EXPLORING DISCRETE DYNAMICS
SECOND EDITION

The DDLab Manual

Tools for researching Cellular Automata,
Random Boolean and Multi-Value Networks, and beyond.

ABOUT THE AUTHOR

Dr. Andy Wuensche is a former architect, the inventor of reverse algorithms for cellular automata
and discrete dynamical networks, the author of many academic publications including the book
The Global Dynamics of Cellular Automata (with Mike Lesser) in the Santa Fe Institute’s Studies
in the Sciences of Complerity. He created and continues to develop the classic software Discrete
Dynamics Laboratory (DDLab), widely used in research and education. He has lectured at
universities and conferences throughout the world. He is an independent academic, a visiting
Professor at the International Center of Unconventional Computing, UWE, Bristol, and a visiting
research fellow at the Dept. of Informatics, University of Sussex.

Oil on canvas by Paul Wuensche
http://paulwuensche.com/

http://paulwuensche.com/

ANDREW WUENSCHE

EXPLORING DISCRETE DYNAMICS
SECOND EDITION

The DDLab Manual

Tools for researching Cellular Automata,
Random Boolean and Multi-Value Networks, and beyond.

Luniver Press
2016

This Nov 2018 online edition includes updates

Published by Luniver Press
Frome BA11 3EY United Kingdom

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

EXPLORING DISCRETE DYNAMICS Second Edition
(First Edition 2011 Luniver Press)

Copyright (© Luniver Press 2016

The cover images were created with DDLab. A space-time pattern (n=600) and a basin of attrac-

tion (n=15) are illustrated — both according to the same v2k5 one-dimensional cellular automata
rule (hex) 3dae2997.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any
means, electronic or mechanical, including photocopying, recording or by any information storage
and retrieval system, without permission in writing from the copyright holder.

ISBN-10: 1-905986-47-5
ISBN-13: 978-1-905986-47-7

While every attempt is made to ensure that the information in this publication is correct, no
liability can be accepted by the authors or publishers for loss, damage or injury caused by any
errors in, or omission from, the information given.

To Stephanie

Chapters

ENEGCR N

o N O Ot

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Preface ...
Contents . ..vut et
List of figures i i
List of tables i i
OVEIVIEW ..t
Summary of DDLab functions
Accessing DDLab ...
Quick Start Examples
Starting DDLab
The first prompt in DDLab
Value-range, voveie i
1d network size n, or range-n
Neighborhood, k, or mixed-k
The local neighborhood, and network geometry
Setting the wiring, quick settings
Setting special wiringo i
Rules types ...
Rulemix options
Setting Canalyzation in a random rulemix
Setting a singerule il
Reviewing network architecture
Transforming network rules
File/print network architecture
The network-graph, and attractor jump-graph
The Seed or initial state
The Derrida plot ...
Graphic conventions for attractor basins
Output parameters for attractor basins
Layout of attractor basins
Display of attractor basins,
Pausing attractor basins, and data
Mutation of attractor basins
Final options for attractor basins
Drawing attractor basins, and changes on-the-fly ...
Output parameters for space-time patterns
Drawing space-time patterns, and changes on-the-fly
Classifying rule-spaceccciviiiiiiii..
Learning, forgetting, and highlighting
Filing ...
Vector PostScript capture of DDLab output
GlOSSATY « et
Referenceso
Index ..o

vi

Xvi
XxXx1il
x1

10
27
33

95

64

70

74

82

89

96
100
109
120
134
141
173
206
214
225
248
275
284
290
313
322
335
351
359
382
390
426
482
504
518
524
526
932
536

Figure 1: The basin of attraction field of a 3-value Cellular Automaton, v=3, k=3, n=8. There are in
fact 17 basins, but equivalent basins have been suppressed leaving just the 7 prototypes. One attractor
state is shown for each basin. The rcode rule-table is 020120122021201201011011022.

Dynamics on networks, and of networks

Networks of sparsely inter-connected elements with discrete values and updating in parallel are
central to a wide range of natural and artificial phenomena drawn from many areas of science:
from physics to biology to cognition, to social science and economics; to parallel computation,
emergence, self-organization and artificial life; to complex systems of all kinds.

Dynamics upon or on a network are its changing patterns of cell-states, while the underlying
network architecture, its connections and logic, remains fixed. DDLab studies these changing
patterns and how they “fall” along trajectories into attractors, revealing the fine detail of basins
of attraction. DDLab also deploys flexible methods for constructing and changing the network’s
architecture — the dynamics of the network — which of course has consequences for the dynamics
on the network.

