiv in
section 33.6.3. The vertical axis is the frequency of rules falling on each square of the grid. This figure
also illustrates pausing after each row with step-s or show%-S in section 33.6.3.

scatter plot, Z-parameter 2d frequency histogram, Z-parameter

scatter plot, λ-ratio 2d frequency histogram, λ-ratio

Figure 33.15: Alternative scatter plots and 2d frequency histograms (rcode only) where mean entropy
is replaced by: Top: the Z-parameter, and Bottom: λ-ratio, for the same rule sample as in figure 33.14.
Listing by plot coordinates or probing with the mouse apply as usual (section 33.9).

555

Enter return to skip the histogram and backtrack to the prompt in section 33.5, or enter f to
select the histogram (e.g. figure 33.13), which will appear in a top-center window – the following
top-right prompts are presented in sequence to specify the presentation and other options,

pile-up hist, subdiv (16,32,64,128,256-(def):
save data-d, step-s, and show%-S: log-l: grid-g togcolor (now on)-c:

options . . . what they mean

subdiv (16,32,64,128,256-(def): . . .
. . . The vertical axis of the 2d pile-up histogram indicates the frequency of

rules falling on each square of a notional grid laid over the scatter plot.
The resolution of this grid can be 16×16, 32×32, etc. Enter return for the
default 256×256 grid, or enter 16, 32, 64, or 128, for a different resolution.

save data-d . . . to save the frequency data to an ASCII file (.dat), laid out in rows and
columns according to the grid resolution above, giving the number of rules
falling on each square of the grid. For example, for a 16×16 grid according
to figure 33.14, the data is as follows,

4240 774 75 4 0 0 0 0 0 0 0 0 0 0 0 0
826 1062 496 173 52 12 2 1 0 0 0 0 0 0 0 0
644 358 260 201 120 53 15 9 3 0 1 0 0 0 0 0
822 242 186 152 131 60 39 24 12 3 0 0 0 0 0 0
869 202 156 115 91 46 44 33 15 12 5 3 0 0 0 0
751 139 98 81 59 55 39 22 20 10 9 2 4 1 0 0
578 121 103 61 43 43 35 24 26 14 6 7 3 2 1 2
474 100 88 53 35 34 23 22 18 10 5 4 5 2 2 1
384 77 53 36 28 18 15 9 6 6 3 1 3 2 1 2
156 49 39 21 29 17 15 7 7 6 3 2 0 0 0 5
103 24 22 20 15 8 8 5 3 8 4 4 0 1 1 2
68 16 10 10 7 2 8 5 5 3 0 1 0 0 1 0
59 6 10 4 6 3 3 2 1 4 0 3 0 0 1 1
40 1 4 5 3 4 0 2 1 0 0 0 0 0 0 0
36 2 4 3 2 1 1 0 0 0 0 0 0 0 0 0
214 4 1 2 0 1 3 0 1 0 0 0 0 0 0 0

step-s, and show%-S: . . .
. . . enter s or S to pause after each row in the 2d pile-up histogram, to see

its structure in greater detail, then enter return for each next row. If S
is entered, the height data for successive rows is displayed as a fraction of
the maximum height, in a top-right window.

log-l: . . . for a log scale of the vertical axis.

grid-g: . . . to overlay a grid, selected in subdiv above, on the scatter plot, as in
figure 33.14.

togcolor (now on)-c . . . enter return to color histogram columns according to colours in
the scatter plot, or c for monochrome as in figure 33.1.

Once these options are complete, the 2d pile-up histogram of the scatter plot is drawn in a
top-center window, and the histogram prompt in section 33.6.3 reappears. Enter f to reselect
the pile-up histogram, or return (or q) to backtrack to the prompt in section 33.5 — further
backtracking will restore space-time patterns.

556 CHAPTER 33. CLASSIFYING RULE-SPACE

33.7 Scanning sample space-time patterns

If a sample is currently active, space-time patterns, in any presentation (1d, 2d or 3d), can be
scanned from the sample. For more meaningful results the sample should first have been sorted
in section 33.5.

33.7.1 Scanning on-the-fly

The simplest method of scanning space-time patterns on-the-fly is with the following keys,

w/:/9..next/prev/rnd

Enter w for the next sample index, enter : (colon) for the previous index — the sample index
order is as specified in section 33.8. If a patch is active (section 33.6.2) each next or previous
sample index is restricted to rules within the patch, which recycle on reaching the ends. Keyhit 9
gives a random index within 10% of the low index numbers, or toggles an active patch ON/OFF
(section 32.6.3). Each rule change also sets a random initial state, and space-time patterns continue
until a new on-the-fly keyhit, or if interrupted. Information on the new rule, including the sample
index, appears in a top-right window when the key is hit as in figure 33.16.

Figure 33.16: Information that appears in a top-right window when scanning sample space-time patterns
with on-the-fly keys w/:/9, showing [v, k], the sample index (s=53), the mean entropy (me=52), the
variability min-max (mm=159) (or standard-deviation std=), and the rule as a bit/value-pattern and
in hex (from the sample in figure 33.18).

To start scanning from a selected rule index, enter on-the-fly key V..load,jmp,scan, then
enter the rule index at a top-right prompt, for example,

rule sample: load new-n, rule index/scan 1-24589 (222-def): (sample in figure 33.9)

33.7.2 Scanning automatically in blocks of time-steps

To scan automatically in equal blocks of time-steps (time-blocks), or to just start from a new rule
index, enter on-the-fly key V..load,jmp,scan, which gives the following top-right prompt, for
example,

rule sample: load new-n, rule index/scan 1-176398 (17-def): (sample in figure 33.5)

Enter a number for a new rule index, or return for the current index which is shown (or n
for a new sample). For example, if 33 is entered for the rule index — the following prompts allow
scanning automatically in blocks of time-steps,

scan time-blocks index from 17: incr-i, keep-k no-blocks-def:

557

Figure 33.17: A snapshot of the DDLab screen, showing a 2d kcode sample (TFO-mode) with
10637 rules (file v4k72d52.sta), sorted by min-max entropy. The random rules have a percent-
age value-bias 3-0: 52 16 16 16, and outputs of all uniform neighborhoods to the neighborhood value
(section 33.2.1), resulting in a greater frequency of complex rules than in an unbiased sample. Left: 2d
space-time patterns 88×88 in blocks of 150 time-steps from 25×25 central zone, paused at rule index
55. Bottom Center: the scatter plot with min-max entropy. Top Center: the 2d pile-up histogram
with the z-axis in log2 form.

Enter return to reject time-blocks and continue from the selected index, Enter i to scan time-
blocks automatically by increasing indexes. If a patch is active (section 33.6.2) successive indexes
are restricted to those within the patch and recycle on reaching the end. Enter k to scan in
time-blocks but keeping the selected index, changing only the initial state.

If time-blocks were selected with i or k above, top-right prompts are presented as follows,

set time-block (def 150): seedtype: block-v single-5/6 (def-all):

Firstly set the number of block time-steps, then select the type of random initial state (the
seed) for each new time-block. The default is a random seed over all the space; block--v sets a
central random seed-block with dimensions as set in section 21.3. These random seeds retain the
density-bias set in section 21.3.2. The single-5/6 option sets a singleton seed — for v=2, 5/6
gives a positive/negative singleton seed surrounded by the opposite value – for v ≥ 3, 5 gives a

558 CHAPTER 33. CLASSIFYING RULE-SPACE

Figure 33.18: A snapshot of the DDLab screen while scanning a 2d CA 88×88 in blocks of 100
time-steps scrolling diagonally, for biased v4k7 kcode in figure 33.17.

non-zero random value against a uniform background of zeros, and 6 gives a random value against
a uniform background of a different random value.

Following these options space-time patterns in time-blocks will run. Note that the type of seed
can be reset on-the-fly with keyhits all-4 and block-v section 32.8.1, and single-5/6 with keyhits 5
or 6 section 32.8.4.

33.7.3 Scanning 1d samples

For 1d space-time patterns, including 2d and 3d samples shown in 1d, if scrolling is set to off5

there will be a gap between each block, but no gap otherwise. To pause after each screen-full of
blocks, set the end pause on6. The pause occurs when no more blocks will fit, with the following
bottom-left prompt, which is presented below the last block, as in figure 33.17 and other DDLab
screen snapshots in this chapter,

s=24: endpause-e abandon-q cont-ret: (as in figure 33.17)

5Scrolling can be toggled on/off in section 31.2.6, or on-the-fly (#..tog scrolling, section 32.13.3).
6Pausing 1d space-time patterns when scrolling is off can be set on-the-fly (*..tog endpause (on),

section 32.13.2), and also in section 31.2.7, or from the interrupt prompt (section 32.13.4).

559

The rule index of the last block is given by s=24. Enter return twice for the next set of
blocks — the interrupt prompt (section 32.13.4) is presented first (showing the next rule) — here
other options can be activated including on-the-fly options (on-the-fly-y, section 32.16.9) where
the scatter plot and its 2d pile-up histogram can be added to the presentation (as in figures 33.3,
33.5, 33.9, 33.17). Enter e to undo the block endpause, q to abandon blocks and backtrack.

33.7.4 Scanning 2d or 3d samples

A sample created for a 2d or 3d CA can be scanned as described in sections 33.7, with the difference
that a 2d or 3d space-time pattern is presented initially as a “movie” of successive time-steps.
However, a 2d presentation can be shown as a space-time pattern with a historical time dimension
in either vertical or diagonal time-steps, where a rule sample can be scanned automatically in
time-blocks (section 33.7.2).

For vertical 2d time-steps (on-the-fly key t..tog 2d-2d+time, section 32.10.2) scrolling can
be either on or off (on-the-fly keys #..tog scrolling) including setting a pause (figure 33.17).

For diagonal 2d time-steps (on-th-fly key#..tog scrolling from a 2d “movie”) as in figure 33.18
scrolling is always active. Note that whatever the underlying CA dimension, 1d, 2d or 3d, the
presentation dimension is interchangable on-the-fly with key T.

33.8 Listing a sample

If l for a full sample, or p for a patch (if active), is entered in section 33.5, rules in a sample or
patch are presented in a top-right window as in figure 33.19. In a sorted list, rules are ordered by
decreasing variability (min-max or sdev), then by decreasing mean entropy within each measure
of variability, otherwise the list is in the order saved.

The title in the list window (e.g. 10637 v4k7 rules mean minmax) shows the number
of [v, k] rules in the sample. The rules are then listed, as many as will fit in the window, with
the rule index on the left, followed by the mean entropy and variability (min-max or sdev)
presented according to coordinates 0-255, and the rule in hex — as much as will fit. Sets of rules
separated by horizontal lines have the same variability. This prompt is shown at the foot of the list,

more-ret jump-j quit/select-q:

options . . . what they mean

more-ret . . . if there are more rules in the sample, to see the next batch.

jump-j . . . to jump to a new rule index. The following extra prompt is presented,

enter rule index 1-10637: (for example)

Enter the rule index number which becomes the first in the new list.

quit/select-q . . . if q is entered, the following extra prompt is presented,

part list, quit-q select-s:

Enter q to backtrack, or s to select a rule and see its space-time patterns
(section 33.8.1 below).

33.8.1 Selecting a rule from the list

Enter s in section 33.8 or 33.9 to select a rule from the list. The following extra prompt is presented
at the foot of the list window,

560 CHAPTER 33. CLASSIFYING RULE-SPACE

default listing from index 1, and

requesting a jumping to 99

listing from index 99, and selecting rule

345 (not necessarily in the list)

Figure 33.19: Listing the sorted rule sample in figure 33.17 with 10637 v4k7 kcodes. Columns from
left to right: rule index number, mean entropy, variability (min-max or sdev), and the rule in hex — as
much as will fit. The list order is firstly by decreasing variability v, then by decreasing mean entropy
within each measure of v. Sets of rules separated by horizontal lines have the same v (max 0.18 because
any v>0.18 is reset to 0.18). Various options are presented below the (partial) list: m to see more,
j to jump to an index, s to select a rule.

enter rule index 1-10637: (for example)

Enter any rule index number within the range. The program reverts to the prompt in section
33.5. Enter q (backtrack to the interrupt prompt — section 32.14), then enter return to show
the space-time patterns of the selected rule.

33.9 Listing by plot coordinates or probing with the mouse

Entering c in section 33.5 or clicking the mouse within the scatter plot in section 33.6.1 allows the
rule or rules at and adjacent to the chosen coordinates to be listed.

If c is entered, the following top-right prompts are presented in sequence,

mean entropy pos 0-255: min-max pos 0-255: (or sdev)

561

Enter the coordinates to list the rule/s at the grid reference, a number (0 to 255)7 in each case.
The same can be achieved by clicking on the plot with the left mouse button (section 33.6.1).

The list will appear as in figure 33.20, similar to figure 33.19, but with a slightly different title,
and options at the foot of the list, for example,

title
10637 v4k7 rules y=143 x=108 rad=1 (from figure 33.20)

left mouse button to select (reminder to set coordinates with a mouse click)

This shows the coordinates selected, and the current radius, initialy 1 unit (rad=1), resulting
in any rule within a 3×3 block centered on the coordinates to be listed. A small radius may not
contain any rules. The options at the foot of the list allow the radius to be expanded up to 9 units
to include more rules — maximum block 19×19. The options differ between a short complete list
and a long partial list, for example,

rad=1

rad=5
rad=9

Figure 33.20: Listing the sorted rule sample in figure 33.17 by plot coordinates or probing with the
mouse. The layout is the same as in figure 33.19, The coordinates (y=143 x=108) were selected
by clicking with the mouse (or by entering the values) with the default radius=1. The radius was
expanded to 5, then to 9 to capture more rules on the scatter plot. Columns from left to right: rule
index number, mean entropy, variability (min-max or sdev), and the rule in hex — as much as will
fit. Various option are presented below the list: q to backtrack, s to select a rule (section 33.8.1), or
rad-(max 9) to change the radius. A new mouse-click or return restores the scatter plot prompt
(section 33.6) ready for a new mouse-click.

options for a short complete list
quit-q select-s rad-(max 9):

options for a long partial list, presented in turn
more-ret jump-j quit/select-q: (then if q is selected)

quit-q select-s rad-(max 9):

Enter a number up to 9 to expand the radius. Other options are the same as in section 33.8.

7The y, x coordinates are plotted according to unsigned char values, so the mean entropy (0 to 1) and the
variability (0 to 0.18) are coarse-grained to the range 0 to 255. Any variability above 0.18 is reset to 0.18.

562 CHAPTER 33. CLASSIFYING RULE-SPACE

33.10 Rule sample encoding

A rule sample file (.sta) is a binary file of an unsigned char array, recording (A) each rule, (B) its
mean entropy, and (C) the entropy variability (min-max or sdev). The file records A,B,C for each
rule in the sample. In a sorted list, rules are ordered by decreasing variability, then by decreasing
mean entropy within each measure of variability, otherwise the list is in the order saved.

The encoding of A,B,C is as follows: A (the rule-table) consists of bits as described in
section 16.16, but omitting the two leading bytes for v and k. B and C are both whole numbers
(0 to 255) and are stored as one byte each. The file does not record [v, k] so loading a file that
was created with conflicting [v, k] will result in a meaningless scatter plot.

Chapter 34

Learning, forgetting, and
highlighting
not in TFO-mode.

Attractors classify state-space into broad categories, the network’s “content addressable” memory
in the sense of Hopfield [21]. Furthermore, state-space is categorized along transients, by the
root of each subtree forming a hierarchy of sub-categories. This notion of memory far from the
equilibrium condition of attractors greatly extends the classical concept of memory by attractors
alone [39, 40].

DDLab provides tools for “sculpting” the basin of attraction field towards desired categories and
sub-categories by methods that automatically attach/detach one or more “aspiring pre-images”
to/from a “target-state”. The results and side affects of learning can be seen most clearly for a
basin of attraction field, but the methods (allowing larger networks) also apply to a single basin,
a subtree, or simply to a space-time pattern running forward.

34.1 Learning/forgetting methods

The learning methods apply to rcode only (i.e. not in TFO-mode), and work by adapting network
architecture — mutating rules and/or moving wires. One or more states can be added or deleted
as pre-images of a given state. Adding or deleting pre-images is analogous to learning or forgetting.

It turns out that the rule mutation algorithm is bound to learn a list of aspiring pre-images
without forgetting the state’s pre-existing pre-images — those not on the list may also be learnt
as a side effect. There is just one specific rule scheme mutation, which is bound to succeed. By
contrast, there are many alternative wire moves that may achieve the desired result, though success
is not guaranteed, and pre-existing pre-images may be forgotten [39].

Any change, especially in a small network, usually has significant side effects1, but this can
be beneficial because of generalization, were a subtree is transplanted together with the attached
pre-image as in figure 34.2. The revised attractor basin can be immediately re-drawn to show the
results and side affects of learning. The algorithms for forgetting pre-images cause less severe side
effects because forgetting requires only minimal changes to network architecture.

1These learning methods are not good at creating categories from scratch, i.e. solving the inverse problem or
reverse engineering. A rudimentary solution to that is provided in section 18.7.4. However, the learning/forgetting
methods are useful for fine tuning a network which is already close to where its supposed to be.

563

564 CHAPTER 34. LEARNING, FORGETTING, AND HIGHLIGHTING

Figure 34.1: The basin of attraction field of a RBN, v2k4, n=8, before learning. The red (arrowed)
state has been selected as the target, and the blue state (at the tail of the arrow) as the aspiring
pre-image with “highlight only”. Both have a double outline. The difference between the actual
successor state and the target state is one bit (element 3), which should minimize side effects.
Note that the basin layout was rearranged within the jump-graph, section 20.14.

The wiring algorithm requires nonlocal wiring. 2d or 3d CA are always treated as nonlocal,
but 1d local wiring needs to be redefined as nonlocal in the learning prompts (section 34.5) or
preset as nonlocal (section 12.4.1). The rule algorithm requires a rulemix set in chapter 14 —
note that a single rule can be set up as a rulemix (section 14.4.3).

34.1.1 Highlighting states in attractor basins

The nodes corresponding to a list of states can be highlighted in attractor basins — highlighting
has no effect for space-time patterns. Highlighting shows up the results of learning and forgetting,
but is also useful (without learning) to see how a particular set of states is distributed in the
basin of attraction field, single basin or subtree, and how the distribution changes when network
parameters are altered. The highlighted presentation is illustrated in figure 34.4 for different types
of node display2.

For binary (v=2) networks, the target node is shown in red and aspiring pre-images in blue
— for highlighted nodes shown as bit patterns, these are the colors of 1s, otherwise 1s are shown
black. For v ≥ 3 networks, highlighted nodes shown as bit patterns correspond to values. Nodes
not highlighted may be suppressed entirely. The highlighting feature may be used for any network
architecture, including local 1d CA with compression on (section 26.2).

34.1.2 Basin layout for learning

The default layout of the basin of attraction field may need some adjustment for a good presentation
for learning. Setting the layout is described in section 25.2, but can be readjusted with much greater
flexibility in the jump-graph (section 20.14) – this was done for figure 34.1.

2The node display is selected in section 26.3 and is not affected by the presentation for selecting the target and
pre-image states in sections 34.3 and 34.4.

565

(a) The result of learning by rule bitflips, and the side effects. There is just one possible solu-
tion, which must succeed. The moved state’s former subtree has been mostly transplanted.

(b) The result of one example of learning by wire moves, with greater side effects. There are
multiple possible solutions, but there may also be no solution by wire moves.

Figure 34.2: The basin of attraction field of a RBN, v2k4, n=8, after learning (figure 34.1).
(a) By bit-flips. (b)By wire moves. The target state and its pre-image are highlighted with a double
outline. Note that the order and orientation of the basins has changed.

3. 2. 1. 0. rcode(hex)

7: 3 1 6 0 d2 33

6: 1 0 4 4 50 3a

5: 5 0 0 2 f6 b4

4: 1 1 2 5 7d 74

3: 5 1 7 4 b0 c5

2: 3 0 0 5 06 00

1: 4 2 3 3 9c 67

0: 3 6 5 4 12 00

Figure 34.3: The RBN network for figure 34.1 be-
fore learning. Because the difference between the
actual successor state and the target state is con-
fined to element 3, learning changes effect this cell
only. The new rule at element 3 (figure 34.2(a) is
rcode(hex) b0c7 — one bitflip. The new wiring at
element 3 (figure 34.2(b) is 5 1 7 2, one wire move.

566 CHAPTER 34. LEARNING, FORGETTING, AND HIGHLIGHTING

1d bit pattern

c8c8

1010

hexadecimal

200200

1616

decimal spots

Figure 34.4: Top: the basin of attraction field of the RBN in figure 34.2(b), v2k4, n=8, learning by
wire moves. The target and pre-image nodes (states) are shown as 2×4 bit patterns and highlighted
with a double outline — other nodes are suppressed. Below: a fragment of the second basin showing
alternative presentations of highlighted nodes (states). The presentation will follow the node display
selected in section 26.3 irrespective of the presentation for selecting the target and pre-image states in
sections 34.3 and 34.4, but other nodes can be suppressed if required.

34.2 Selecting the learn/forget/highlight window

Once rule/s have been set, whenever the network is reviewed in the lower-left wiring graphic
(section 17.3), the learn/forget/highlight window and functions (section 34.3) can be activated.
The upper-right wiring graphic reminder (section 17.4) includes the following option (highlighting
does not apply for space-time patterns),

. . . hilight/Lrn-l/L or if interrupting space-time patterns . . . Learn-L

Enter L for the learn/forget/highlight functions. For attractor basins, enter l to highlight
selected states. Sections 34.2.1 and 34.2.2 describe how to get to this point in DDLab — the
sequence of prompt windows is summarized as below,

basin complete or
space-time pause

→ network
architecture

→ wiring
graphic

→ learn/forget
highlight

Note that changes to wiring and rules can be made directly from the wiring graphic, which can
be done in conjunction with automatic learning/forgetting.

567

34.2.1 Selecting the wiring graphic

The wiring graphic (section 17.3) can be reached from the top-right network architecture prompt
(section 17.1), for example,

1d network (n=150), review/revise/learn, wiring and rcode
graph-g, matrix: revise-m view-M prtx-Mp
graphic: 1d:timesteps-1 circle-c 2d-2:

Enter 1, c, 2 (or 3 for 3d) for different presentations of the wiring graphic (e.g. figures 17.2,
17.3, 17.10, 17.15).

34.2.2 Selecting the network architecture prompt

The network architecture prompt (section 17.1) can be reached as follows,

initial prompts . . . during the main prompt sequence after rules are set — the network
architecture prompt appears automatically (section 17.1).

attractor basins . . . when a basin of attraction field, single basin or subtree is completed or
abandoned, the following top-left “Attractor basin complete prompt”
appears (section 30.4),

graphics-g ops-o speed(max)-V
toggle: field-single-t STP-P
net-n, back-q cont-ret:

enter net-n,
alternatively ops-o followed by net-n (section 30.5),

space-time patterns . . . when interrupting space-time patterns, the top-right “Space-time
pattern interrupt/pause prompt” (section 32.16) appears, for
example,

rule:save/load/revise/rnd/trans-s/l/v/r/t net-n sample:load/keep-E/K
PScript-P Z:high/low-Z/z canal-C g-rules(rnd/seq)-G
state:rev-e rnd/Ham/blk/orig/last-R/H/k/o/∼ sng:pos/neg-5/6 save/load-S/L
graph-g/p, border-B filter-f skip-X pause-N step-x/+ top-T
on-the-fly-y hide-W no-ops-Q back-q cont-ret:

enter net-n for the network architecture prompt.

34.3 Select the target state

Enter L, or l (for highlighting only) in section 34.2 for the “target state” prompts in a lower left
window, similar to “The seed prompt” (section 21.1) — the various methods of setting states are
described in chapter 21.

The initial prompts sets the “target state” — to which “aspiring pre-images” will attempt to
directly attach or detach themselves by means of learning/forgetting algorithms. Prompts are
presented in two separate windows, one above the other. The upper window indicates that the
target state is to be set,

568 CHAPTER 34. LEARNING, FORGETTING, AND HIGHLIGHTING

for attractor basins, L or l selected in section 34.2
learn/forget/highlight: set target state or highlight only: set target state

for space-time patterns, L selected in section 34.2, where highlighting does not apply
learn/forget: set target state

The lower window presents the first of a series of prompts to select the target state, for example,

Select target stare (v2 1d n=14), win-w empty-e fill-f prtx-x (for 1d, v=2)

rnd-r bits1d-b bits2d-B hex-h dec-c repeat-p load-l (def-B):

Select the target state as if selecting a seed in section 21.1 — the prompts are the same, but
the default selection method is initially bits2d-B (sections 21.4, 21.4.7).

34.4 Select aspiring pre-image/s

Once the target state has been selected, one or more states are specified as its “aspiring
pre-images” (i.e. direct predecessors). The learning/forgetting algorithms will attempt to directly
attach (learn) these states, or detach (forget) existing pre-images of the target state. Alternatively
the “aspiring pre-images” and the “target state” can be just highlighted. The set of aspiring
pre-images can be an arbitrary list of states, a range of decimal equivalents (if applicable —
section 21.6), or can be based on Hamming distance, parity, or the previous list may be repeated.
Prompts are presented in two separate windows, one above the other — the upper prompt appears
first as follows,

pre-images: as before-b parity-p range-r Hamm-h1/h2 list-(def 1):
(parity-p and Hamm-h2 for v=2 only)

These options are summarized below, with further details in the sections indicated,

options . . . what they mean

before-b . . . to repeat a previous set of aspiring pre-images (parity, range or Hamm).
If a list was previously selected, the new list defaults in section 34.4.4 will
correspond to the previous list.

parity-p . . . (v=2) to select states based on odd or even parity (section 34.4.1).

range-r . . . to specify a range of states according to their decimal equivalents, but
within the limits of max-n in section 21.6.

Hamm-h1/h2 . . . enter h1 for states with Hamming distance 1 from the target state.
For v=2, h2 gives a Hamming distance of both 1 and 2 (section 34.4.3).

list-(def 1) . . . enter return to specify just one aspiring pre-images, or a number to specify
the size of an arbitrary list of pre-images (section 34.4.4).

Once set, the target state and the set of aspiring pre-images (however selected) are reviewed as
decimal equivalents (section 34.4.5).

569

34.4.1 Odd or even parity
binary v=2 systems only

In a binary v=2 network, odd and even parity signifies that the total of 1s in a state’s bitstring is
odd or even3 (a zero total of 1s has even parity). By default, parity applies to the whole bitstring
(size n) if n ≤ 20, otherwise only the 20 leading bits are considered. A smaller number of leading
bits can also be specified.

Enter p in section 34.4 to automatically select aspiring pre-images with the given parity.
The following upper prompt is presented,

parity: odd-1, or even-(def):

Enter return for even parity, 1 for odd parity. A further upper prompt allows the parity to
relate to a leading part only of the network,

enter part system size (def 10): (for n=10)

If a size x ≤ n (max x=20) is entered, states with the given parity relating only to cell indexes
0 to x-1 will be selected. Figure 34.5 shows the results of entering 7 in a n=10 network.

Figure 34.5: Selecting even parity for the leading 7 bits in a 10 bit network. A list of the 27/2=64
states with even parity are displayed in decimal. This is one kind of review list covered in section 34.4.5.

34.4.2 Range of decimal equivalents

Enter r to automatically set a range of aspiring pre-images, set between two selected decimal values
within the limits max-n in section 21.6. For a basin of attraction field, n will be within these
limits, but if n≥max-n (likely for space-time patterns), so outside the range of allowed decimal
equivalents, only max-n leading bits/values are considered. The following (upper) sequence of
prompts is presented to set the start and end decimal equivalents, and the “step” or increment
size (default 1),

range of pre-images (def 1-8, max 255), start: end: step: (for n=8)

34.4.3 Pre-images according to Hamming distance

Enter h1 in section 34.4 to automatically set the aspiring pre-images based on a Hamming distance
of 1, where states differ by just 1 bit/value from the target state. For v=2 only, enter h2 for a
Hamming distance of both 1 and 2.

3The parity does not relate to the state expressed as a decimal value, but simply to the total of 1s irrespective
of their position in the bitstring.

570 CHAPTER 34. LEARNING, FORGETTING, AND HIGHLIGHTING

34.4.4 List of aspiring pre-images

Enter return to specify just one aspiring pre-images, or a number to specify the size of an arbitrary
list of pre-images, at the (upper) prompt (section 34.4),

. . . list-(def 1):

A prompt, or series of prompts to select the pre-image/s will be presented in the lower window.
These prompts are the same as for selecting a seed (section 21.1), except for the heading,

Select aspiring pre-image 1 . . .

for a list, this is followed by . . .

Select aspiring pre-image 2 . . .
Select aspiring pre-image 3 . . . etc.

The default selection method is setting 2d bits (sections 21.4 and 21.4.7).

34.4.5 Review target state and aspiring pre-images

Once the target state (section 34.3) and aspiring pre-images (section 34.4) have been set, infor-
mation about the selection will be displayed in the lower window. If the system size is within the
limits for decimal, n≤max-n (section 21.6), the states in decimal will also be included. Figure 34.5
gives an example for parity. Examples for a range of decimal equivalents, Hamming distance, and
an arbitrary list, are given below for v=2, n=8,

a range of decimal equivalents, section 34.4.2
target=240, pre-images=16, range 2-255, step=16, cont-ret:
2,18,34,50,66,82,98,114,130,146,162,178,194,210,226,242,

the set of 1-bit mutants, Hamming distance=1, section 34.4.3
target=240, pre-images=8, 1-bit mutants, step=16, cont-ret:
241,242,244,248,224,208,176,112,

an arbitrary list of 5 states, section 34.4.4
target=240, pre-images=5, cont-ret:
50,167,152,88,94

If there are more states than will fit in the window, the following prompt allows more to be
displayed, or to abandon the display and continue,

more-m cont-ret:

Enter q to backtrack to section 34.4 and reset the aspiring pre-images.

34.5 Learn, forget, or highlight only

Once the target state (section 34.3) and aspiring pre-image/s (section 34.4.4) have been set,
reviewed and accepted (section 34.4.5), prompts are presented to learn, forget, or just highlight
the aspiring pre-images (as well as the target state). Note that highlighting does not apply for
space-time patterns.

571

34.5.1 1d CA — local wiring and highlighting

For a 1d CA (with local wiring and a single rule), or a network with 1d local wiring and mixed
rules, a prompt (in the upper window) first allows the wiring to be redefined as nonlocal,

1d CA, if L was selected in section 34.2 (if l was selected, highlight only applies)

local 1d: nonlocal wiring-w:

1d local wiring and mixed rules
local 1d, rulemix: nonlocal wiring-w:

Enter w to redefine the wiring as nonlocal, allowing learning by wire moves, and suppressing
compression in attractor basins (section 26.2). If return is entered to conserve local wiring,
subsequent options differ for space-time patterns or attractor basins. For space-time patterns, the
program skips directly to the last prompt before exiting the learning routine (section 34.9).

For attractor basins, there is a reminder that although learning is deactivated, the highlighting
options remain,

for attractor basins
. . . highlight only-(def):

Enter return to skip directly to the highlighting options (section 34.8). Compression in
attractor basins is suppressed (section 26.2).

Highlighting is the only possibility for a network where the wiring is defined as local 1d, using
the local 1d reverse algorithm (section 2.19). Note that 1d local wiring can also be redefined so
that it is treated as nonlocal in section 12.4.1. Highlighting on its own can be useful to show how
a selected set of states is distributed in attractor basins.

34.5.2 Nonlocal wiring — learn, forget, or highlight only

For networks that do not have 1d local wiring, or if w was entered in section 34.5.1 above, or
for any other network with nonlocal wiring, including 2d and 3d CA4, the following prompt is
presented,

for attractor basins
highlight only-h, forget-f, learn-(def):

for space-time patterns, where highlighting does not apply
forget-f, learn-(def):

Enter return or f to learn or forget i.e. add/remove the aspiring pre-image/s to/from the
existing pre-image fan of the target state. When the attractor basin is redrawn according to the
altered network, the target and aspiring pre-image states will be highlighted (section 34.1.1).

Enter h to just highlight the selected states (without learning or forgetting) — the program
skips directly to the last prompt before exiting the learning routine (section 34.9).

42d and 3d CA “local” wiring is treated as nonlocal in DDLab’s algorithms.

572 CHAPTER 34. LEARNING, FORGETTING, AND HIGHLIGHTING

34.5.3 Learning/forgetting by wire moves or bit/value-flips

If learning or forgetting was selected in section 34.5.2, a prompt (in the upper window) is presented
to proceed either by moving wires or flipping bits/values in rule-tables.

For a single rule network, only learning/forgetting by wire moves is possible5, and the prompt
is as follows,

learn by wire-moves only-(def): (or forget . . .)

Enter return to proceed by wire-moves (section 34.7).
Otherwise, for networks with nonlocal wiring and a rulemix, and also networks with mixed-k

which by definition has both, the prompt is as follows,

for binary, v=2, networks
learn by wire-moves -w, bit-flips-(def): (or forget . . .)

for multi-value, v≥3, networks
learn by wire-moves -w, value-flips-(def): (or forget . . .)

Enter return for bit/value-flips (section 34.6), or w for wire-moves (section 34.7).
Enter q to backtrack.

34.6 Learning/forgetting by bit/value-flips

The bit/value-flip learning algorithms [39] change a specific bit/value in the rule-table at each cell
position where there is a mismatch between the actual successor cell of the aspiring pre-image and
the same cell in the target state. This takes care of that specific mismatch for all future aspiring
pre-images, so pre-existing pre-images cannot be “forgotten”, i.e. detached as pre-images from the
target state, by learning more states as pre-images.

However other states not on the list of aspiring pre-images may also be learnt, so side effects
will occur elsewhere in the attractor basin. To “forget” a pre-image, just one of a set of possible
bit/value-flips is sufficient, chosen from the set at random. As fewer network changes are needed
there will be fewer side effects.

If bit-flips or value-flips was selected in section 34.5.3, the required changes to the network
will be made, and the following (upper) prompt is presented,

for attractor basins
learn/forget/highlight more-m:

for space-time patterns, where highlighting does not apply
learn/forget more-m:

Enter m to repeat the procedure from section 34.5, otherwise the network as it stands is
accepted. For attractor basins the node highlighting options follow (section 34.8). For space-
time patterns the program skips directly to the last prompt before exiting the learning routine
(section 34.9).

5section 14.4.3 describes how to set up a single rule network that is treated as a rulemix.

573

34.7 Learning/forgetting by wire-moves

The wire-move learning algorithms [39] move a single input wire at each cell position where there
is a mismatch between the actual successor cell and the same cell in the target state. There is a
choice of wires to select from the pseudo-neighborhood, and a choice of new coupling positions,
some of which will correct the mismatch. The aspiring pre-image order, the pseudo-neighborhood
order, and the coupling order, are all shuffled at random, and the first successful move is selected
(if it exists). This may cause pre-existing (or just learnt) pre-images to be forgotten, i.e. detached
as pre-images from the target state.