To give an oversimplified example, take a network of neurons in a brain; the pattern of firing and
synaptic activity is the dynamics on the neural network sustaining automatic behavior, whereas
network plasticity, changes in synaptic micro-circuitry and connections between neurons, is the
dynamics of the network supporting learning and lifetime adaptation.

Networks like this are sometimes called “decision-making” because each element “decides” how
to change its state based on the signals arriving from other elements along its input connections,

vii

viii

mediated by its own internal logic, and each element provides outputs to other elements making
their “decisions”. The many decisions make a collective by simultaneous iteration and massive
feedback creating the possibility of all sorts of “emergent” dynamic patterns.

We can unravel the dynamics and gain some insight into the basic principles by studying
idealized networks were all aspects are discretized: value, space, and time, where dynamics on
the network are simplified into discrete time-steps updating synchronously, in parallel, or in some
partial order.

Cellular automata and random Boolean networks are the most common idealized dynamical
networks that have been studied, and together with their applications support a very large body of
literature. Applications include complex systems and emergent patterns [34, 32, 33], collision-based
computing [1], neural networks, memory and learning [37], genetic regulatory networks [23, 28, 19,
36, 39], and theories of networks in general. The idealized networks are interesting in themselves
as mathematical /physical/dynamical systems. Because the dynamics resist analysis by classical
mathematics, computer simulation, a kind of experimental mathematics, is unavoidable.

DDLab software

DDLab is able to construct these networks and investigate many aspects of their dynamical
behavior. The software utilizes interactive graphics and other methods to study cellular automata
(CA), random Boolean networks (RBN) [23], and the general case of discrete dynamical networks
(DDN), where the “Boolean” attribute is extended to multi-value. Together with hybrid networks,
and networks of interacting sub-networks, there is a huge diversity of behavior to be explored —
mostly terra incognita.

There are currently compiled versions' of DDLab for Linux, Mac, Cygwin and DOS. The code is
written in C, and is open source “free software” under the GNU General Public License. As well as
generating space-time patterns in one, two or three dimensions, DDLab generates attractor basins,
graphs that link network states according to their transitions, representing “global” dynamics [34],
analogous to Poincaré’s “phase portrait” which provided powerful insights in continuous dynamical
systems. A key insight is that the dynamics on networks converge, thus fall into a number of basins
of attraction. The state transition graphs, consisting of trees rooted on attractor cycles, represent
a network’s memory, its ability to hierarchically categorize its patterns of activation (state-space)
as a function of the precise network architecture [36].

Relating this to space-time patterns in CA, high convergence implies order, low convergence
implies disorder or chaos [34]. The most interesting emergent structures occur at the transition,
sometimes called the “edge of chaos” [25, 41].

DDLab is an applications program, it does not require writing code. Network parameters and
the graphics presentation can be flexibly set, reviewed and altered, including changes “on-the-fly”.
A wide variety of data, measures, analysis, and statistics are available. DDLab produces graphic
images of all aspects of the data, the networks, attractor basins, and moving images of space-time
patterns. Most images can be captured as vector PostScript files suitable for publication. This
book provides a comprehensive operating manual for the current multi-value version of DDLab at
the time of publication.

1Earlier compiled versions are also available for Unix and Irix.

ix

First edition updates

The items below were the significant DDLab updates (since the 2001 online manual) documented
in the 2011 first edition of Exploring Discrete Dynamics [53].

multi-value

DDLab was generalized for multi-value logic, with up to 8 values (or cell-states, or colors), instead
of just Boolean logic (two values: 0,1). Of course, with just 2 values selected, DDLab behaved as
before. The multi-value version opened up new possibilities for dynamical behavior and modelling.

totalistic rules

DDLab could be constrained to run “forward-only” for various types of totalistic rules which depend
on just the totals of each value in a neighborhood, including outer-totalistic rules and reaction-
diffusion rules. This option reduced the relative sizes of rule-tables allowing larger neighborhoods,
with an upper limit of 25 instead of 13, at the cost of disabling basin of attraction functions. In
2d the neighborhoods were predefined to make hexagonal as well square lattices. Many interesting
cellular automaton rules with “Life-like” and other complex dynamics were found in totalistic
multi-value rule-space, in 3d as well as 2d [47, 48].

vector graphics

Options were provided to capture most of DDLab’s graphic output, including space-time patterns
and attractor basins, the network-graph and the attractor jump-graph, as vector PostScript files,
which is a preferred format for publication than the previously available bitmap images.

Second edition updates

A number of significant DDLab updates have been released since the first edition of Exploring
Discrete Dynamics was published in 2011, which are now included and documented in this second
edition, as well as various other improvements and corrections. The significant updates, listed in
no particular order, are as follows:

greater system sizes

DDLab now allows greater sizes in a range of parameters (summerised in section 1.6) — value-
range, neighborhoods and rule-tables (chapter 7), and network size (sections 1.6.1, 8.3). These
greater sizes can be extended even further with a new initial “exLimits” option (section 2.2.3).
Greater sizes of networks are especialy useful for 2d and 3d space-time patterns, but this presented
a challenge in displaying, maniputaling and filing which have been resolved. Maximum sizes depend
on your CPU and DDLab version (32-bit or 64-bit), and avaliable RAM.

network “block” in 2d and 3d

As a consequence of larger network sizes, in 2d and 3d the new default when defining a network
block (its wiring and/or rules) is to show just the block edges, to speed up the graphics presentation
for large blocks, but this can be toggled to show the block in full as before (sections 17.7.5 and
17.8.5). When a block is active, setting random or special wiring applies either within the block
(as before), or (a new option) to the remainder of the network outside the block.

use of the mouse pointer in the wiring graphic

New functions in the wiring graphic (section 17.5) allow a mouse pointer/click to reposition the
active cell, and the last two clicks to define the default corners of a block. This makes it easier to
explore and amend network wiring. The pointer/click methods apply to any wiring graphic, 1d,
1d circle layout, 1d as 2d, 2d (square or hex), and 3d where the pointer moves on the 2d version
of the 3d network.

neighborhood size extended up to 27 in all dimensions

The maximum neighborhood size k is now extended up to 27 cells, and predefined for 1d, 2d
(square or hex) and 3d. New and modified 3d neighborhood templates all now fit within a 3x3x3
volume (figure 10.3).

2d hex/triangular neighborhoods

New 2d hex/triangular neighborhoods sizes k=3 and k=4 are introduced (figure 10.2) which permit
investigating the dynamics on these simpler lattices, with many instances of complexity, for example
figure 2.2.

null boundary conditions

All DDLab functions and options can now be applied to systems with null boundary conditions
(NBC), whereas previously only periodic boundary conditions (PBC) were available. This includes
multi-value, CA in various dimensions, but also RBN and DDN (section 2.7).

NBC are of interest in pattern recognition, and applications where the system is grounded or
quenched, or bounded by an edge, skin or membrane. As for PBC, NBC are also interesting as
mathematical /dynamical systems in their own right.

saving/loading a seed as an ASCII string and in Golly format

As well as the standard binary DDLab format, a seced can now be saved/loaded as an ASCII string
(sections 21.10) which is useful for interchanging the seed between DDLab and alternative software.
A 2d binary seed can also be saved/loaded as an ASCII string following the “Golly” file format
(section 21.11, software used in the game-of-Life community.

saving the rule as a 1d seed file

The rule-table pattern can be saved as a 1d seed file (section 16.4.4), allowing a rule string to seed
a basin of attraction, which itself is able to classifing rule-space [6, 7].

xi

repetitive blocks of rules

When setting a rulemix from a limited subset of rules (section 14.4.2) as well as assigning rules
randomly from the subset, the subset itself can be assigned to form repetitive blocks of rules —
thus implement so called “hybrid CA” or HCA.

transient data

In the "attractor histogram” (section 31.7) which provides statistical attractor data by running
forward, a new option allows data to be recorded on the set of unique transients found so far,
to each attractor, without duplication (figure 31.19). This provides additional data required for
models of genetic regulatory networks.

dynamic trails for gliders

Mostly effective in 2D CA to highlight mobile configuration such as gliders, glider-collisions,
and glider-guns, a new feature allows these objects to leave green trails of specified length
(section 32.11.1, figure 32.23).

lattice and rule presentation

Improvements have been made to the graphic presentation of both states (seeds) and rules,
including the color of the division lines of the current lattice (figures 21.7, 32.14).

manipulating a predefined 2d patch

All preexisting options for manipulating and editing 2d states (seeds) can now be applied to just
a predefined patch set by the last 2 mouse clicks. This is useful to design, edit, manipulate and
duplicate configurations for 2d complex rules, such as the game-of-Life [10], the Spiral rule [48],
and the X-rule [14]. The options include: jump, copy, move, spin, flip, compliment, and save the
pattern or patch as a DDLab seed or vector PostScript file (figure 21.6).

equivalent CA and the Derrida plot

New Derrida plot options include automatic plots of equivalent CA (figure 22.4), and lists of
equivalence classes and rule clusters [34] (section 22.7).