If “just learnt” states are forgotten when learning the next pre-image, the next wire-coupling
alternative in the shuffled order will be tried. If none succeed the algorithm continues with the next
aspiring pre-image. On completing the learning pass, the state/s learnt, and not learnt, are listed
by their decimal equivalents, if within the limits for decimal, n≤max-n (section 21.6), otherwise
the states are symbolically represented by “x”.

The following examples are for binary (v=2) networks,

failing to learn one pre-image by re-wiring
target state=73,
193,<-no
re-learn by wire-moves -w, bit-flips -b: (or re-forget . . .)

cont-ret:

tried rewiring again, successfully learnt one pre-image
target state=73,
193,<-ok
success - aspiring pre-image learnt (or . . . forgotten)

cont-ret:

learning multiple pre-images, for Hamming distance 1 from state 8
target state=8,
136,0<-no
24,72,12,9,10,40,<-ok re-learn by wire-moves -w, bit-flips -b: (or re-forget . . .)

learning multiple pre-images, space-time pattern n=55, Hamming distance 1
target state (n=55) (outside decimal limits — states represented symbolically)

x x<-no
x x<-ok
re-learn by wire-moves -w, bit-flips -b: (or re-forget . . .)

if all multiple pre-images are learnt (or forgotten)

success - all aspiring pre-images learnt (or . . . forgotten)

When learning by wire-moves,

<-ok indicates learnt states, <-no unlearnt states

If there are unlearnt states remaining, options are offered to try to re-learn again by wire-moves,
or by bit/value-flips (section 34.6) which is bound to succeed [39].

re-learn by wire-moves -w, bit-flips -b:

574 CHAPTER 34. LEARNING, FORGETTING, AND HIGHLIGHTING

CA wiring

the result of moving one wire

Figure 34.6: Top: the basin of attraction field of the CA v2k3 rcode 110, n=10 (compression sup-
pressed). Bottom: the result of moving one wire, cell 4 wiring 5 4 3 changed to 5 9 3, done by
“hand rewiring” in section 17.9.4. The node type selected was spot in section 26.3. In both fields,
the target state (all-1s) is highlighted in red, together with states Hamming distance 1 and 2 from the
target state (h2 section 34.4) highlighted in blue. All other states are suppressed. Note that the basin
layout was rearranged within the jump-graph, section 20.14.

If w is selected, the last <-no state will be learnt first, followed by the set of shuffled <-ok
states, then the remaining shuffled <-no states. On completing the pass the resultant listing and
prompts are repeated. Note that for a large system with a large list of aspiring pre-images, a
wire-move learning pass may take an unpredictably long time.

To forget a pre-image just one appropriate wire-move is required. Forgetting is generally much
easier and quicker than learning. As fewer network changes are needed there will be fewer side
effects. Note that in the forgetting procedure <-ok indicates states still attached to the target
state, i.e. not forgotten, and <-no indicates states successfully forgotten, for example if all are
<-no the following prompt is presented below the listed states,

success - aspiring pre-image forgotten
cont-ret:

If return is entered at the various prompts above, the following (upper) prompt is presented,

575

CA wiring

the result of moving one wire

Figure 34.7: Top: The basin of attraction field of a CA v4k3, n=6 (compression suppressed). Bottom:
the result of moving one wire, cell 2 wiring 3 2 1 changed to 3 5 1, done by “hand rewiring” in
section 17.9.4. The node type selected was 2d-B in section 26.3. The highlighted states are the all-
red target (all-2s), together with states Hamming distance 1 from the target state (h1 section 34.4).
All other states are suppressed. Note that the basin layout was rearranged within the jump-graph,
section 20.14. (rcode(hex)96570e1b37b0b8d6b3189e967bac51ac).

learn/forget/highlight more-m: or for space-time patterns learn/forget more-m:

Enter m to repeat the procedure from section 34.5, otherwise the network as it stands is
accepted. For attractor basins the node highlighting options follow (section 34.8). For space-
time patterns the program skips directly to the last prompt before exiting the learning routine
(section 34.9).

576 CHAPTER 34. LEARNING, FORGETTING, AND HIGHLIGHTING

34.8 Highlighting options
attractor basins only

Once learning is complete, or if highlight only was selected in section 34.5, the nodes representing
the target state and the set of aspiring pre-images can be highlighted in the attractor basin — the
particular form of highlighting depends on the node type selected in section 26.3.

The following prompt is presented,

highlight: none-n, suppress all other nodes-s:

Enter s to suppress the display of nodes other than highlighted nodes. Enter return to highlight
the selected nodes and show other nodes normally according to the selected node type. Enter n
not to highlight, but show all nodes as normal. Examples are shown in figures 34.4, 34.6 and 34.7.

34.9 Learning/forgetting/highlighting complete

When learning/forgetting or highlighting is complete, the lower-left wiring graphic (section 17.3)
and the “wiring graphic reminder” (section 17.4) reappear. Within the wiring graphic, the results
of learning/forgetting can be re-examined and changes made, for example with “hand rewiring”
(section 17.9.4) or “revising the rule” section 17.9.10.

Enter return to exit the wiring graphic, and revert to the top-left “attractor basin complete”
prompt (section 30.4), or the pause options for space-time patterns (section 32.16).

Enter return to redraw the attractor basin (or restart space-time patterns) with the new
(learnt) parameters. Attractor basins will be drawn with the specified highlighting. Note that
after the attractor basins have been drawn, if return is entered again, the network will be
changed by the mutations set (by default) in chapter 28. This shows how a set of highlighted
states is redistributed for a succession of mutated attractor basins (figures 34.6, 34.7). However,
when “sculpting” the basin of attraction field, it is safer to first deactivate mutation in section 28.1.

Chapter 35

Filing

DDLab has functions for saving and loading a variety of DDLab specific file types. This chapter
lists the file types, and describes the methods for saving and loading files. The file types and
encoding are described in more detail in other sections of the manual as noted.

35.1 File naming constraints in DDlab

DDLab was first developed in DOS, and DOS filename conventions still apply for all versions,
including Linux-like operating systems. A DOS filename has up to eight characters (starting with
a letter) and up to three characters in the extension following the dot. DDLab file names have a
three letter extension which identify the file type, for example myrul v3.rul, except for PostScript
files generated in DDLab which have a two letter extension, for example my 3dPS.ps. The extension
is not entered as part of the filename when saving or loading — it will be automatically added
according to the file type.

The lowercase letter q cannot be included in a file name because it is used for backtracking or
deleting input from the keyboard.

35.2 File types, default filenames, and extensions

The DDLab specific file types, default extensions, and default filenames are listed below.

type default filename description

K-MIX my mix.mix The neighborhood-mix, (sections 9.4, 9.11.3, 19.5). Encod-
ing: see section 19.3.1.

WIRING ONLY mywso.w s The wiring scheme (chapter 19). Encoding: sections 19.3.

577

578 CHAPTER 35. FILING

SINGLE RCODE

SINGLE KCODE

SINGLE TCODE

myrul v2.rul

myvco v3.vco

mytco v4.tco

etc.

. . . for rcode (for example)

. . . for kcode (for example)

. . . tcode (for example)

A single rule, rcode, kcode or tcode, for a given v and
k (chapter 16, and sections 30.5.1, 32.16.1). Encoding:
section 16.16. The default filename includes v.
When setting a rule, kcode, or tcode, in chapter 16, the
most recent will be automatically saved, with the filename
l v2k3.rul, l v2k3.vco,l v2k3.tco — including both v
and k — these rules can then be automatically reloaded.

RCODE

as 1d SEED

mysee v2.eed

mysee v3.eed

etc.

The rule-table saved as a 1d seed (section 16.4.4).
Encoding: section 21.9. The default filename includes the
value-range v. This is the same as a 1d SEED — below.

RULE TABLE mytbl v2.tbl

mytbl v3.tbl

etc.

The rcode-table, or in TFO-mode the kcode-table or tcode-
table, for a given value-range v, can be saved or loaded as an
ASCII file (section 16.22). The default filename depending
on v.

RCODE for Golly

for v2k9 isotropic

rules in Hensel no-

tation

isoRule.hen For binary 2d rules with a Moore neighborhood (v=2, k=9),
the rcode can be saved or loaded as an ASCII string in
the Hensel notation, following the Golly file format. The
rule is automatically transformed to be isotropic Selection:
section 21.1. Description and encoding: sections 16.4.1 and
16.10.9.1).

RCODE SCHEME

KCODE SCHEME

TCODE SCHEME

myrso v2.r s

myrso v3.r v

myrso v4.r t

etc.

. . . for rcode (for example)

. . . for kcode (for example)

. . . for tcode (for example)

The rcode, kcode, or tcode, scheme (with corresponding ex-
tensions .r s, .r v, .r t (chapter 19). For homogeneous-k
only, otherwise use the WIRING+RULE SCHEME below.
The default filename includes the value-range v. Encoding:
sections 19.3.

WIRING+RULE

SCHEME

mywrs v2.wrs

mywrs v3.wrv

mywrs v4.wrt

etc.

. . . for rcode (for example)

. . . for kcode (for example)

. . . for tcode (for example)

Both wiring and rules (chapter 19).
Encoding: sections 19.3.
The default filename includes the value-range v.

NETWORK DATA my net.dat . . . for the network data as an ASCII file (section 19.6).

input-entropy

DATA

my entr.dat Input-entropy “pulsing” data as an ASCII file,
(section 32.12.6.2).

return map density

DATA

my dnsty.dat Return map density data as an ASCII file ,
(section 32.12.7.2).

579

SEED mysee v2.eed

mysee v3.eed

mysee v4.eed

etc.

The seed or state, which includes the value-range v, size n,
dimension (1d, 2d or 3d), and the i, j, h coordinates (sections
21.4.2, 21.4.8, 30.5.2, 32.16.4). Encoding: section 21.9. The
default filename includes the value-range v.
Note that the same filenames also apply for saving/loading
a patch — part of a state (sections 21.4.1, 21.4.8).

SEED (ASCII) Aseed v2.see

Aseed v3.see

Aseed v4.see

etc.

The seed or state as an ASCII string (section 21.10),
which includes the value-range v, the dimension is not
recorded. Selection: section 21.1. Description and encod-
ing: section 21.10. The default filename includes the value-
range v.

SEED for Golly Golly v2.gly For 2d binary (v=2) networks, the seed or state as an
ASCII string following the Golly file format. Selection:
section 21.1. Description and encoding: section 21.11).

BASIN DATA my data.dat An ASCII file for the field/basin/subtree and list of states
data (sections 19.6, 27.3—27.5.2,). Encoding: ASCII.

PRE-HIST-DATA my prh.prh Data for the pre-image histogram. (section 24.6.5). Encod-
ing: a binary file of an unsigned long array, recording each
in-degree frequency, from zero onwards.

HIST-DATA my his.his Data for various other histograms (sections 9.11.1, 17.9.13,
31.6.2, 31.7.5, 31.8). Encoding: a binary file of an unsigned
short array, recording the height of each histogram bar, from
zero onwards.

EXHAUSTIVE myexh v2.exh

myexh v3.exh

myexh v4.exh

etc.

An exhaustive mapping, listing each state and it successor
(section 29.8.1, 29.7.3, 18.1.2). Encoding: a binary file of a
char array recording a list of vn successor bit/value strings,
each in vn/8 bytes (minimum 1 byte), where the pre-image
is the array index, from zero onwards. The default filename
includes the value-range v.

ORDER-DATA my order.ord For the sequential updating order. (sections 29.9, 29.9.2).
Encoding: a binary file of an unsigned short array, recording
the sequential order according to the array index, from zero
onwards.

STAT-SAMPLE mystat.sta The statistical sample of automatically classified rule-space,
(sections 32.16.2, 33.4, 33.5). Encoding: section 33.10.

GRAPH LAYOUT my grh.grh The layout of the network-graph (section 20.5), the
ibaf-graph (section 20.6) or the attractor jump-graph
(section 20.7). Encoding: a binary file of a signed short
array, recording the x, y coordinates of each graph node ac-
cording to the array index, from one onwards.

580 CHAPTER 35. FILING

SCREEN myimage.nat The screen image, (section 5.6.1).
Encoding: (the same for all platforms) has a DDLab spe-
cific format too involved to explain here. A .nat file, saved
on a given platform can be successfully loaded back into
DDLab on the same platform, even if the screen size has
been changed. If saved on one platform and loaded back to
another, the results are less reliable.

PostScript my sPS.ps

my 3dPS.ps

my sgPS.ps

my ngPS.ps

my bgPS.ps

my jgPS.ps

my bPS.ps

my mxPS.ps

my wgPS.ps

my mrxPS.ps

my isoPS.ps

. . . space-time patterns (and rule-tables).

. . . 3d space-time patterns.

. . . space-time patterns within the network-graph.

. . . network-graph.

. . . ibaf-graph.

. . . jump-graphs.

. . . attractor basins.

. . . wiring-matrix.

. . . wiring-graphic.

. . . neighborhood matrix graphic.

. . . iso-group graphic.

These are vector PostScript files described in chapter 36,
which includes relevant sections for selection. The files can
be loaded in GhostView (Linux command gv &), and in-
cluded in LaTex documents. Encoding: ASCII - in the
PostScript language.

35.3 The filing prompt

In general when saving or loading a file, the following filing prompt appears in a top-right window,

SAVE [or LOAD] [type] - filename (no ext) .[extension] will be added
change dir-d, now: [current path]
list-?, quit-q, default [filename]:

for example,

loading a v=3 seed in Linux-like systems

LOAD SINGLE RULE-filename (no ext) .rul will be added
change dir-d, now:/home/sussex/ddlabz06/ddfiles:
list-?, quit-q, default myrul v3:

saving a v=3 seed in DOS

SAVE SEED-filename (no ext) .eed will be added
change dir-d, now: C:\WATCOM\ ddlabz06
list-?, quit-q, default mysee v3:

To load or save, enter a legal filename, up to 8 characters starting with a letter but excluding
q, and without the filename extension which is automatically added, or enter return to accept

581

the default filename. When the filename is entered, say rule193 to load a single rule, the lowest
line of the prompt will respond with,

filename=rule193.rul REVISE-q cont-ret: (for example)

Enter return to load the filename, or q to revise. If loading and the file is not found, the following
message appears in a top top-right window,

file error rule193.rul, cont-ret: (for example)

Enter return to continue.

35.4 Loading constraints and warnings

When loading files for the k-mix, single rules, networks and sub-networks (rules, wiring, or both),
and seeds (1d, 2d, 3d), top-right warnings, options and messages may be displayed if there appears
to be a conflict or compatibility issue between the file and the base setup. This relates to com-
patibility with parameters such as value-range v, neighborhood k or kmax, and network size n or
[i, j, h]. Details of the warnings, options and messages are shown in the relevant sections, as follows,

file type . . . loading compatibility sections

k-mix file (*.mix) . . . 9.4

single rules . . . 16.14

single rules as ASCII string . . . 16.22

networks and sub-network . . . 19.4 — 19.4.4, 17.9.12

seeds . . . 21.7 — 21.7.5

seeds as ASCII string . . . 21.10

seeds in Golly format . . . 21.11.1

exhaustive mapping . . . 29.8.1

graph layout . . . 20.16

35.5 Changing the directory

The current directory is shown in the filing prompt (section 35.3), and can be changed by entering
dir-d in section 35.3— the following top-right prompt appears, for example,

example for Linux-like systems

current path /home/sussex/ddlabz06/ddfiles, CHANGE dir
new path or subdir:

example for DOS

current path C:\WATCOM\DDLABZ06, CHANGE dir
new path, (ie c:\dir\subdir):

In Linux-like systems enter the sub-directory name, or “..” (dot dot) for the parent directory.

582 CHAPTER 35. FILING

In DOS, enter the full new path, (i.e. c:\newdir\newsub\mydir). Directory names are limited in
the same way as filenames — 8 characters starting with a letter but excluding q.

The filing prompt (section 35.3) will reappear with the new path, which will stay current until
changed again. If the new subdirectory or path is missing, or has an illegal name, the following
error message appears,

can’t change to [illegal name]

The program reverts to the filing prompt (section 35.3).

35.6 List files

To list the files with the current filename extension (in the current directory) enter ? (ques-
tion mark) in the filing prompt (section 35.3). A list will be displayed in a narrow window on
the right of the DDLab screen (figure 35.1). The following prompt appears at the bottom of the list,

list again-a (if the list fits on the screen)
more-m (if there are too many files to fit)
or filename
: (the filename without extension can be entered here

If there are too many files to fit, enter m to see more. A filename (without extension) may be
selected in this window, or enter return and select the filename in the filing prompt (section 35.3).

Figure 35.1: Listing files with ? (question mark) in section 35.3. Only the files with the current
filename extension and in the current directory are listed.

Chapter 36

Vector PostScript capture of
DDLab output

DDlab’s graphics output can be captured as vector graphics in PostScript files, where images
can be scaled without degrading their resolution — preferable for publication quality images over
bitmap graphics. The methods work in both Linux-like systems and DOS. Images saved as vec-
tor PostScript .ps files can be viewed/printed in GhostView1, or converted to .pdf files and
viewed/printed in Adobe (acroread) and other document viewers such as Evince or Okular. Most
figures in this manual are vector PostScript graphics, others are bitmap graphics2.

Vector PostScript files are available for the following DDLab graphic output, listed below with
the default filenames. Instructions for creating the files are given within the manual in the relevant
sections indicated.

default filename . . . graphic output and relevant sections

my sPS.ps . . . For 1d or 2d snapshots including the 2d version of 3d.
From seed information: section 21.4.10.
By directly scanning space-time patterns: section 32.18.
For the rule-table as a 1d seed: section 16.4.4.

my 3dPS.ps . . . For a 3d isometric snapshot from seed information: section 21.4.11.

my sgPS.ps . . . For a snapshot of space-time patterns within the network-graph:
section 32.19.2.

my ngPS.ps . . . The network-graph: section 20.15.

my bgPS.ps . . . The ibaf-graph: section 20.15.

my jgPS.ps . . . The attractor jump-graph: section 20.14.2.

my bPS.ps . . . Attractor basins of all types and presentations except ibaf-graph.:
section 24.2.
For basins within jump-graph nodes: section 20.14.2.

my mxPS.ps . . . The wiring-matrix: section 17.2.1.