display of the bare attractor for very large networks

For single basins, just the bare attractor can be displayed by setting the number of backward steps
to zero (section 29.5.1) so that reverse algorithms do not come into play. This new function allows
the graphic image of the attractor for very large networks, including 2d, to be generated as in
figures 29.2 and 29.3.

reaction-diffusion dynamics in 3d as well as 2d

Reaction-diffusion dynamics (section 13.8) can be applied in 3d networks (figure 13.4) as well as
in 2d as before (figure 13.3).

xii

density return map

A scatter plot of the density return map can be created, plotting the density of each value at
t_1 y-axis, against t(xz-axis (section 32.12.7) as in figure 32.33. This can be interesting when the
densities pulsate, follow periodic oscillations, which occurs for a network with random wiring and
a homogeneous v=3 complex glider rule[54, 55], for example rules from the complex kcode rule
collections in section 3.6.2.

While the density return map (section 32.12.7) is active, a new option, dnsty-d, in the top-right
interrupt window (section 32.16) allows saving the density return map data (section 32.12.7.2).

resetting transient parameters

The transient scale can be reset, independently from the basin scale and attractor radius
(section 25.2.4). When drawing transients, the gap between successive transient levels away from
the attractor or subtree root is made to decrease asymptotically according to default parameters
— applied for drawing attractor basins (state transition graphs) as illustrated throughout this
book. However, new options allow these transient parameters to be varied for greater control of
the presentation (section 25.2.2). This is especially useful to curtail the projection of very long
transients, characteristic of chaos.

a pencil drawing from the very early days before the same basin of attraction drawn by the graphics

automatic computer drawing was perfected algorithm — transients curtailed (scale=15 F=6)

Figure 2: A single basin of attraction, elementary rule 30 — a chaotic rule, n=12, attractor period=102,
maximum transient levels=126 — further examples in figure 25.4.

xiii

Online updates to the Second Edition since March 2017

Some updates and bug fixes to DDLab have been made since the publication of the Second
Edition. The updates are included in this April 2018 online .pdf version of the manual, and are
summarised below,

initial DDLab screen/window

In Linux-like operating systems (including Mac) the initial DDLab screen/window has been
adapted to appear correctly, at a reasonable size, on very high resolution monitors. The method
now apples for any computer screen resolution (section 5.1).

local zone in 2d and 3d networks

For non-square 2d networks and non-cubic 3d networks, random wiring within a local zone is no
longer limited to the shortest axis (section 17.9.5).

on-the-fly options for the input-frequency histogram

New on-the-fly options have been added to amend the presentation of the input-frequency
histogram (section 32.12.3).

on-the-fly options to expand/contract the scale of basins of attraction

New on-the-fly options have been added to expand/contract the scale of basins of attraction
(section 30.3). This change was made for active control of the “savescreen demo” (section 4.11),
but it also applies whenever basins are being drawn, including basin of attraction fields, single
basins, and basins for a range of network sizes.

Derrida plot options improved

The Derrida plot options (chapter 22) have been slightly amended and improved, including showing
the Z-parameter in automatic plots.

isotropic rules

New options are added for setting isotropic rules and transforming an existing rule to isotropic
(section 16.10.2). Isotropic dynamics is arguably closer to natural physics.

Golly format Hensel notation for 2d binary rules

As well as saving/loading a 2d binary seed in Golly format (section 21.11), an isotropic rule can
be saved/loaded in Golly’s “Hensel notation” (section 16.10.3), making DDlab more compatible
with this software used in the game-of-Life community.

xiv

re-randomise at each time-step

While running space-time patterns, a new on-the-fly option allows nonlocal (random) wiring to be
re-randomised at each time-step (section 32.7.3). The network will be re-randomised according to
any random wiring biases originally set in chapters 11 and 17.

options in the wring graphic for 2d and 3d
New presentations options in the 2d and 3d wiring graphics, (section 17.4.1),
gaps-T ... to toggle gaps between cells. Eliminating gaps results in simple grid lines
which may be preferable, especialy for a solid block of cells.
gridcolor-! ... to toggle the outline color of cells in a block, between grey and black.

fill-W ... to toggle the color of cells in a block, between red and white (empty).

functions/prompts in the network-graph, and attractor jump-graph

Functions for dragging nodes or fragments have been made more efficient — significant for large
networks — and the current (toggled) drag method is indicted more clearly in prompts —
elastic/snap or snap/elastic (section 20.5).

consecutive option for classifying rule-space

For small rule-tables, expressible in decimal, consecutive rules can be generated to classifying
the entire rule-space (section 33.2.1). The method automatically omits rule-tables with missing
values, or were the all-0 neighborhood does not outputs 0.