1GhostView (http://pages.cs.wisc.edu/~ghost/) — enter “gv &” in the terminal.
2Bitmap graphics can be captured with various screen grabbers such as XView (http://www.trilon.com/xv/)

— enter “xv &” in the terminal. See also section 2.15.

583

http://pages.cs.wisc.edu/~ghost/
http://www.trilon.com/xv/

584 CHAPTER 36. VECTOR POSTSCRIPT CAPTURE OF DDLAB OUTPUT

my wgPS.ps . . . The wiring-graphic (1d time-steps, 1d circle, 2d, 3d): section 17.9.14.

my mrxPS.ps . . . The neighborhood matrix graphic: section 14.11.

my isoPS.ps . . . Data and graphics in the iso-group window: 16.10.6.

A top right prompt for saving to a PostScript image allows presentation alternatives depending
on the current presentation of the DDLab graphic, with various options such as color or greyscale,
and more options for space-time patterns or snapshots such as divisions between cells. Then
the top-right filing prompt (section 35.3) appears for naming the file which DDLab generates
automatically, with the extension .ps added.

There is no limit on the size of a PostScript file, so for images with many components, lines,
nodes etc. proceed with caution, especially for attractor basins, to avoid excessively large files —
in such cases a bitmap image might be preferable (section 2.15). Note that if an attractor basin is
interrupted, the PostScript file of part of the graphic generated up to that point will still be valid.

The PostScript file cannot be viewed within DDLab, use GhostView.

36.1 Cropping and editing vector PostScript

Vector PostScript files are ASCII files, plain text files in the PostScript language, so can be easily
edited, allowing the image to be cropped, images merged and annotations added. Instructions for
the PostScript language can be found online3, so there is no need to delve further except to note
how the image can be cropped, and the width of lines amended.

36.1.1 Cropping the PostScript image

The PostScript image can be cropped by editing the second line of the ASCII PostScript file to
define a new BoundingBox with the bottom-left and top-right coordinates, for example,

%%BoundingBox: 20 40 924 670

The required coordinates can be found by a readout of the mouse pointer position when the
file is opening in GhostView.

Another way of cropping is within the LaTex graphics command, for example,

\epsfig{file=filename.ps, bb=81 85 437 255, clip=, width=1\linewidth}

Where “bb=81 85 437 255” is an example of the clip coordinates (0,0 is bottom-left in
PostScript) and “clip=” forces LaTex to ignore anything outside the clip limits.

36.1.2 Amending the width of lines

The width of lines in various types of image generated by DDLab as vector PostScript (or converted
to PDF) may look reasonable on the computer screen, but not in a high resolution printout, or
vice versa. The defaults are a best compromise, but can be amended in the ASCII PostScript file
by editing the value of “setlinewidth”, usually in the fourth line of the file — presently either .7
or .3, for the following file types according to the default filenames at the start of this chapter,

3For example, the PostScript Language Tutorial and Cook Book.

585

.7 setlinewidth . . . my ngPS.ps, my bgPS.ps, my jgPS.ps, my bPS.ps,
my mxPS.ps, my wgPS.ps (for links and outlines)

.3 setlinewidth . . . my sPS.ps, my 3dPS.ps, my sgPS.ps (for division lines and grid lines)

Chapter 37

Glossary

Some of the labels, acronyms, and technical terms used in the manual, in alphabetical order.

term . . . what it means

active cell . . . the cell position that is highlighted in the wiring graphic (section 17.3).

attractor . . . or attractor cycle, in a basin of attraction — made up of a cycle of
repeating states (chapter 23).

attractor basin . . . collective term used for any of the following: basin of attraction field,
single basin, tree or subtree (see also “state transition graph”).

asynchronous updating
. . . where cells update in a predetermined or random sequence, or partial

order, but the notion of time-steps still applies.

basic limits . . . where the size of the network n and neighborhood k have not been ex-
tended with the exLimits option in sections 1.6.1, 6.2.4.

basin of attraction . . . the set of states that flow to an attractor, including the attractor itself
(chapter 23).

basin of attraction field
. . . the basins of attraction comprising state-space (chapter 23).

block . . . a block of cells in 1d, 2d, or 3d, highlighted in the wiring graphic
(section 17.3).

CA . . . Cellular Automata: a local neighborhood of k inputs (1d, 2d, 3d) and
one rule (but possibly a mix of rules to extend the definition).

CA-wiring . . . same as local wiring below.

cell index . . . (or network index) the way the network cells are numbered
(sections 10.2.1 — 10.2.3), but cell index usually refers to a 1d
network, or a 1d version of a 2d or 3d network.

chain-rules . . . maximally chaotic rcode, where Zleft = 1 or Zright = 1, but not both,
exhibit extremely low convergence in subtrees (section 16.11).

DDLab . . . the “Discrete Dynamical Lab” software http://ddlab.org.

DDN . . . Discrete Dynamical Networks: as RBN, but allowing a value-range v ≥ 2.
Binary CA are a special case of RBN, and RBN and multi-value CA are
special cases of DDN.

586

http://ddlab.org

587

density-bias . . . the fraction of non-zero values randomly distributed in a rule-table
(section 16.3.1) also known as the λ-parameter [26], or in a seed or block
(section 21.3.2).

ECA . . . Elementary Cellular Automata, binary, “nearest neighbor” k=3 CA.

EDD . . . short for this book “Exploring Discrete Dynamics”[54], which is main-
tained and updated online at http://ddlab.org/download/dd_manual_2018/.

effective k . . . can be smaller than actual k because of redundant wiring (section 18.7.3).

elementary rules . . . 1d v2k3 rcode make up the 256 elementary rules [35].

equivalence classes
. . . rules can be equivalent to each other by symmetry transformations, for

example the 256 elementary rules collapse to 88 equivalence classes [38]
(section 18.5). There will be more transformations for v ≥ 3 or greater
dimensions.

exhaustive algorithm
. . . finding pre-images by first creating a list of exhaustive pairs, each state

in state-space and its successor. (section 29.7).

exhaustive pairs . . . each state in state-space and its successor, for the exhaustive algorithm
(section 29.7).

exLimits . . . an option allowing extended limits (as opposed to basic” limits for
the size of the network n and neighborhood k (sections 1.6.1, 6.2.4).
each state in state-space and its successor, for the exhaustive algorithm
(section 29.7).

f-jump. . . the jump-graph based on the basin of attraction field (section 20.7).

field . . . as in basin of attraction field (chapter 23).

FIELD-mode . . . to show the basin of attraction field, which does not require an initial
state (the seed).

full rule-table . . . rcode, where the rule-table (look-up table) lists the output for every
possible neighborhood string.

garden-of-Eden state
. . . a state having no pre-images, also called a leaf state.

G-density . . . the fraction of leaf states in a subtree, basin or field — a measure of
convergence in network dynamics (section 24.9).

GRC files . . . glider rule collection files (sections 3.6.1, 32.6.1).

h-jump. . . the jump-graph based on the attractor histogram (section 31.7, 20.7).

hex . . . an abbreviation with two meanings according to the context:
“hexagonal” referring to a 2d lattice or neighborhood, or “hexadecimal”
referring to a numbering system for rules, as opposed to decimal.

homogeneous-k . . . same as k-hom.

history limit . . . the number of time-steps recorded when checking for the attractor
(section 29.3.1).

ibaf-graph . . . an interactive image of the usual basin of attraction field as drawn, but
where nodes and links can be rearranged (chapter 20).

http://ddlab.org/download/dd_manual_2018/

588 CHAPTER 37. GLOSSARY

i, j . . . the size of a 2d network, width × depth, or columns × rows.

I, J . . . the cell coordinates in a 2d i,j network.

i, j, h . . . the size of a 3d network, width × depth × height, or columns × rows ×
levels.

I, J,H . . . the cell coordinates in a 3d i,j,h network.

IFH . . . input-frequency histogram.

input-entropy . . . the Shannon entropy of the input-frequency distribution in space-time
patterns (section 31.5.1).

input-frequency . . . the frequency of rule-table lookups or neighborhood size blocks, or
iso-groups for iso-rules, in space-time patterns (section 31.5.1) usually
presented as a histogram (e.g. figure 33.1).

iso-group . . . All rotations/reflections of a prototype n-template, applicable to 1d, or
2d and 3d in figure 16.17.

iso-rules . . . an isotropic rule based on iso-groups. Each iso-group has just one com-
mon output in the iso-rule lookup-table (section 16.10).

jump graph . . . a graphic representation, which can be rearranged, of the probability of
jumping between basins of attraction (chapter 20).

k . . . the number of inputs to a cell, or size of the neighborhood.

k-hom . . . homogeneous-k, where each cell in the network has the same number of
inputs, or neighborhood size, k. Note that a homogeneous-k network can
be created as a k-mix network if required.

kLim . . . the maximum size of k (input wires to a cell) currently supported in
DDLab, which depends on v and is more generous if TFO-mode is active
(section 7.2, table 7.1).

k-mix . . . or mixed-k heterogeneous-k, where each cell in the network can have a
different number of inputs, or neighborhood size, k.

kcode . . . a k-totalistic rule (section 13.6, where the lookup-table lists the output for
each combination of frequencies of values (colors) in the neighborhood,
with S = (v + k − 1)!/(k!× (v − 1)!) entries.

kmax . . . a deliberate selection of the maximum k in a k-mix. Note that
kmax ≤ kLim.

λ-parameter . . . for v=2, the fraction of 1s in the rcode-table. In general, the fraction of
non-quiescent values [26] (section 24.9).

λratio . . . a normalized version [38] of the λ-parameter to compare directly with
the Z-parameter. For v=2, λratio = the total of the lesser value (TL)
(1s or 0s) divided by S/2, in general, λratio = TL/(S/v).

leaf state . . . a state having no pre-images, also called a garden-of-Eden state.

Linux-like . . . Linux/MAC/CygwinX/UNIX/Irix versions of DDLab, as opposed to the
DOS version.

local wiring . . . or CA-wiring, where inputs may arrive from the local neighborhood as
defined in chapter 10. Local wiring may be set up as nonlocal if required.

lookup-table . . . a list of the outputs of possible neighborhoods, also known as the rule or

589

rule-table (rcode, kcode, tcode or iso-rule) as defined in chapter 13.

max-k . . . same as kmax above.

max-n . . . maximum network size that can be expressed in decimal (section 21.6).

max-S . . . maximum rule-table size that can be expressed in decimal (table 16.2).
Also apples to seeds (table 21.3).

min-max . . . a measure of variability, the maximum up-slope — the rise in entropy
following a minimum value (section 33.1 and figure 33.2) — the alterna-
tive is sdev — standard deviation.

mixed-k . . . same as k-mix above.

n . . . the size of the network, or system size.

nLim . . . the maximum size of the network. In FIELD-mode nLim varies according
to the value-range v (Limits on network size for FIELD-mode, nLim). In
SEED-mode or TFO-mode nLim=65025 (section 8.3).

nexhL . . . the maximum size of the network for the exhaustive testing algorithm
(section 29.7).

n-template . . . short for neighborhood template (chapter 10.

NBC . . . Null Boundary Conditions.

neighborhood . . . the cells that are included in a given cell’s update logic or transition
rule. The “neighborhood” usually signifies a local CA type neighborhood
of nearest (+ next nearest) neighbors in 1d, 2d or 3d (predefined in
chapter 10).

network dimensions
. . . 1d, 2d, or 3d, depending on the neighborhood (chapter 10).

network-graph . . . a graphic representation of the network, which can be rearranged,
showing all nodes and connections (chapter 20).

network index . . . (or cell index) the way the network cells are numbered (sections 10.2.1
— 10.2.3).

network size . . . the mumber of cells or elements in the network, also refered to as
“system size”.

neutral order . . . components (nto) in sequential (section 29.10).

nonlocal wiring . . . where inputs may arrive from from anywhere, but may also be biased.
Local wiring may be set up as nonlocal.

nto . . . neutral order components in sequential (section 29.10).

null boundary conditions
. . . where inputs beyond the network’s edges are held at a constant value of

zero, as opposed to periodic boundary conditions (PBC).

outer-totalistic rules . . . where a different totalistic rule (tcode or kcode) applies according to
the value of the center cell, so v rules. Applies to TFO-mode only, and
not for mixed-k. (section 13.7).

partial order updating
. . . where a subset of cells updates synchronously, in parallel, followed by the

next subset — then the “state” is the configuration after each updated

590 CHAPTER 37. GLOSSARY

subset (section 31.4.3).

pattern density . . . the fractions of different values in space-time patterns (section 31.5.1).

PBC . . . Periodic Boundary Conditions.

periodic boundary conditions
. . . (PBC) where inputs wrap around to the opposite edge, as opposed to

null boundary conditions (NBC).

pile-up histogram . . . a 2d frequency histogram of the entropy-variability/mean-entropy scatter
plot (section 33.6.3).

pseudo-neighborhood
. . . required for nonlocal wiring where inputs to a cell can arrive from

anywhere. The nonlocal inputs are wired to a notional CA (local)
neighborhood (in 1d, 2d or 3d), allowing the rule to be applied to this
indexed pseudo-neighborhood (section 10.1.1).

pre-images . . . a state’s immediate predecessors.

RBN . . . Random Boolean Networks: random wiring of k inputs (but possibly
with mixed-k) and a mix of rules (but possibly just one rule).

random map . . . a directed graph with out-degree one, representing an exhaustive list of
state-space transitions assigned at random (or with some bias). This is
arguably the most general discrete dynamical system (section 29.8).

rcode . . . the full rule-table (lookup-table) listing the outputs for every
neighborhood string, with S = vk entries.

reaction-diffusion rules
. . . or excitable-media [18], where cells may be either resting, excited, or

refractory, and change according to thresholds and values, resulting in
waves, spirals and related patterns.(sections 13.8, 13.8.2, and 14.2.1).

rotational symmetry (RS)
. . . rotational equivalents — repeating segments (section 26.2).

rule . . . any kind or rule or rule-table, including rcode, kcode, tcode or iso-rule,
as defined in chapter 13.

rulemix . . . where each cell in the network can have a different rule (chapter 14).

rule-table . . . a list of the outputs of possible neighborhoods, also known as the lookup-
table (rcode, kcode, tcode or isorule) as defined in chapter 13.

rule scheme . . . the actual rulemix (chapter 14).

sdev . . . the standard deviation of the entropy — a measure of variability
(section 33.1 and figure 33.2) — the alternative is min-max.

seed . . . the initial state set in SEED-mode or TFO-mode (chapter 21.

SEED-mode . . . when not in TFO-mode, to run forward for space-time patterns, or
generate a single basin of attraction, or a subtree, which requires an
initial state or seed.

sequential updating
. . . where each cell is updated in turn in some arbitrary order — then

the “state” is the configuration when all n updates are complete
(sections 29.9, 31.4.2).

591

singleton seed . . . a single cell non-zero (v>0) cell against a zero background..

space-time patterns
. . . the forward dynamics shown as a pattern for each successive time-step,

which can be presented in many alternative formats described in chap-
ters 31, 32.

state . . . usually refers to the global state, the bit/value string, as opposed to the
cell state or cell value/color.

state transition graph
. . . the graph representing an attractor basin, but the following terms are also

used for the various types of state transition graph: basin of attraction
field, single basin, tree or subtree (see also “attractor basin”).

STP . . . space-time patterns (section 31, 32).

STP-dimensions . . . the dimensions of the space-time pattern presentation, which are not
necessarily the underlying network dimensions.

subtree . . . part of a transient tree in a basin of attraction defined by its root
(chapter 23).

synchronous updating
. . . where all cells in the network update simultaneously, in parallel.

system size . . . the mumber of cells or elements in the network, also refered to as
“network size”.

tcode . . . a t-totalistic rule (section 13.6) where the lookup-table lists of the outputs
of all the possible totals when the values in the neighborhood are simply
added, with S = k(v − 1) + 1 entries. (section 13.6.3).

TFO-mode . . . stands for “totalistic forwards-only”and constrains DDLab to run just
forwards to generate space-time patterns (section 6.2.1) — attractor
basin functions are suppressed. TFO-mode allows greater value-range
v and neighborhood size k (section 7.2), but the rules are limited to
various types of totalistic rule (tcode and rcode), outer-totalistic rules,
and reaction diffusion rules (not full rule-tables — rcode). TFO-mode
requires an initial state or seed.

totalistic rules . . . rules that depend on the totals of each value, in the neighborhood, not the
pattern of values (section 13.6). There are two main types, k-totalistic
defined by kcode and t-totalistic defined by tcode.

tree . . . or transient tree in a basin of attraction, consists of all the states and
merging links (trajectories) defined by the tree’s root on the attractor
(chapter 23).

trajectory . . . the sequence of states in forward dynamics (chapter 23).

transient . . . a trajectory leading to an attractor (chapter 23).

uniform state . . . a global state (bit/value string) were all cells have the same value (color)
(section 26.2.2).

update-tag . . . (from 0 to n-1) in sequential updating (section 29.9) the way that cell
indexes are listed from left to right and updated.

v2k3, v3k7 etc . . . the notation for showing the value-range and neighborhood size.

592 CHAPTER 37. GLOSSARY

value-range, v . . . the number of possible cell values, or colors, or internal states, or the size
of the “alphabet” (chapter 7, sections 21.9, 16.16).

value-bias . . . the frequency of values randomly distributed in a rule-table
(section 16.3.2), or in a seed or block (section 21.3.3).

variability . . . of the entropy, from “Classifying rule-space” (chapter 33), either
min-max or sdev.

wiring . . . the connections between network elements or cells, either local or
non-local. For CA the local wiring creates the network geometry, 1d, 2d
or 3d.

wiring scheme . . . the actual wiring in the network (chapter 12).

Z-parameter . . . A static parameters from the rcode-table giving the probability that the
next unknown cell in the CA reverse algorithm is determined [38, 44, 50].
High Z predicts chaos, low Z predicts order (section 24.9, figure 24.11).
To tune Z see sections 16.3 and 32.5.5.

References

[1] Adamatzky,A., (Ed) (2002) “Collision-Based Computing”, Springer, London. viii

[2] A.Adamatzky,A., A.Wuensche, (2015) “On creativity of elementary cellular automata”, Com-
plex Systems, Vol.22, Issue 4. 15

[3] Adamatzky,A., J.Martnez (Eds.) (2016) “Designing Beauty: The Art of Cellular Automata”,
Springer. 15

[4] Albert,R., H.Jeong, and A-L.Barabasi, (2000) “Error and attack tolerance in complex net-
works”, Nature, vol.406. 100, 230

[5] Bilotta, E., A.Lafusa, and P.Pantano, (2003). “Is self-replication an embedded characteristic
of the artificial/living matter?”, in Artificial Life VIII, eds. Standish and Bedau, MIT Press,
38-48. 124

[6] Burraston, D. (2005) Structuring Cellular Automata Rule Space with Attractor Basins. Pro-
ceedings of Generative Arts Practice Symposium. 4, 15, 168

[7] Burraston, D. (2006) Generative Music and Cellular Automata. PhD Thesis, Univ. Technology
Sydney, Australia. 4, 15, 168

[8] Burraston, D. (2011) Generative Music and Cellular Automata Bibliography, Leonardo Art,
Science and Technology Bibliographies, 159-165, MIT Press. 15

[9] Byl,J., (1989) “Self-Reproduction in small cellular automata.” Physica D, Vol. 34, 295-299.
44

[10] Conway,J.H., (1982) “What is Life?” in “Winning ways for your mathematical plays”,
Berlekamp,E, J.H.Conway and R.Guy, Vol.2, chap.25, 817-850, Academic Press, New York.
5, 138, 184, 309, 418, 456

[11] Cortês,M., L.Smolin, (2018) “Reversing the irreversible: From limit cycles to emergent time
symmetry”, Phys. Rev. D 97, 026004. (arXiv-pdf) 15

[12] Das,R., M.Mitchell, and J.P.Crutchfield, (1994) “A Genetic Algorithm Discovers Particle-
based Computation in Cellular Automata”, In Y. Davidor, H.-P. Schwefel, and R. Mnner,
eds., Parallel Problem Solving from Nature III, 344-353, Springer-Verlag. 348, 356, 469

[13] Derrida,B.,andG.Weisbuch, (1986) “Evolution of overlaps between configurations in random
boolean networks”, J Physique 47, 1297. 328

593

https://arxiv.org/abs/1703.09696

594 REFERENCES

[14] Gomez-Soto,JM., and A.Wuensche, (2015) “The X-rule: universal computation in a non-
isotropic Life-like Cellular Automaton”, JCA, Vol.10, No.3-4, 261-294. (arXiv-pdf) 5, 309,
419, 506

[15] Gomez-Soto,JM., and A.Wuensche, (2016) “X-Rules Precursor is also Logically Universal”,
JCA, Vol.12, No.6, 445-473. (arXiv-pdf) 188

[16] Gómez Soto, J.M., and A.Wuensche, “Logical Universality from a Minimal 2D Glider-Gun”,
Complex Systems), vol.27, Issue 1, 2017. (arXiv-pdf) 175, 186, 188, 189

[17] Gómez Soto, J.M., and A.Wuensche, “The Variant-Rule, Another Logically Universal Rule”,
JCA, Vol.15, No.3, 147-173. (arXiv-pdf) 175

[18] Greenberg,J.M., and S.P.Hastings, (1978) “Spatial patterns for discrete models of diffusion in
excitable media”, SIAM J. Appl. Math. 34. 26, 126, 134, 590

[19] Gutowitz,H.A., ed., (1991) “Cellular Automata, Theory and Experiment”, MIT press. viii

[20] Harris,S.E., B.K.Sawhill, A.Wuensche, and S.Kauffman, (2002) “A Model of Transcriptional
Regulatory Networks Based on Biases in the Observated Regulation Rules”, COMPLEXITY,
Vol.7/no.4, 23–40. (pdf) viii, 15, 28, 151, 163, 328, 358, 461, 469, 477

[21] Hopfield,J.J. (1982) “Neural networks and physical systems with emergent collective compu-
tational abilities”, Proceedings of the National Academy of Sciences 79:2554-2558. 563

[22] Hordijk,W., J.P.Crutchfield, M.Mitchell, (1998) “Mechanisms of Emergent Computation in
Cellular Automata”, In A.E. Eiben, Th. Back, M. Schienauer, and H-P. Schwefel (eds.),
Parallel Problem Solving from Nature, Springer-Verlag, 613-622. 237, 348, 356, 469

[23] Kauffman,S.A.,(1969) “Metabolic Stability and Epigenesis in Randomly Constructed Genetic
Nets”, Journal of Theoretical Biology, 22, 437–467. 18

[24] Kauffman,S.A.,(1993) “The Origins of Order, Self-Organization and Selection in Evolution”,
Oxford University Press. viii, 15, 28, 328, 477

[25] Langton,C.G., (1986) “Studying Artificial Life with Cellular Automata”, Physica D, 22, 120-
149. viii

[26] Langton,C.G., (1990) “Computation at the Edge of Chaos: Phase Transitions and Emergent
Computation”, Physica D, 42, 12-37. viii, 161, 163, 198, 357, 358, 526, 587, 588

[27] (1994) Artificial Life III, ed C.G.Langton, Santa Fe Institute Studies in the Sciences of Com-
plexity, Addison-Wesley, Reading, MA. viii

[28] Li,W., (1989) “Complex Patterns Generated by Next Nearest Neighbors Cellular Automata”,
Comput. & Graphics Vol.13, No.4, 531-537. 514, 515

[29] Li,W., and N.H.Packard, (1990) “The Structure of the Elementary cellular automata rule
space”, Complex Systems, 4(3), 281-297. 485, 493

[30] McIntosh,H. V., (1993) “Ancestors: Commentaries on The Global Dynamics of Cellular Au-
tomata”, pdf, html. ix

[31] Sapin,E, O. Bailleux, J.J. Chabrier, and P. Collet. (2004) “A new universal automata
discovered by evolutionary algorithms”, Gecco2004, Lecture Notes in Computer Science,
3102:175187. 456, 457

http://arxiv.org/abs/1504.01434/
https://arxiv.org/abs/1611.08829
https://arxiv.org/abs/1709.02655
https://arxiv.org/abs/1909.08224
http://www.ddlab.org/downloads/papers/2001_harris_COMPLEXITY.pdf
https://delta.cs.cinvestav.mx/~mcintosh/cellularautomata/Working_Papers_files/global.pdf
https://delta.cs.cinvestav.mx/~mcintosh/oldweb/wandl/wandl.html

REFERENCES 595

[32] Somogyi,R., and C.Sniegoski, (1996) “Modeling the Complexity of Genetic Networks: Under-
standing Multigenetic and Pleiotropic Regulation”, COMPLEXITY, Vol.1/No.6, 45-63. viii,
15, 477

[33] Shmulevich,I., H.Lhdesmki, E.R.Dougherty, J.Astola, W.Zhang, (2003) “The role of certain
Post classes in Boolean network models of genetic networks”, Proceedings of the National
Academy of Sciences of the USA, Vol. 100, No. 19, 10734-10739. 149

[34] Walker,C.C., and W.R.Ashby, (1966) “On the Temporal Characteristics of Behavior in Certain
Complex Systems”, Kybernetick 3(2), 100-108. 334

[35] Wolfram,S., (1983) “Statistical Mechanics of Cellular Automata”, Reviews of Modern Phisics,
vol.55, 601-644. 14, 127, 171, 237, 238, 587

[36] Wolfram,S., ed. (1986) “Theory and Application of Cellular Automata”, World Scientific. viii

[37] Wolfram,S., (2002) “A New Kind of Science”, Wolfram Media, Champaign, IL. viii

[38] Wuensche,A., and M.J.Lesser. (1992) “The Global Dynamics of Cellular Automata; An Atlas
of Basin of Attraction Fields of One-Dimensional Cellular Automata”, Santa Fe Institute
Studies in the Sciences of Complexity, Addison-Wesley, Reading, MA. (html-pdf) viii, ix, 5,
15, 19, 22, 33, 36, 37, 52, 89, 163, 171, 198, 199, 235, 238, 240, 328, 330, 333, 334, 335, 336,
342, 357, 362, 363, 378, 379, 381, 420, 493, 526, 587, 588, 592

[39] Wuensche,A., (1994) “The Ghost in the Machine; Basin of Attraction Fields of Random
Boolean Networks”, in Artificial Life III, ed C.G.Langton, Santa Fe Institute Studies in the
Sciences of Complexity, Addison-Wesley, Reading, MA, 465-501. (pdf) 20, 36, 38, 39, 420,
421, 563, 572, 573

[40] Wuensche,A., (1994) “Complexity in One-D Cellular Automata; Gliders, Basins of Attraction
and the Z Parameter”, Santa Fe Institute Working Paper 94-04-025. (pdf) viii, 15, 20, 358,
458, 494, 563

[41] Wuensche,A., (1996) “The Emergence of Memory: Categorisation Far From Equilibrium”, in
Towards a Science of Consciousness: The First Tuscon Discussions and Debates, eds. Hameroff
SR, Kaszniak AW and Scott AC, MIT Press, Cambridge, MA, 383–392. (pdf) viii, 15

[42] Wuensche,A., (1997) “Attractor Basins of Discrete Networks; Implications on self-organisation
and memory”, Cognitive Science Research Paper 461, Univ. of Sussex, D.Phil thesis. (pdf)
viii, 421, 427, 428, 469, 477, 539

[43] Wuensche,A., (1998) “Genomic Regulation Modeled as a Network with Basins of Attraction”,
Proceedings of the 1998 Pacific Symposium on Biocomputing, World Scientific, Singapore.
(pdf) viii, 15, 151, 461, 477

[44] Wuensche,A., (1999) “Classifying Cellular Automata Automatically; Finding gliders, filtering,
and relating space-time patterns, attractor basins, and the Z parameter”, COMPLEXITY,
Vol.4/no.3, 47-66. (pdf) viii, 15, 21, 33, 37, 38, 44, 92, 163, 330, 333, 357, 359, 458, 493, 496,
518, 526, 539, 592

[45] Wuensche,A., (2000) “Basins of Attraction in Cellular Automata; Order-Complexity-Chaos
in Small Universes”, COMPLEXITY, Vol.5/no.6, 19-25. (based on an art exhibition in col-
laboration with Chris Langton) (pdf) (html) 15

http://www.ddlab.org/gdca.html
http://www.ddlab.org/downloads/papers/ghost_in_machine.pdf
http://www.ddlab.org/downloads/papers/complexity_1d.pdf
https://sfi-edu.s3.amazonaws.com/sfi-edu/production/uploads/sfi-com/dev/uploads/filer/34/1d/341d4632-2c3b-460d-95c6-5ed2d1499c9d/95-03-035.pdf
http://www.ddlab.org/downloads/papers/aw_thesis.pdf
http://www.ddlab.org/downloads/papers/1998_genomic_reg_boa.pdf
http://brainmaps.org/pdf/ca1.pdf
http://ddlab.org/downloads/papers/2000_BoAinCA_COMPLEXITY.pdf
http://www.ddlab.org/Exh2/Exh3.html

596 REFERENCES

[46] Wuensche,A., (2002) “Basins of Attraction in Network Dynamics: A Conceptual Framework
for Biomolecular Networks”, in “Modularity in Development and Evolution”, eds G.Schlosser
and G.P.Wagner. Chicago University Press 2004, chapter 13, 288-311. (pdf) 477

[47] Wuensche,A., (2005) “Glider Dynamics in 3-Value Hexagonal Cellular Automata: The Beehive
Rule”, Int. Journ. of Unconventional Computing, Vol.1, No.4, 2005, 375-398. (pdf) (html) 2,
43, 105, 131, 132, 458, 539

[48] Wuensche,A., A.Adamatzky, (2006), “On spiral glider-guns in hexagonal cellular automata:
activator-inhibitor paradigm”, International Journal of Modern Physics C, Vol.17, No.7, 1009-
1026. (pdf) (html) 2, 5, 15, 43, 105, 132, 143, 165, 251, 309, 509

[49] Wuensche,A., (2009), “Cellular Automata Encryption: The Reverse Algorithm, Z-Parameter
and Chain-Rules”, Parallel Processing Letters (PPL), Vol.19, No 2, 283-297. (pdf) viii, 21,
190, 191, 358, 406

[50] Wuensche,A., (2009), “Discrete Dynamics Lab: Tools for investigating cellular automata
and discrete dynamical networks”, ”Artificial Life Models in Software, 2nd Ed.”, eds.
M.Komosinski and A.Adamatzky, chapter 8, 215-258, Springer. (pdf) 357, 493, 592

[51] Wuensche,A., (2010), ”Complex and chaotic dynamics, basins of attraction, and memory in
discrete networks”, Acta Phys. Pol. B-Proc. Suppl, and online preprint at (pdf) viii

[52] Wuensche,A., (2011), ”Exploring Discrete Dynamics”, (first edition) Luniver Press. online at
(html-pdf) 2

[53] Wuensche,A.,(2016) “Exploring Discrete Dynamics” (first edition), Luniver Press, 2016),
(download link) 3, 6

[54] Wuensche,A., and E.C.Coxon, (2018), ”Pulsing dynamics in randomly wired glider cellular
automata”, JCA, Vol.14. No.1-2, 95-128, 2019. preprint (arXiv-pdf) 5, 8, 35, 489, 498, 519,
520, 521, 527, 539, 587

[55] Wuensche,A., and E.C.Coxon, (2018), ”The cellular automaton pulsing model, experiments
with DDLab”, ACTA PHYSICA POLONICA, vol.12, 135-154, preprint (arXiv-pdf) 5, 8, 35,
489, 519, 520, 521, 527

[56] Wuensche,A., JM. Gmez Soto (2020), ”Isotropic Cellular Automata: the DDLab iso-rule
paradigm”, (arXiv-pdf) 8, 20, 22, 124, 135, 158, 174, 185, 187, 192, 456, 457, 539, 540

[57] Wuensche,A. (2024), ”Interactive Graph Visualization in DDLab”, To appear in “Advances
in Cellular Automata”, Editors: Andrew Adamatzky, Georgious Sirakoulis, Genaro Martinez,
Springer, 2024, preprint (arXiv-pdf) 254

https://sfi-edu.s3.amazonaws.com/sfi-edu/production/uploads/sfi-com/dev/uploads/filer/be/2b/be2bd33a-4497-47d0-b4a4-19d13116c123/02-02-004.pdf
http://ddlab.org/downloads/papers/v3-glider-dynamics.pdf
http://www.ddlab.org/multi_value/self_rep.html
http://ddlab.org/downloads/papers/2006_sgg_preprint.pdf
http://www.ddlab.org/multi_value/spiral_rule.html
http://ddlab.org/downloads/papers/2009_encryption.pdf
http://ddlab.org/downloads/papers/2008_dd_overview_preprint.pdf
https://www.actaphys.uj.edu.pl/fulltext?series=Sup&vol=3&page=463
http://ddlab.org/downloads/papers/2010_basins_of_attraction.pdf
http://ddlab.org/download/dd_manual_2011/
http://www.ddlab.org/download/dd_manual_2023
https://arxiv.org/abs/1806.06416
https://arxiv.org/abs/1811.12307
https://arxiv.org/abs/2008.11279
https://arxiv.org/pdf/2406.10704

Index

1d neighborhood, 105, 105
1d space-time patterns

ring of cells, scrolling, 57
1d-2d-3d space-time patterns, 503–504
2d neighborhood, 105–107
2d+time space-time patterns, 505
3d grid, 505
3d neighborhood, 107–108

acronym glossary, 18
active cell, 206
adjacency-matrix, 295–298, 449

ibaf-graph, 296
jump-graph, 296
network-graph, 295

Altenberg, Lee, 174
ASCII encoding

rule, 200, 578
seed, 325, 326, 579

asynchronous updating, 38, 452–454
attractor basins, 18, 29

basin of attraction field, 47, 52
boundary conditions, 377–378
changes on-the-fly, 437–444
computational limitations, 92
data, 390–405
display of, 377–389
drawing, 437–444
equivalent CA dynamics, 378–382
errors, 393, 439, 440
fan angle, 387
final options, 414–436
graphic conventions, 338–343
highlighting, 564
ibaf-graph, 49
idea of, 338, 339
in-degree frequency, 351–355

layout, 368–376
layout in jump-graph, 289
mutation, 406–413
network/rule parameters, 48
node display, 382–386
on-the-fly options, 367, 440
orientation, 387
output parameters, 344–367
pausing, 390–405
presentation parameters, 48
range of sizes, 52
revising the seed, 443
scale on-the-fly, 441
single, 53, 414–416
speed, 348, 367, 439, 441, 442
subtree, 414

attractor cycles, 341
bare attractor, 418

attractor histogram, 272, 468–477
data, 473
density classification problem, 474
fuzzy attractors, 477
jump-graph, 476
pausing, 470
print/save, 474
rescaling, 472
sorting, 474

attractor jump-graph, 254–300, 476
defining a block, 284
labels at nodes, 285
probabilistic “ant”, 287–289

attractor states
print/save, 474

backtracking in DDLab, 78
backward space-time patterns, 51, 365–366

expand/contract on-the-fly, 441

597

598 INDEX

scrolling, 365
bare attractor, 418
basin of attraction field, 47, 52

in jump-graph PostScript, 291
jump-graph, 272
layout in jump-graph, 289
or initial state, 23
or seed, 79, 80

biased random wiring, 118–122
confine to zone, 119
distinct, 121
links to 3d layers, 121
local treated as random, 119
release wires from zone, 120
same random everywhere, 122
self-wiring, 120
suppress periodic boundary conditions, 120

bitmap graphics, 32, 583
block, 206

density, 306–307
edges or solid, 221, 222, 226

Boolean networks, 14
boundary conditions, 26

attractor basins, 377–378
null, 377–378
periodic, 377–378
space-time patterns, 452