on-the-fly options related pulsing behaviour

These on-the-fly options for space-time-patterns (chapter 32), relate to the study of pulsing
behavior, rhythmic density/entropy oscillations[54, 55], but are also applicable in other contexts.

keyhit ; ... (semi-colon key) if “pattern density” is active (section 32.12.4), the semi-
colon key will toggle the density return map (section 32.12.7).

keyhit ” ... (inverted coma key) while the entropy/density plot is active (section 32.12.6),
the inverted coma key will toggle automatic data in the terminal to iden-
tify the pulsing wavelenght and waveheight, which can also be saved
(section 32.12.6.2).

keyhit , ... (coma key) while the entropy/density (section 32.12.6) or density return
plot (section 32.12.7) are active, the coma key will toggle connecting su-
cessive dots for a linked history.

XV

Acknowledgements

The precursor of DDLab was the Atlas software, included on diskette inside the back cover of The
Global Dynamics of Cellular Automata, An Atlas of Basin of Attraction Fields of One-Dimensional
Cellular Automata [34], by Andrew Wuensche and Mike Lesser, published in 1992 in the Santa
Fe Institute’s Studies in the Sciences of Complexity. The Atlas software was compiled in DOS,
with the operating instructions in Appendix 1 of the book. The book and original software can
be found at http://www.ddlab.org.

Many people have influenced DDLab by contributing ideas, suggesting new features, providing
encouragement, criticism, and helping with programming. I reserve all the blame for its short-
comings. I would like to thank Mike Lesser, Grant Warrell, Crayton Walker, Chris Langton,
Stuart Kauffman, Wentian Li, Pedro P.B. de Oliveira, Inman Harvey, Phil Husbands, Guillaume
Barreau, Josh Smith, Raja Das, Christian Reidys, Brosl Hasslacher, Steve Harris, Simon Frazer,
Burt Voorhees, John Myers, Roland Somogyi, Lee Altenberg, Andy Adamatzky, Mark Tilden,
Rodney Douglas, Terry Bossomaier, Ed Coxon, Oskar Itzinger, Pietro di Fenizio, Pau Fernandez,
Ricard Sole, Paolo Patelli, José Manuel Gémez Soto, Dave Burraston, Genaro Martnez, and many
other friends and colleagues (to whom I apologize for not listing). Also DDLab users who have
provided feedback, and researchers and staff at the Santa Fe Institute in the 1990s.

http://www.ddlab.org

Contents

Chapters vi
Preface vii
Contents xvi
List of figures xxxiii
List of tables x1
1 Overview 1
1.1 Introduction oL 1
1.2 Source code and platforms oL Lo 2
1.3 Discrete dynamical networks oL oL L 3
1.4 Space-time patterns and attractor basins L Lo oL 5
14.1 Totalistic rules - forwards-only oo 7

1.5 Categorization L 7
1.6 Size limits: network n and neighborhood k. o000 7
1.6.1 Network size limits 7

1.6.2 Neighborhood size limits L 8

1.7 Parameters and options Lo 8

1.8 Measures and data L e e 8

1.9 Contents SUMMATY © o v vt v bt e e e e e 8

2 Summary of DDLab functions 10
2.1 DDLab’s prompts oL e 10
2.2 Initial choices L 10
2.2.1 Totalistic rules, forwards-only, TFO-mode 10

2.2.2 Basin field or initial state L L L o 10

2.2.3 Exceeding normal limits of nand k. oo 11

2.3 Setting the value-range Lo 11
2.4 Setting the network size oL 11
2.5 The neighborhood k or k-mix L 11
2.6 Wiring o e 12
2.7 Null boundary conditions L L e 13
2.8 Rules . . . o o o e 13
2.9 Initial network state, seed 14
2.10 Networks of sub-networks oL oo 15
2.11 Presentation options L L e 15
2.11.1 Space-time patterns L 15