Burraston, Dave, 168
Byl, J. — self reproducing loop, 44

CA, see cellular automata
canalyzing, 143, 151–157, 443, 528

λ and P data, 364–365
Derrida plot, 152, 332
frequency, 154–157
homogeneous-k , 153
mixed-k, 154–156
single rcode, 241
single rule, 240

cell color
by value or neighborhood, 447

cell scale, 450
cellular automata, 14, 18
chain-rules, 143, 190
classifying rule-space, 496, 539–562

load/keep, 528
sample file encoding, 562

sample plot data, 555
test data, 545

color
basin edges, 388
nodes, 384

command line arguments, 72
compiling DDLab, 45
complement rcode, 239
complementary values, 199
complex rules, 451
compression of CA dynamics, 378–382

deactivate, 380
suppress trees, 382

computational limitations
attractor basins, 92

convert coordinates
1d–3d, 109, 110

Conway, John, 138, 165, 183, 184
copying a rule to part of the network, 232
copyright, 45
Cygwin, 71

damage between two networks, 461
histogram, 463–467

Das, Raja, 356, 468
DDLab

accessing, 40–45
at SourceForge, 40
backtracking, 78
copyright, 45
graphics setup, 81–82
latest versions, 40
license, 45
manual, 40
previous versions, 45
prompts, 78
quitting, 47
registration, 45
screen/window, 70
skipping forward, 47
source code, 40, 45
UNREGISTERED banner, 45, 73
websites, 40

DDN, see discrete dynamical networks
deactivate equivalents, 380
decimal rule limits, 171
deleting a cell, 218

INDEX 599

density classification problem, 356, 469
attractor histogram, 474

density of seed or block, 306–307
density return map, 519, 521–522
density-bias, 137, 161
Derrida plot, 210, 328–337

automatic sets of rules, 333, 335
CA rule clusters, 334–337
canalyzing, 152, 332
coefficient, 333
completing parameters, 332
options, 329
parameters, 330

directory, changing, 581
discrete dynamical networks, 15, 16, 18, 67

measures, 21
parameters, 17, 21

DOS, 16, 41, 47, 72
memory window, 77
mouse pointer, 77
resolution, 82
virtual memory, 77

DOSBox, 41, 72
drag reminder

jump-graph, 275, 276
network-graph, 269, 276

dragging nodes or fragments
net/ibaf/jump–graph, 280–285

duplicate the network and seed, 462

edge color, 388
effective k, 242
effective k=0, 98, 140, 242
Elementary Cellular Automata, 127
emergent computation, 356
encryption, 190
entropy

of space-time patterns, 456, 517
single cell, 460

entropy/density plot, 518
entropy/density scatter plot, 519
equivalence classes, 238
equivalent CA dynamics, 378–382
equivalent rules with greater k, 241
errors in attractor basins, 393, 439, 440
exceeding normal limits, 24
excitable media, 135

exhaustive map, 236, 242
exhaustive reverse algorithm, 38, 423–428
exit DDLab, 78
exLimits option, 81

kLim, 86, 87
kmax, 86
nLim, 88

fan angle in attractor basins, 387
FIELD-mode, 23, 79, 80

network size limits, 88
file encoding

k-mix, 245
rule sample, 562
seed, 324
single rule, 193
wiring/rulemix, 244

filing, 31, 232, 243–251, 577–582
k-mix, 99, 103
attractor basin data, 398
data, 31
DDLab screen image, 73
directory, 581
graph layout, 293
list files, 582
loading k-mix networks, 250
loading constraints, 581
naming constraints, 577
network architecture, 243–251
network parameters, 31
networks and sub-networks, 246
prompt for saving and loading, 580
random map, 428
screen image, 32
seed, 314–319
wiring/rulemix, 244

filtering space-time patterns, 241, 506, 510–512,
530

on-the-fly, 510
first prompt, 79–84
fixed borders, 530
flashing cursor speed, 84
font size/weight, 83
forgetting, 563
forwards-only

constraining to, 79, 80
TFO-mode, 23

600 INDEX

totalistic, 20
Fredkin, E., 184
frozen generation size, 450
frozen regions in space-time patterns, 506–510

frequency bins, 510
generations, 509–510

full rule-table
binary, 127
multi-value, 129

functions summary, 23–39
fuzzy attractors, 36, 477

G-density, 357
against Z or λratio, 360
against network size, 359

game-of-Life, 61, 183, 326
glider-gun attractor, 418
outer-kcode, 133, 138–140
seeds, 43

generation size
frozen, 450
input-entropy, 460
pattern density, 460

geometry of network, 108–110, 115
glider

rules, 42, 493–496
trail, 506

glider rules, 451
glossary of acronyms, 18
glossary of technical terms, 586–592
Golly file format, 7

rcode, 187–190
rule, 578
seed, 301, 303, 304, 326–327, 579

graph layout
filing, 293

graphics, 30
bitmap, 32
vector PostScript, 32, 583–585

graphics setup, 47, 81, 532
DOSBox, 72

GRC rules, 493
grid 3d, 505

Hamming distance, 328, 330, 529
Hensel notation for Golly, 187–190, 578
hexagonal neighborhood 2d, 104, 105

highlighting, 563
states in attractor basins, 564

histograms
2d rule sample, 552
attractor, 468–477
canalyzing frequency, 154–157
cell wiring out-degree, 204, 211
damage, 463–467
in-degree, 351–355
input-frequency, 513
partial pre-image stack, 417–423
skeleton, 477–481
wiring input, 233–234
wiring output, 233–234

history limit, 415
Hopfield, J., 563
hybrid CA or HCA, 136
hypercube wiring, 116

ibaf-graph, 49, 254–300, 449
activate, 269, 425
adjacency-matrix, 296, 449
dragging nodes or fragments, 280–285
from jump-graph layout, 347
graph reminder, 271
ibaf-matrix, 297
initial reminder, 271
load jump-graph basin coordinates, 290
select, 346
showing numbers, 297

IFH-see input-frequency Histogram, 456
in-degree frequency histogram, 351–355

cut-off, 351
data and prompts, 354
log plot, 355
rescaling, 355

indexing
1d networks, 109
2d networks, 109
3d networks, 110

initial choices, 23
initial state, see seed
input-entropy, 456–517

classifying rule-space, 539–562
generation size, 460
iso-rule, 460
on-the-fly options, 460

INDEX 601

single cell, 460
variability, 542

input-frequency Histogram (IFH), 456, 510–518
1-pixel, 514, 516
3d time-axis), 514
amplify, 515
filtering, 510–512
log, 513, 515
modify, 516–517

inverse problem, 242
invert kcode, 452
invert rcode, 237
iso-group

graphics(, 180, 183
iso-rule, 20, 124, 130, 174–490

activate, 458
graphic, 180
input-entropy, 460
n-templates, 177
order conventions, 177
prototypes, 177
setting, 178
table sizes, 178

isotropic rules, 143, 159, 161, 174–190, 485, 490,
491, 545

jump-graph, 254–300, 476
basin of attraction field, 272
activate, 272, 273
adjacency-matrix, 296
applied to ibaf-graph, 347
basins at nodes, 289
drag reminder, 275
dragging nodes or fragments, 280–285
initial reminder, 275
jump-matrix, 296
PostScript, 292
select, 346

jump-graph basins
reload in ibaf-graph, 290
save coordinates, 290

jump-matrix, 295–298

k, see neighborhood
k-matrix, 127–129, 148
k-mix, 24, 97–103, 114

at random, 101

changing the size, 231
copy rules automatically, 146
effective k, 242
effective k=0, 98, 140, 242
file encoding, 245
filing, 99, 103, 250–251
greater k, 241
increasing kmax, 102
kLim, 98
max-k, 241
normal distribution, 99
percentage of different ks, 100
power-law distribution, 100–101
reviewing, 102–103
within network architecture, 103

saving, 251
setting by hand, 99
showing the distribution, 101
specifying, 98, 100
transform, 236
where all k’s are the same, 146
with uniform k, 101

k=0, 98, 140, 242
kLim, 20, 23–25, 86–88, 132, 133, 210, 231
kmax, 102
k-totalistic rules, 131
Kauffman, Stuart, 18, 28
kcode, 128, 131

high v, k, 86
matrix, 132
mult-value, 131
outer-totalistic, 133
swapping values, 197
with increased k, 194

kill a cell, 231

Lafusa, Antonio, 124
λ-parameter, 137, 161, 357–364

weighted average, 229
Langton, Chris, 44, 358
layout of attractor basins, 368–376

pause, 374–376
preview, 368

learning and forgetting, 39, 229, 563–576
aspiring pre-images, 568–570
parity, 569

highlighting only, 564

602 INDEX

target state, 567
Lesser, Mike, ix
Li, Wentian, 514, 515
Liapunov exponent, 34, 328, 333
license, 15, 45
Life-like rules, 138–140
limit backward steps, 389, 417

to zero, 418
limited subset

of rules, 136
line spacing, 83

DOS, 83
Linux within Windows, 71, 72
Linux-like operating systems, 16, 47, 70, 82
Linux-like versions, 40
list files, 582
loading, see filing

constraints and warnings, 581
screen image in DDLab format, 74
sub-networks in set position, 249

local CA neighborhood, 104–108
1d, 105
2d, 105
2d hexagonal and square, 104
3d, 107

lookup-table, 126–133

majority rules, 142, 146–147, 160, 171–173
shifted, 173

matrix
kcode, 132
wiring, 204–206

max-k, 87, 102, 250
reducing to max network-k, 241

measures
on global dynamics, 35
on local dynamics, 34

memory
insufficient, 88

memory window DOS, 77
min-max input-entropy variability, 542
minimum k, 98
Moore neighborhood, 25, 105, 184, 187
mouse pointer DOS, 77
multi-value

1d space-time patterns, 58
neighborhood matrix, 148

mutation, 32–33, 406–413
of attractor basins, 406–413
on one screen, 372, 410
space-time patterns
current state, 498–499
rules, 490–493
wiring, 497

nLim, 20, 88
nexhL, 88
n-template, 104–108, 174
negative equivalent rcode, 240
neighborhood, 24, 97–108

k-mix, 98, 114
1d, 97, 105
2d hexagonal or square, 105
3d, 107
changing k, 231
effective k=0, 98, 140, 242
greater k, 241
k-mix, 24, 97–103
kLim, 24, 98
kmax, 86
pseudo, 17, 104
size limits, 21

neighborhood matrix, 127–129, 148
multi-value, 129
PostScript, 148

network
1d indexing, 109
2d indexing, 109
3d indexing, 110

network architecture, 202–234, 443, 528, 533
filing, 243–251
network-graph, 266
sub-networks, 246

network geometry, 108–110, 115
network size, 24

1d, 89–96, 118
2d and 3d, 112, 113, 117, 118
limits, 20, 92, 415

network-graph, 254–300
1d, 2d, 3d, 108–110
adjacency-matrix, 295
defining a block, 284
drag reminder, 269
dragging nodes or fragments, 280–285

INDEX 603

from wring graphic, 210, 299
initial reminder, 268
labels at nodes, 285
PostScript, 292
probabilistic “ant”, 287–289
space-time patterns, 535–538

neutral order
components, 39, 432
field, 435
subtree, 434

node
colors, 384
display in attractor basins, 339, 382–386
expand/contract on-the-fly, 441

noisy updating, 59, 452–454
nonlocal wiring, 104, 115–123, 498

reverse algorithm, 38
null boundary conditions, 26, 486

attractor basins, 377–378
space-time patterns, 452, 498

on-the-fly changes
attractor basins, 367, 437–444
expand/contract nodes, 441
expand/contract scale, 441
options summary, 440–441, 482

bottom title bar, 484
classifying rule-space, 539–562
screen-saver demo
expand/contract scale, 67, 357, 441

space-time patterns, 482–538
current state, 498–499
options summary, 489
periodic-null wiring, 498
rules, 490–493
wiring, 497

orientation of attractor basins, 387
outer-kcode

game-of-Life, 133, 138–140
reaction-diffusion, 138

outer-totalistic, 138–140
output parameters

attractor basins, 344–367
space-time patterns, 445–481

partial order updating, 38, 455
partial pre-image histogram, 441

partial pre-image stack, 417
local wiring, 421
nonlocal wiring, 421–423

pattern density, 458, 517
generation size, 460
on-the-fly options, 460
single cell, 460

pause options
layout of attractor basins, 374–376
space-time patterns, 526–538

periodic boundary conditions, 104, 108
attractor basins, 377–378
space-time patterns, 452
suppress, 120

pile-up histogram, 552
platforms for DDLab, 15
Post functions, 143, 149–150, 406
PostScript

neighborhood matrix, 148
PostScript files, 32, 583–585

amending linewidth, 584
cropping, 584
editing, 584
graph snapshot, 530
jump-graph, 292
jump-graph basins, 291
network-graph, 292
network-graph space-time pattern, 538
rule-table, 166, 168–170
seed, 311, 314–319, 529
space-time patterns, 528, 533
wiring graphic, 234
wiring matrix, 205

power-law distribution
of k, 100–101, 230
of outputs, 230

pre-images
backwards space-time patterns, 365–366
early exit in pre-image fan, 438
exhaustive pairs, 424
in attractor basins, 338–339
in-degree frequency, 351–355
learning and forgetting, 229, 563–576
list of states, 403
partial pre-image stack, 420–421
reverse algorithms, 36–38
uniform states, 380

604 INDEX

printing
data, see terminal
screen image, 32, 73–76
in DOS, 76
Linux-like systems, 74–76
XV, 76

probabilistic
“ant” in network or jump graph, 287–289
space-time patterns, 59, 453
updating, 452–454

prompts in DDLab, 78
pseudo-neighborhood, 17, 104, 220, 225
pulsing dynamics, 518, 519, 521
pulsing space-time pattern, 521

quick start examples, 46–69

random Boolean networks, 14, 18, 67
random map, 15, 38, 426–428

data, 428
encoding, 428, 579
saving/loading, 428

random number seed, 84
random wiring, 104, 115–123, 230
range-n, 1d, 89
RBN, see random Boolean networks
rcode

binary, 127
Golly file format, 187–190, 578
multi-value, 129
reaction-diffusion, 192

rcode to iso-rule, 130
re-randomise at each time-step, 498
reaction-diffusion, 126, 134–135

2d, 134
3d, 134
outer-kcode, 135, 138
rcode, 135, 192
threshold interval, 135

recursive
inputs, 215
outputs, 215

reflection equivalent of rcode, 240
registration, 45
return map

density, 521–522
value, 448, 522

reverse algorithms, 36–38
1d local wiring, 37
exhaustive, 423–428
nonlocal wiring, 38
reorder to optimize, 421

partial pre-image stack
local wiring, 421
nonlocal wiring, 421–423

reverse engineering, 242
ring of 1d cells, 57, 501, 536
rotational symmetry, 378–382
rule ASCII encoding, 200
rule clusters, 238, 334–337
rule equivalence classes, 238
rule scheme, 17, 136–150

filing, 243–251
rule value-bias, 162
rule window, 197–198
rule-table, 126–133

saved as seed, 166, 168, 578
rulemix, 126, 136–150

alternate rules, 142
by hand, 143
canalyzing, 151
complete rules automatically, 145
copy rules automatically, 146
for large networks, or large k, 147
just one rule, 142
methods for setting, 140–142
random, 142
sequential blocks, 142
toggling, 493

rules, 26, 158–201
Altenberg, 59, 142, 160, 174, 469
ASCII encoding, 200
bias when classifying, 544
canalyzing, 143
chain, 143, 190
clusters, 238
combinations, 126
decimal limits, 171
density-bias, 137, 161
encoding, 193
equivalence classes, 238
filing a single rule, 193
filing transformed rule, 237
game-of-Life, 138–140, 170, 183

INDEX 605

GRC, 493
in hex, 170
isotropic, 143
λ-parameter, 137, 161
limited subset, 136
majority, 142, 146–147, 171–173
outer-totalistic, 126, 133
PostScript, 166, 168–170
reaction-diffusion, 126, 134–135
repeating last, 192
revising and copying, 232
saved as seed, 166, 168
set as bits or values, 164
show in terminal, 195
single, 136, 158–201
totalistic, 128
transform, 199, 232, 235–242
types, 124–135

sample file encoding
rule sample, 562

saving, see filing
attractor basin data, 398
attractor states, 474
density return map, 522, 527
entropy/density plot, 520, 527
rule sample plot data, 555
screen image, 74–76
Linux-like systems, 74–76
XV, 76

screen image in DDLab format, 74
Sayab rule, 188
scale-free networks, 100, 230
scatter plot of rule sample, 551
screen image file of DDLab, 73–76
screen resolution, 71
screen-saver demo, 66, 357, 441

expand/contract scale, 67, 357, 441
scrolling

network-graph, 503, 505
ring of 1d cells, 57, 501
space-time patterns, 523–524

sculpting attractor basins, 39, 563–576
seed, 27, 301–327

2d patch, 309
jump, 312

as bits or values, 308–319

ASCII, 325, 579
ASCII encoding, 326
complement, 199
density, 306–307
file encoding, 324
filing, 314–319, 324
Golly file format, 326–327, 579
in decimal, 320
in hex, 319
loading, 321
loading constraints, 321–324
or basin of attraction field, 23, 79, 80
PostScript, 311, 314–319, 529
random, 304–307
saved from rule-table, 166, 168, 578
value-bias, 306, 307

SEED-mode, 23, 79, 80
sequential updating, 38, 429–436

attractor basin, 432
list all orders, 431–432
neutral order
components, 432
field, 435
subtree, 434

space-time patterns, 454, 489
single basin

history limit, 415
limit backward steps to zero, 418
of attraction, 415–416

single rule, 158–201
file,revise,transform, 443, 527–528

size
limits on neighborhood k, 21, 86–88
of font and line spacing, 83
of frozen generations, 450
of the DDLab screen, 30
of the network, 24
2d and 3d, 112, 113
limits, 20, 88, 92
limits for exhaustive algorithm, 88, 424
limits for FIELD-mode, 88
limits for seed in decimal, 320

of the rule-table, 126–133
of trailing time-steps, 460
range of 1d, 89

skeleton histogram, 477–481
data, 481

606 INDEX

parameters, 477
pausing, 479
sorting, 481

skip time-steps, 531
solidify the rule, 238
source code for DDLab, 15, 40, 45
space-time pattern

pulsing, 521
space-time patterns, 18, 28, 55–66

1d PostScript, 533
1d multi-value, 58
1d scrolling, 450
1d-2d-3d, 503–504
2d+time, 505
3d grid, 505
analysis, 513
asynchronous updating, 452–454
attractor histogram, 468–477
backwards, 365–366
changes on-the-fly, 482–538
options summary, 482–489

classifying rule-space, 496, 539–562
damage, 461
damage histogram, 463–467
density return map, 521–522
density/entropy plot, 518
dimensions, 450
drawing, 482–538
duplicate the network and seed, 462
dynamic trace, 506
filtering, 241, 506, 510–512, 530
fixed borders, 530
frozen regions, 450, 506–510
frequency bins, 510
generations, 509–510

Hamming distance, 529
input-entropy, 456–517
generation size, 460
iso-rule, 460
single cell, 460

network-graph layout, 530, 535–538
noisy updating, 59, 452–454
output parameters, 445–481
partial order updating, 455
pattern density, 458, 517
pause options, 526–538
PostScript, 528

probabilistic updating, 453
return map, 448
return map by value, 522
scrolling, 523–524
sequential updating, 454, 489
skeleton histogram, 477–481
skip time-steps, 502, 531
sound, 502
speed, 441, 451, 484, 525, 532
state-space matrix, 448, 523
time-step pause, 451, 524

speed
attractor basins, 348, 367, 439, 441, 442
limitations, 92

space-time patterns, 441, 451, 484, 525, 532
square neighborhood 2d, 104, 105
starting DDLab, 70–78
state, see seed
state-space matrix, 51, 348–351, 448, 523
STP, 468–538
sub-networks, 28

loading in set position, 249
subtree, 53, 343, 414

forward before backwards, 415
subtree=basin, 396
suppress equivalent trees and subtrees, 382
swapping kcode values, 197

t-totalistic rules, 132
tcode, 128, 132

mult-value, 131
outer-totalistic, 133

terminal, 70
exhaustive pairs, 425
attractor basin data, 398
attractor states, 474
network data, 251–253
rule data, 195

TFO-mode, 23, 24, 58, 79, 80
high v, k, 86

time-steps
skip, 531

title bar, 73, 80
toggle

network-graph — from wring graphic, 210,
299

totalistic rules, 128, 131

INDEX 607

constraining to run forwards-only, 79, 80
TFO-mode, 23

transform rcode, 199, 232, 235–242
canalyzing, 240
complement, 199, 239
effective k, 242
exhaustive map, 242
greater k, 241
invert, 237
max-k, 241
negative equivalent, 240
reflection equivalent, 240
solidify, 238

transient scale, 370–371
transient trees, 341

uniform states, 342
type of rule, 124

uniform states, 379
pre-images, 380
transient trees, 342

UNREGISTERED banner, 45
untangle wiring, 218
updating

asynchronous, 38
noisy, 59
partial order, 38, 455
probabilistic, 452–454
sequential, 38, 454

value return map, 449, 522
value-bias, 306

rule, 162
seed, 307

value-range, 17, 24, 85–88
limits on k, 86–88
limits on n, 88
prompt, 85

variability of input-entropy
min-max, 542
standard deviation, 542

vector graphics, 32, 583–585
VMware Player, 72
von Neuman neighborhood, 25, 105

Walker, Crayton, 334
wiring, 25, 115–123

1d block, 215

1d, 2d and 3d, 117
2d block, 213–222
3d block, 225–226
by hand, 122–123
graphic, 103, 206
1d, 211–218
2d, 219–222
3d, 223–228
mouse pointer/click, 210
options reminder, 207–210

hypercube, 116
link-histogram, 233–234
local, 118
local treated as random, 118
nonlocal, 104, 115–123, 498
periodic boundary conditions, 104, 108
periodic-null, 498
quick settings, 111–114
random, 104, 117–122
biased, see biased random wiring

re-randomise, 498
reviewing, 114, 123
untangle, 218

wiring matrix, 204–206
wiring scheme, 17, 115–123

filing, 243–251
loading, 112

wiring/rulemix: file encoding, 244–245
Wojtowicz,Mirek, 184
Wolfram, S., 127, 237

xterm, see terminal
XV, 76

Z-parameter, 161, 333, 357–364, 492, 528
weighted average, 229

	Chapters
	Preface
	List of Figures
	List of Tables
	Updates
	First edition updates 2011
	multi-value
	totalistic rules
	vector graphics Postscript files

	Second edition updates 2016
	greater system sizes
	network ``block'' in 2d and 3d
	use of the mouse pointer in the wiring graphic
	neighborhood size extended up to 27 in all dimensions
	2d hex/triangular neighborhoods
	null boundary conditions
	saving/loading a seed as an ASCII string and in Golly format
	saving the rule as a 1d seed file
	repetitive blocks of rules
	transient data
	dynamic trails for gliders
	lattice and rule presentation
	manipulating a predefined 2d patch
	equivalent CA and the Derrida plot
	display of the bare attractor for very large networks
	reaction-diffusion dynamics in 3d as well as 2d
	density return map
	resetting transient parameters

	Online updates 2018
	initial DDLab screen/window
	local zone in 2d and 3d networks
	on-the-fly options for the input-frequency histogram
	on-the-fly scale of basins of attractor basins
	Derrida plot options improved
	isotropic rcode
	Golly format Hensel notation for 2d binary rules
	re-randomise at each time-step
	options in the wiring graphic for 2d and 3d
	functions/prompts: network-graph and attractor jump-graph
	consecutive option for classifying rule-space
	on-the-fly options related to pulsing behaviour

	Online updates 2021
	the iso-rule paradigm
	setting the iso-rule
	the iso-rule bit/value graphic
	load/save the iso-rule
	random iso-rule
	showing iso-groups

	Input-Frequency Histogram (IFH) updates
	setting IFH for the iso-rule
	log2 IFH
	manipulating the IFH presentation
	one pixel IFH plot
	IFH mutation/filter updates

	Outlining a patch in the classified rule-space scatter plot
	PostScript file of the neighborhood matrix image

	Online updates 2023
	The ibaf-graph
	Interactive graphs — revised/enhanced options

	Online updates 2024
	Labels at nodes of interactive graphs
	Toggling between ibaf-graph and wiring graphic

	Overview
	Introduction
	Source code and platforms
	Discrete dynamical networks
	Space-time patterns and attractor basins
	Totalistic rules - forwards-only
	The iso-rule paradigm

	Categorization
	Size limits: network n and neighborhood k
	Network size limits
	Neighborhood size limits

	Parameters and options
	Measures and data
	Contents summary

	Summary of DDLab functions
	DDLab's prompts
	Initial choices
	Totalistic rules, forwards-only, TFO-mode
	Basin field or initial state
	Exceeding normal limits of n and k

	Setting the value-range
	Setting the network size
	The neighborhood k or k-mix
	Wiring
	Boundary conditions
	Rules
	Initial network state, seed
	Networks of sub-networks
	Presentation options
	Space-time patterns
	Attractor basins
	Interrupting a run

	Graphics
	Filing and Printing
	Filing network parameters
	Filing data

	Vector PostScript images
	Bitmap images
	Printing the screen image
	Mutations
	Running Forward
	Running Backward

	Quantitative, statistical and analytical measures
	Behavior parameters
	Network connectivity
	Measures on local dynamics
	Measures on global dynamics

	Reverse algorithms
	1d CA wiring reverse algorithm
	Nonlocal wiring algorithm
	Exhaustive reverse algorithm

	Random map
	Asynchronous and Sequential updating
	Neutral order components

	Sculpting attractor basins

	Accessing and running DDLab
	The DDLab website
	DDLab at SourceForge
	Unzipping and running — Linux-like versions
	Unix library files

	Unzipping and running - DOS
	The Quick Start Examples
	Extra data files
	Glider rule collections
	Selected 2d complex rules, v=3
	Selected seeds
	Sorted rule samples
	Byl's self reproducing loop

	Copyright, License and Registration
	Source code, and compiling
	Previous versions of DDLab

	Quick Start Examples
	The DDLab screen
	User Input
	Backtrack
	Quitting DDLab
	Skipping Forward
	The graphics setup

	Basin of attraction fields
	Changing network/rule parameters
	Changing basin presentation parameters
	Interactive basin of attraction field — ibaf-graph

	Backwards space-time patterns, and state-space matrix
	Basin of attraction fields for a range of network sizes
	A single basin of attraction
	A subtree
	Space-time patterns — SEED-mode or TFO-mode
	1d space-time patterns
	1d ring of cells, and scrolling the ring
	Scrolling the ring
	Multi-value 1d space-time patterns in TFO-mode
	Noisy space-time patterns

	2d Space-time patterns
	2d space-time patterns — game-of-Life
	2d Space-time patterns — binary totalistic rules
	Multi-value 2d space-time patterns in TFO-mode

	3d Space-time patterns
	3d Space-time patterns — examples

	``Screen-saver'' demo
	RBN and DDN

	Starting DDLab
	Running in Linux-like operating systems
	Linux within Windows — Cygwin
	Linux within Windows — VMware Player

	DOS within Windows
	Command line arguments
	The UNREGISTERED banner
	Title bar
	Saving, Loading and Printing the DDLab screen
	Saving and Loading the screen in DDLab's own format
	Saving and Printing the screen in Linux-like systems
	Printing the screen in DOS

	DDLab version and graphics info
	The mouse pointer in DOS
	Memory (DOS only)
	Virtual Memory

	DDLab prompts, and backtrack
	Prompts: main sequence and pop-up windows

	Exit DDLab

	The first prompt in DDLab
	TFO-mode, SEED-mode, FIELD-mode
	The first prompt
	TFO-mode: totalistic forwards-only
	FIELD, or a run requiring a SEED
	Notice of the current mode
	The exLimits option

	Graphics setup
	The DDLab screen resolution, Linux-like systems
	The DDLab screen resolution in DOS
	White or black background
	The color palette

	Changing the font size and line spacing
	Font size and line spacing, Linux-like systems
	Font size, DOS
	Line spacing, DOS

	Changing the flashing cursor speed
	Random number seed

	Value-range v, and n,k limits
	The value-range prompt
	extending kLim with exLimits

	Limits on neighborhood size, kLim
	TFO-mode with high v,k

	Limits on network size for FIELD-mode, nLim
	exLimits risks and insufficient memory
	Limits on network size — exhaustive algorithm, nexhL

	1d network size n, or range-n
	Setting range of sizes, 1d
	Setting the size of one network, 1d
	Network size limits
	Computational and speed limitations for attractor basins
	Times for basin of attraction fields
	Examples for 1d CA
	Examples for RBN and DDN

	Neighborhood, k, or mixed-k
	Selecting k, or a k-mix, for 1d networks
	kLim and minimum k

	Effective k=0
	Specifying the k-mix
	Loading a k-mix file
	Setting the k-mix by hand
	Setting a normal distribution
	Specify each k, or power-law distribution
	Specify the percentage of different k
	Setting a power-law distribution of k
	Showing the distribution

	Setting the k-mix at random
	Setting a k-mix with uniform k
	Increasing kmax
	Reviewing the k-mix
	Reviewing the k-mix in large networks
	Jumping to a new cell index
	Saving the k-mix file

	Reviewing the k-mix within ``network architecture''

	The local neighborhood, and network geometry
	The CA neighborhood
	The pseudo-neighborhood, RBN and DDN
	1d neighborhood
	2d neighborhood
	3d neighborhood

	Network geometry
	1d network indexing
	2d network indexing
	3d network indexing

	Setting the wiring, quick settings
	The first wiring prompt
	Local 1d wiring
	Special wiring
	Loading the wiring scheme
	Random 1d wiring
	2d or 3d wiring
	Setting 2d and 3d network size — SEED/TFO-mode
	Setting 2d and 3d network size — FIELD-mode

	Set k, or k-mix
	Reviewing wiring, after quick settings

	Setting special wiring
	Setting up the network geometry
	Hypercube wiring
	degrading the hypercube

	1d, 2d and 3d special wiring
	Random 2d and 3d

	Special wiring, local
	Local 1d treated as random
	Local 2d and 3d

	Special wiring, random
	Applying wiring biases to parts of the network
	Confining random wiring to a set zone
	Setting local wiring as random
	Release wires from zone
	Suppress periodic boundary conditions
	Self-wiring
	Distinct wiring
	Suppress links to 3d layers
	Force a direct link to a 3d layer
	Force random links to specific 3d layers
	Same random wiring everywhere

	Wiring by hand
	Reviewing wiring

	Rule types
	Selecting the rule type
	Select full rule-tables, rcode
	Select kcode or tcode in TFO-mode
	options for density-bias, Post functions, neighborhood matrix

	Rule types and combinations
	Rule-table size implications

	Binary full rule-table — rcode
	Binary totalistic rules
	Multi-value full rule-table — rcode
	Transforming rcode to the iso-rule

	Multi-value totalistic rules, tcode and kcode
	k-totalistic rules - kcode
	kcode v=3 matrix
	t-totalistic rules - tcode

	Outer-totalistic rules
	Reaction-Diffusion dynamics
	Reaction-Diffusion from outer-kcode
	Reaction-Diffusion from a full rule-table — rcode
	Selecting the threshold interval

	Rulemix options
	Single rule or rulemix, and other options
	Summary of rulemix and other options
	Density-bias (-parameter)

	Outer-totalistic kcode or tcode
	Setting reaction-diffusion by outer-kcode
	The game-of-Life and other Life-like rules by outer-kcode

	Setting the neighborhood, k=0
	Methods for setting the rulemix or rule-subset
	Setting a rulemix directly
	Setting a rulemix indirectly - specify a rule-subset
	A rulemix with just one rule

	Rulemix - random
	Rulemix by hand
	By hand reminder
	By hand single rule prompt
	By hand options
	Change the selection method or rule index
	Complete the rulemix automatically
	Copy rules automatically for a k-mix
	Mixed k where all k's (and rules) are the same

	Rulemix - majority
	Rulemix - majority with shifted uniform outputs
	Rulemix for large networks, or large k
	The all 0s output
	Amend/save the neighborhood matrix graphic
	List Post functions
	Initial Post-function prompt
	Restrict Post-functions
	Set Post-function sample size
	Final Post-function prompt

	Setting Canalyzation in a random rcode-mix
	Selecting Canalyzing
	Selecting canalyzing from the rcode-mix
	Selecting canalyzing from wiring graphic — transform rule
	Selecting canalyzing from the Derrida plot

	The first canalyzing prompt
	Canalyzing percentage or number
	Canalyzing - homogeneous-k
	Canalyzing - mixed-k
	Canalyzing for the whole network - mixed-k
	Canalyzing for a particular k in a mixed-k network

	Canalyzing for large networks, or large k

	Setting a singe rule
	The first single rule prompt
	Single rule prompt examples based on rcode
	TFO-mode single rule prompt examples

	Methods for setting a rule
	Setting the rule at random
	Random rule density-bias (parameter)
	Rule value-bias
	Random rule parameters

	Setting the rule as bits or values
	Rules: bits/values reminder window
	rcode/kcode/tcode bits/values reminder
	iso-rule bits/values reminder
	redefine kcode or tcode as rcode and iso-rule
	rule bits/values reminder options

	Rule: bits/values current settings inset
	Rules: setting bits/values with the keyboard and mouse
	Rules: save as 1d seed or PostScript
	Rules: PostScript prompt

	Setting the rule in hex
	Setting the rule in decimal
	Setting a majority rule
	Majority with shifted uniform outputs
	Setting Altenberg rules
	Isotropic rules — the iso-rule paradigm
	iso-rule n-templates
	iso-rule prototypes and order conventions
	iso-rule table sizes
	setting an iso-rule
	options from the iso-rule bit/value graphic
	iso-group graphics
	iso-group graphics — further options

	The game-of-Life and other Life-like rules — rcode
	Setting Life-like rules — rcode

	the IFH mutation/filter game
	Hensel notation for Golly
	Saving/Loading rcode in the Hensel notation