xvi

CONTENTS

2.11.2 Attractor basins
2.11.3 Interruptingaruno e
2.12 Graphics oL
2.13 Filing and Printing L Lo
2.13.1 Filing network parameters Lo
2.13.2 Filingdata
2.14 Vector PostScript images Lo
2.15 Bitmap images e e e e
2.16 Printing the screen image L Lo
2.17 Mutationso e e e
2.17.1 Running Forward e
2.17.2 Running Backward00
2.18 Quantitative, statistical and analytical measures
2.18.1 Behavior parameterso
2.18.2 Network connectivity oL
2.18.3 Measures on local dynamics Lo Lo
2.18.4 Measures on global dynamics Lo Lo
2.19 Reverse algorithms L
2.19.1 1d CA wiring reverse algorithm oo oL
2.19.2 Nonlocal wiring algorithm o oo
2.19.3 Exhaustive reverse algorithm oo oo
220 Randommap L e
2.21 Asynchronous and Sequential updating00 o
2.21.1 Neutral order components Lo
2.22 Sculpting attractor basins
3 Accessing and running DDLab
3.1 The DDLab web site L e
3.2 DDLab at SourceForge L
3.3 Unzipping and running — Linux-like versions
3.3.1 Unix library files e
3.4 Unzipping and running - DOSo
3.5 The Quick Start Examples L
3.6 Extradatafiles L e
3.6.1 Complex rule collections L Lo
3.6.2 Selected 2d complex rules, v=3
3.6.3 Selected seeds L.
3.6.4 Sorted rule samples Lo
3.6.5 Byl's self reproducing loop Lo
3.7 Copyright, License and Registration
3.8 Source code, and compiling L Lo
3.9 Previous versions of DDLab L
4 Quick Start Examples
4.1 The DDLab screen e e
4.1.1 User Input oL e
4.1.2 Backtrack
4.1.3 Quitting DDLab e
4.1.4 Skipping Forward
4.1.5 The graphics setup oL e e
4.2 Basin of attraction fields Lo

xvii

16
17
17
18
18
18
19
19
19
19
19
20
20
20
20
21
22
23
24
25
25
25
25
26
26

27
27
27
27
28
28
29
29
29
29
30
31
31
32
32
32

xviii CONTENTS
4.2.1 Changing basin parameters 35

4.3 Backwards space-time patterns, and state-space matrix 36
4.4 Basin of attraction fields for a range of network sizes 37
4.5 A single basin of attraction L 38
4.6 A subtree e e e e e 39
4.7 Space-time patterns — SEED-mode or TFO-mode 40
4.8 1d Space-time patterns L. e e 40
4.8.1 1d ring of cells, and scrolling thering 42

4.8.2 Scrolling the ring L 42

4.8.3 Multi-value 1d space-time patterns in TFO-mode 43

4.8.4 Noisy space-time patterns L 44

4.9 2d Space-time patterns L Lo e e 45
4.9.1 2d space-time patterns — game-of-Life o000 L. 46

4.9.2 2d Space-time patterns — binary totalistic rules 48

4.9.3 Multi-value 2d space-time patterns in TFO-mode 49

4.10 3d Space-time patterns Lo e 50
4.10.1 3d Space-time patterns — exampleso Lo 50

4.11 “Screen-saver” demoo e e e e e 51
4.12 RBN and DDN e e 52
5 Starting DDLab 55
5.1 Running in Linux-like operating systems L L. 55
5.1.1 Linux within Windows — Cygwin 56

5.1.2 Linux within Windows — VMware Player 57

5.2 DOS within Windows L e e 57
5.3 Command line argumentso 57
5.4 The UNREGISTERED banner it 58
5.5 Title bar o e e 58
5.6 Saving, Loading and Printing the DDLab screen. 59
5.6.1 Saving and Loading the screen in DDLab’s own format 59

5.6.2 Saving and Printing the screen in Linux-like systems 59

5.6.3 Printing the screen in DOS oL oL 61

5.7 DDLab version and graphicsinfo oL oo 61
5.8 The mouse pointer in DOS L 62
59 Memory (DOSonly) 62
5.9.1 Virtual Memory 62

5.10 DDLab prompts, and backtrack Lo oo 63
5.10.1 Prompts: main sequence and pop-up windows 63

511 Exit DDLab e e 63
6 The first prompt in DDLab 64
6.1 TFO-mode, SEED-mode, FIELD-mode 64
6.2 The first prompto e 65
6.2.1 TFO-mode: totalistic forwards-only 65

6.2.2 FIELD, or a run requiring a SEED 65

6.2.3 Notice of the current mode L Lo 65

6.2.4 The exLimits option oL e 66

6.3 Graphics setup L e e e e e 66
6.3.1 The DDLab screen resolution, Linux-like systems 67

6.3.2 The DDLab screen resolution in DOS 67

6.3.3 White or black background oo o 68

CONTENTS

10

6.3.4 The color palette e
6.4 Changing the font size and line spacing oL
6.4.1 Font size and line spacing, Linux-like systems
6.4.2 Font size, DOS e
6.4.3 Line spacing, DOS e
6.5 Changing the flashing cursor speed
6.6 Random number seed Lo

Value-range v, and n,k limits

7.1 The value-range prompt Lo e e

7.1.1 extending krim with exLimits o o
7.2 Limits on neighborhood size, krim - - - « « « o o 0 i e

7.2.1 TFO-mode with high v,k o
7.3 Limits on network size for FIELD-mode, nrim - « - « « v v v v v v v v e e e e e
7.4 exLimits risks and insufficient memory L oL
7.5 Limits on network size — exhaustive algorithm, negnr, o . oo oL

1d network size n, or range-n

8.1 Setting range of sizes, 1do
8.2 Setting the size of one network, 1d oL oL
8.3 Network size limits L e
8.4 Computational and speed limitations for attractor basins
8.4.1 Times for basin of attraction fields
8.4.2 Examples for 1d CA e
8.4.3 Examples for RBN and DDN 0 oo
Neighborhood, k, or mixed-k
9.1 Selecting k, or a k-mix, for 1d networks oo
9.1.1 krim and minimum k& L L e e
9.2 Effective k=0« . e
9.3 Specifying the k-mix oL
9.4 Loading a k-mix fileo
9.5 Setting the k-mix by hand e
9.6 Setting a normal distribution L Lo L
9.7 Specify each k, or power-law distribution L oo
9.7.1 Specify the percentage of different & L.
9.7.2 Setting a power-law distribution of & oL oo
9.7.3 Showing the distribution oo o
9.8 Setting the k-mix at randomo
9.9 Setting a k-mix with uniform & Lo
9.10 Increasing Kpmaz - « -« « v« v e e e e e e e e e e e
9.11 Reviewing the k-mixo
9.11.1 Reviewing the k-mix in large networks L.
9.11.2 Jumping toanew cell indexo oL L
9.11.3 Saving the k-mix file o
9.12 Reviewing the k-mix within “network architecture”
The local neighborhood, and network geometry
10.1 The CA neighborhood
10.1.1 The pseudo-neighborhood, RBN and DDN
10.1.2 1d neighborhood Lo

10.1.3 2d neighborhood

Xix

68
68
68
68
68
69
69

70
70
71
71
71
73
73
73

74
74
75
7
T
78
80
81

82
82
83
83
83
84
84
84
85
85
85
86
86
86
87
87
88
88
88
88

XX

11

12

13

CONTENTS

10.1.4 3d neighborhood 92

10.2 Network geometry L 93
10.2.1 1d network indexing Lo o 94

10.2.2 2d network indexingo 94

10.2.3 3d network indexing oL L L 95
Setting the wiring, quick settings 96
11.1 The first wiring prompt L e 96
11.2 Local 1d wiring o 96
11.3 Special Wiring o e e e e e e e e e 96
11.4 Loading the wiring scheme L L Lo 97
11.5 Random 1d wiring e 97
11.6 2d or 3d wiring oL e e e e 97
11.6.1 Setting 2d and 3d network size — SEED/TFO-mode 97

11.6.2 Setting 2d and 3d network size — FIELD-mode 98

11.7 Set k, or k-mix L e 99
11.8 Reviewing wiring, after quick settings oL oL 99
Setting special wiring 100
12.1 Setting up the network geometry L oL 100
12.2 Hypercube wiring L e 101
12.2.1 degrading the hypercube Lo L 101

12.3 1d, 2d and 3d special wiring L L Lo 102
12.3.1 Random 2d and 3d 102

12.4 Special wiring, local L 103
12.4.1 Local 1d treated asrandom L L Lo 103

12.4.2 Local 2d and 3d 103

12.5 Special wiring, random L e e e e e 103
12.5.1 Applying wiring biases to parts of the network 104

12.5.2 Confining random wiring to aset zone 104

12.5.3 Setting local wiring as random Lo 104

12.5.4 Release wires from zone Lo 105

12.5.5 Suppress periodic boundary conditions oL 105

12.5.6 Self-wiring 105

12.5.7 Distinct wiring L L 106

12.5.8 Suppress links to3d layers oo 106

12.5.9 Force a direct link toa 3d layero oL 106
12.5.10 Force random links to specific 3d layers 106
12.5.11 Same random wiring everywhere oL oL 107

12.6 Wiring by hand 0oL 107
12.7 Reviewing wiring L e 108
Rule types 109
13.1 Selecting the rule type L 109
13.1.1 Select full rule-tables, rcode Lo 109