	Setting a chain-rule
	Setting reaction-diffusion — rcode
	Repeating the last rule
	Load/Save a single rule
	Automatic saving of last rule
	Single rule file encoding
	Create a similar kcode with increased k
	Show the rule in the terminal
	Immediate rule data
	Immediate rule data for a rulemix by hand
	Rule data in more detail — vertical layout
	Additional rule data options for kcode
	Swapping kcode values

	The rule window
	Decoding the rule window

	Complementary values
	Transforming the single rule
	Saving/Loading a rule as an ASCII string
	ASCII rule encoding

	Reviewing network architecture
	The network architecture prompt
	The wiring matrix
	Viewing the wiring matrix and creating vector PostScript
	Amending the matrix

	The wiring graphic
	The wiring graphic reminder
	Wiring graphic options summary

	Wiring graphic, mouse pointer/click
	Wiring graphic, 1d
	Data — 1d wiring graphic
	Moving or jumping between cells, 1d
	Defining a block, 1d
	Toggling the block, 1d
	Include the pseudo-neighborhood, or direct wiring only, 1d
	Recursive inputs to a cell, 1d
	Recursive outputs from a cell, 1d
	Untangling the wiring
	Deleting a cell

	Wiring graphic, 2d
	Data — 2d wiring graphic
	Moving or jumping between cells, 2d
	Alternative wiring presentation, 2d
	Include the pseudo-neighborhood, or direct wiring only, 2d
	Defining a block, 2d
	Toggling the block, 2d
	Expand/Contract the scale, 2d
	Shifting the 2d graphic up and down

	Wiring graphic, 3d
	Data — 3d wiring graphic
	Moving or jumping between cells, 3d
	Alternative wiring presentation, 3d
	Include the pseudo-neighborhood, or direct wiring only, 3d
	Defining a block, 3d
	Toggling the block, 3d
	Toggle 3d background grid
	Expand/Contract the scale, 3d
	Shifting the 3d graphic up and down

	Further options for the 1d, 2d and 3d wiring graphics
	Decoding wiring graphic data — 1d, 2d and 3d
	Computing the (weighted) average and Z parameters
	Options for learning pre-images
	Hand rewiring
	Random rewiring
	Biased random rewiring
	Local 1d, 2d or 3d wiring
	Changing the neighborhood size, k
	Kill a cell
	Revising and copying the rule
	Transforming the rule
	Filing, from the wiring graphic
	Link-histogram of the network's k and output distribution
	Creating a vector PostScript file of the wiring graphic

	Transforming rules
	Options for transforming rules
	Transform options, single rule
	Transform options, mixed-k
	Transform options, mixed rule, homogeneous-k
	Transform all cells in a mixed rule network

	Saving or printing the transformed rule
	Inverting the rcode
	Solidifying the rule
	Equivalence classes and rule clusters
	Complementary transformation
	Equivalent rcode by the Negative transformation
	Equivalent rcode by the Reflection transformation

	Setting canalyzing inputs, single rcode
	Canalyzing inputs at random, single rcode
	Canalyzing inputs explicitly, single rcode

	Neutral transformations of the neighborhood k
	Equivalent rules with greater k
	Reducing kmax to the maximum k in the network
	Effective k
	Reverse engineering - loading an exhaustive map

	File/print network architecture
	Network filing options
	Wiring/rulemix filenames
	Wiring/rulemix encoding
	Mixed-k encoding

	Loading networks and sub-networks
	loading networks — compatibility
	Compatibility with v
	Compatibility with k
	Compatibility with n
	Compatibility with edge sizes and dimensions

	Loading a complicated network into a CA and vice versa
	Loading sub-networks in a set position
	Loading k-mix networks

	Saving just the k-mix
	Printing network data to the terminal or file

	Interactive Graphs: network, ibaf, jump
	Interactive graphs
	Common themes between initial and drag graphs
	Common presentation options

	Initial-graph overview
	Drag-graph overview
	drag graph: choices
	drag graph: linked fragment in/out/either
	drag graph: cut or add links
	drag graph: single node
	drag graph: block
	drag graph: label
	drag graph: equalise node display
	drag graph: gap nodes

	The network-graph
	Selecting the network-graph — general case
	Selecting the network-graph — pausing STP
	The network-graph initial reminder
	The network-graph drag reminder

	The ibaf-graph
	Selecting the ibaf-graph
	The ibaf-graph initial reminder
	The ibaf-graph drag reminder

	The jump-graph
	Selecting the f-jump-graph
	Selecting the h-jump-graph
	The jump-graph initial reminder
	The jump-graph drag reminder

	The jump/network drag reminder
	The jump/network drag reminder: no links

	Initial-graph options
	Drag-graph options
	Defining a block
	Labels at nodes
	Probabilistic ``ant''
	Active ant options
	Show ant-hits

	Redraw basins at jump-graph nodes
	Saving jump-graph basins to reload in ibaf-graph
	PostScript of jump-graph basins

	PostScript of interactive-graphs
	Graph layout file
	Revise settings
	Unreachable nodes
	The adjacency-matrix
	adjacency-matrix — network-graph
	adjacency-matrix — jump-graph
	adjacency-matrix — ibaf-graph
	adjacency-matrix options

	Space-time patterns within the network-graph
	network-graph from wring graphic — toggle

	The Seed or initial state
	The seed prompt
	Methods for setting a seed
	Setting the seed at random
	Seed at random — further options
	Non-zero seed density-bias
	Seed or block value-bias

	Setting the seed as bits or values
	2d patch options
	Seed: bits/values reminder window
	Seed: bits/values options summary
	Seed: bits/values current settings inset
	Seed: setting bits/values with the keyboard and mouse
	setting bits/values: 1d segments
	setting bits/values: 1d shown as 2d
	Setting bits/values: filing and PostScript
	Setting bits/values: saving a patch
	Setting bits/values: PostScript prompt
	Setting bits/values: PostScript 3d image

	Setting the seed in hex
	Setting the seed in decimal
	Loading a seed, and loading constraints
	loading a seed — all parameters equal
	loading a seed — unequal value-ranges
	loading a seed that fits within the base
	loading a seed that does not fit within the base, 2d and 3d
	loading a seed that does not fit within the base, 1d

	Saving a seed
	Seed file encoding
	Saving/Loading a seed as an ASCII string
	ASCII seed encoding

	Saving/Loading a seed in the Golly file format
	The Golly file prompt

	The Derrida plot
	Selecting the Derrida plot
	Derrida plot options
	Derrida plot parameters

	Data within the Derrida plot
	Network data
	Derrida data

	Interrupting the Derrida plot
	Completing the Derrida plot
	Completing the Derrida plot parameters
	Data at the end of each plot

	The Derrida coefficient
	Automatic plots of CA rule clusters

	Graphic conventions for attractor basins
	Basins of Attraction — the idea
	Network states, nodes
	Attractor cycles
	Transient trees
	Transient tree colors
	Transient trees for uniform states
	Subtree only

	Output parameters for attractor basins
	The first output parameter prompt for attractor basins
	Output parameters for attractor basins — options summary

	PostScript of attractor basins
	Select the ibaf-graph or jump-graph
	Jump-graph basins applied to the ibaf-graph

	Miscellaneous (hard to categorize) options
	State-space matrix
	State-space matrix — options summary
	Toggle the matrix on-the-fly

	In-degree frequency histogram
	In-degree frequency cut-off
	Drawing the in-degree histogram
	In-degree data and prompts
	in-degree window — data decode
	in-degree window — options summary
	In-degree log plot
	Rescaling the x/y-axis

	Density classification problem — attractor basins
	Screen-saver demo
	G-density, Z and
	G-density, Z and — options summary
	G-density plotted against network size
	G-density against Z and/or ratio
	G-density for tcode, or rcode k 3
	G-density for k>3 rcode

	Z - ratio plots
	Z - ratio or Zleft - Zright
	Z - ratio or Zleft - Zright for k4 rcode
	Z - ratio or Zleft - Zright for tcode

	Proportions of canalyzing inputs and ratio-P

	``Backwards'' space-time patterns
	Scroll space-time patterns

	Basin speed
	Basin on-the-fly options

	Layout of attractor basins
	The layout preview
	The first layout prompt
	Reset all layout defaults
	Reset transient scale
	Mutants for single basins on one screen
	Basin scale, attractor radius
	Basin start position
	Show the field as successive basins
	Basin spacing and stagger rows
	Select minimum right border width
	Amend the spacing increase for a range of n
	Accept or revise layout parameters

	Amend the layout during pause
	Amend the orientation and fan angle during pause
	Amend the spacing and right border during pause
	Amend the next position during pause
	Amend the spacing increase during pause

	Display of attractor basins
	Attractor basins with null boundary conditions
	Compression of equivalent CA dynamics for periodic boundaries
	Deactivate compression
	Pre-images of uniform states
	Suppress copies of trees (and subtrees)

	Node display
	Node colors
	Highlight attractor, or subtree root, in 2d
	Change the 2d node i,j
	Alter scale, divisions and dots — node as bits/values
	Alter decimal or hex node scale

	Change orientation, fan angle, edge color
	Orientation
	Pre-image fan angle
	Edge color

	Limiting backward steps

	Pausing attractor basins, and data
	Pause stages hierarchy
	Pause after each field for a range of fields
	Pause after each basin, tree, or pre-image fan
	The pause prompt

	Attractor basin complete — data window
	Data on basin of attraction fields
	Errors in basin of attraction fields
	Data on basins
	Data on trees
	Data on pre-image fans
	Data on subtrees
	Data on subtrees from a uniform state

	Print or save data
	Data format
	Network parameters data
	Basin field data
	Key to basin data order
	Tree data
	Key to tree data order
	Single basin data
	Subtree data

	List of states
	Just the list of states
	The list of states with basin data
	The list of states with basin and tree data

	Mutation of attractor basins
	The first mutation prompt
	The first mutation prompt — options summary

	Mutate wiring
	Special mutation options
	Bit-flip or value-flip in sequence

	Flip bits or values
	No pause before next mutant

	Final options for attractor basins
	Subtree or single basin
	Subtree: Run forward before running backwards
	Single basin of attraction
	Single basin history limit
	Interrupting while looking for attractor

	Final attractor basin prompt
	Final attractor basin prompt — conditions and reminders
	Final attractor basin prompt — options summary

	Limit backward steps
	The bare attractor — limit backward steps to zero

	Viewing the partial pre-image stack
	Partial pre-image stack, local wiring
	Partial pre-image stack, nonlocal wiring
	Reorder to optimize the nonlocal reverse algorithm

	Exhaustive algorithm
	Generating the exhaustive list
	Compute and activate the ibaf-graph
	Saving the exhaustive pairs
	Printing the exhaustive pairs in the terminal

	Random map
	Loading the random map or exhaustive pairs
	Biasing the random map by Hamming distance
	Random map data

	Sequential updating
	Random order
	Set specific order
	List all orders
	List all orders — set order seed
	Drawing the attractor basin with sequential updating

	Neutral order components
	Neutral subtree
	Neutral field

	Drawing attractor basins, and changes on-the-fly
	The progress bar for basin of attraction fields
	Attractor basins, interrupting and changing
	Abandoning a tree and continuing with the next tree
	Errors in attractor basins
	Abandon the attractor basin

	Attractor basin options, on-the-fly
	Attractor basin complete prompt
	Further attractor basin complete options
	Attractor basin — revising rule/s
	Attractor basin - revising the seed

	Output parameters for space-time patterns
	The first output parameter prompt for space-time patterns
	Output parameter prompt for space-time patterns — options summary

	Miscellaneous options — space-time patterns
	Color cells by value or neighborhood
	State-space matrix and return map
	State-space matrix
	Return map by value

	Frozen generation size
	Cell scale
	Space-time patterns in other than the native dimension
	Scrolling 1d space-time patterns
	Pause and step
	Speed of iteration
	Glider rule order
	Inverting the kcode in TFO-mode

	Periodic or Null boundary conditions
	Asynchronous and noisy updating
	Probabilistic updating
	sequential updating — space-time patterns
	partial order updating — space-time patterns

	Input-Frequency Histogram (IFH)
	input-entropy and pattern density
	entropy/density prompt
	Single cell input-entropy and pattern density
	Generation size - moving window of time-steps
	On-the-fly changes to input-entropy and pattern density

	Damage, the difference between two networks
	Duplicate the network and seed
	The Damage Histogram
	Drawing the damage histogram
	Pausing the damage histogram

	Attractor histogram
	Density classification problem — attractor histogram
	Drawing the attractor histogram
	Histogram window information

	Pausing the attractor histogram
	Rescaling the attractor histogram
	Attractor histogram data
	Attractor histogram screen data
	Attractor histogram data decode
	Histogram data for density rules

	Print/Save attractor state data
	Sorting the attractor histogram
	Attractor histogram jump-graph

	Skeleton (fuzzy attractor) histogram
	Skeleton parameters prompt
	Drawing the Skeleton histogram
	Pausing the skeleton histogram
	Skeleton histogram data
	Skeleton histogram data decode

	Sorting the skeleton histogram

	Drawing space-time patterns, and changes on-the-fly
	On-the-fly key index
	On-the-fly prompts — bottom title bar
	Summary of on-the-fly options for space-time patterns
	Updating (tog)
	U/Y..sync-seq/sync-porder
	{/}..prob:update1-0.95/output1-0.95

	Change rule
	r,R/K/k..rnd/vrnd/tcode/kcode
	[/]..iso/togflip(on)
	O/A/M/C..Orig/Alt/Maj/Chain
	1/?/2..rnd bitflip/restore
	Z/z..force Z higher/lower
	b/B..flip all0s->0/allVs->V
	8..rulemix-single

	Rule samples
	g..load glider rule (rnd)
	creating a glider rule collection

	V..load, jmp, scan
	w/:/9..next/prev/rnd
	uE..create sample

	Change wiring
	m/W..move 1 wires
	7..local-nonlocal
	?..re-rnd(off)
	..periodic-null

	Change seed/size
	4/v/\//..rnd seed/block/vseed/vblock
	l/L..rnd value/block
	o/..original/last
	5/6..singleton seed
	N/n..inc/decrease 1 cell

	Presentation
	x..tog slant(off)
	x..tog hex(off)
	i/!.tog divs(off)
	@..tog balls outline
	3/./..incolor/dot/bground
	d/-..tog shuffle colors/restore
	S..tog space-time display
	P..tog skip steps=1 (off)
	$..tog sound
	e/c..expand/contr scale

	1d 2d 3d
	T..tog 1d-2d-3d
	t..tog 2d-2d+time
	t..tog grid3d
	I..tog balls
	p..plane
	J..invisible

	Frozen/Filter
	h..nor-dy-f1-f2-bin
	H..f-gens (now 20)/bins(10)
	frozen generations
	frequency bins
	f/F/a/=/-..filter/undo/all/anti/app

	Analysis
	0/%..tog lookuphist:1-2/1-time
)/(..lookhist: amplify/restore
	_/&..lookhist: shrink/inc&col
	s..tog entropy-density
	j..tog ent-in-both
	u..tog entropy/density plot
	entropy/density plot — linked history
	entropy/density plot — output/save data

	;..density return map
	density return map — linked history
	density return map — saving the data

	G..a-gens (now 10)
	D..return map by value
	y..state-space
	=..tog diff (keep damage)

	Miscellaneous
	X..index display
	*..tog endpause (on)
	#..tog scrolling
	1d scrolling
	2d diagonal scrolling
	network-graph scrolling
	2d+time scrolling

	+..tog time-step pause
	</>..slow/max speed
	q..pause

	Interrupting space-time patterns
	Rule details for space-time patterns
	Space-time pattern interrupt/pause prompt
	Revising rule/net
	Classified samples of rule-space — load/keep
	Directly scanning for PostScript
	Revising the seed and native PostScript
	Space-time patterns on the network-graph
	Fixed borders
	Finer control of filtering
	Space-time — skip, pause, step and speed
	Miscellaneous options

	Quit and further options
	Directly scanning STP for vector PostScript
	Network-graph layout of space-time patterns
	On-the-fly options within the network-graph
	Network-graph space-time pattern as vector PostScript

	Classifying rule-space
	Input entropy and variability (min-max or sdev)
	Creating a rule sample — initial prompts
	Biasing random rules

	Running a test
	Test data
	Test options

	Creating an automatic rule sample
	Loading, sorting and displaying a sample
	The rule sample scatter plot
	Probing the scatter plot with the mouse, and selecting rules
	Defining a scatter plot patch with the mouse or keyboard
	The scatter plot as a 2d pile-up frequency histogram

	Scanning sample space-time patterns
	Scanning on-the-fly
	Scanning automatically in blocks of time-steps
	Scanning 1d samples
	Scanning 2d or 3d samples

	Listing a sample
	Selecting a rule from the list

	Listing by plot coordinates or probing with the mouse
	Rule sample encoding

	Learning, forgetting, and highlighting
	Learning/forgetting methods
	Highlighting states in attractor basins
	Basin layout for learning

	Selecting the learn/forget/highlight window
	Selecting the wiring graphic
	Selecting the network architecture prompt

	Select the target state
	Select aspiring pre-image/s
	Odd or even parity
	Range of decimal equivalents
	Pre-images according to Hamming distance
	List of aspiring pre-images
	Review target state and aspiring pre-images

	Learn, forget, or highlight only
	1d CA — local wiring and highlighting
	Nonlocal wiring — learn, forget, or highlight only
	Learning/forgetting by wire moves or bit/value-flips

	Learning/forgetting by bit/value-flips
	Learning/forgetting by wire-moves
	Highlighting options
	Learning/forgetting/highlighting complete

	Filing
	File naming constraints in DDlab
	File types, default filenames, and extensions
	The filing prompt
	Loading constraints and warnings
	Changing the directory
	List files

	Vector PostScript capture of DDLab output
	Cropping and editing vector PostScript
	Cropping the PostScript image
	Amending the width of lines

	Glossary
	References
	Index