13.1.2 Select kcode or tcode in TFO-mode 110

13.2 Rule types and combinationso Lo oL 110
13.2.1 Rule-table size implications L oo 111

13.3 Binary full rule-table —rcodeo 111
13.3.1 The binary neighborhood matrix 112

13.4 Binary totalistic rules 113

CONTENTS

14

15

13.5

13.6

13.7
13.8

Multi-value full rule-table — rcode
13.5.1 The multi-value neighborhood matrix
Multi-value totalistic rules, tcode and kcode L.
13.6.1 k-totalistic rules - kcode
13.6.2 kcode v=3 matrix
13.6.3 t-totalistic rules - tcode
Outer-totalistic rules e
Reaction-Diffusion dynamics L e
13.8.1 Reaction-Diffusion from outer-kcode
13.8.2 Reaction-Diffusion from a full rule-table — rcode
13.8.3 Selecting the threshold interval

Rulemix options

14.1

14.2

14.3
14.4

14.5
14.6

14.7
14.8
14.9
14.10
14.11
14.12

Single rule or rulemix, and other options
14.1.1 Summary of rulemix and other options o000
14.1.2 Density-bias (A-parameter) Lo
Outer-totalistic kcode or tcodeo
14.2.1 Setting reaction-diffusion by outer-kcodeo 0000
14.2.2 The game-of-Life and other Life-like rules by outer-kcode
Setting the neighborhood, k=0
Methods for setting the rulemix or rule-subset
14.4.1 Setting a rulemix directly oo
14.4.2 Setting a rulemix indirectly - specify a rule-subset

14.4.2.1 Setting a rulemix indirectly - apply the rule-subset.
14.4.3 A rulemix with justonerule. oL oo
Rulemix - randomo e
Rulemix by hando
14.6.1 By hand reminder e
14.6.2 By hand single rule prompt Lo
14.6.3 By hand options L
14.6.4 Change the selection method or ruleindex
14.6.5 Complete the rulemix automatically
14.6.6 Copy rules automatically for a k-mixo
14.6.7 Mixed k where all k’s (and rules) are the same
Rulemix - majority
Rulemix - majority with shifted uniform outputs
Rulemix for large networks, or large k e
The all Os output o e
Amending the neighborhood matrix Lo
List Post functions L e
14.12.1 Imitial Post-function prompt oL oo
14.12.2 Restrict Post-functions Lo
14.12.3 Set Post-function sample size L L oo
14.12.4 Final Post-function prompt L oL

Setting Canalyzation in a random rcode-mix

15.1

15.2

Selecting Canalyzing L
15.1.1 Selecting canalyzing from the rcode-mix
15.1.2 Selecting canalyzing from wiring graphic — transform rule.
15.1.3 Selecting canalyzing from the Derrida plot
The first canalyzing prompt e e

xxi

113
114
114
115
116
116
117
117
118
119
119

120
120
121
121
122
122
122
124
124
125
125
126
126
126
127
127
128
128
128
129
129
129
130
130
131
131
131
132
132
133
133
133

xxii CONTENTS
15.3 Canalyzing percentage or number oL 0 Lo oL 135
15.4 Canalyzing - homogeneous-k L L L 136
15.5 Canalyzing - mixed-k L 137

15.5.1 Canalyzing for the whole network - mixed-k 138
15.5.2 Canalyzing for a particular k in a mixed-k network 139
15.6 Canalyzing for large networks, or large k Lo 140

16 Setting a singe rule 141

16.1 The first single rule prompt Lo 141
16.1.1 Single rcode prompt examples oL 141

16.1.2 TFO-mode single rule prompt examples 142

16.2 Methods for setting arule L Lo 142
16.3 Setting the rule at random Lo 143
16.3.1 Random rule density-bias (A parameter) 144

16.3.2 Rule value-bias L 145

16.3.3 Random rule parameterso e 146

16.4 Setting the rule as bits or values L o 147
16.4.1 Rules: bits/values reminder window 147

16.4.2 Rule: bits/values current settings inset 149

16.4.3 Rules: setting bits/values with the keyboard and mouse 149

16.4.4 Rules: save as 1d seed or PostScript 0oL 150

16.4.5 Rules: PostScript prompt 151

16.5 Setting the rule in hex L 152
16.6 Setting the rule in decimal00 o Lo 152
16.7 Setting a majority rule 153
16.8 Majority with shifted uniform outputs L Lo oL 155
16.9 Setting Altenberg rules L 155
16.10 The game-of-Life and other Life-like rules — rcode 156
16.10.1 Setting Life-like rules — rcode Lo oo 157
16.10.2 Setting Isotropic ruleso o 158
16.10.3 Hensel notation for Golly o o 160
16.10.3.1 Saving/Loading rcode in the Hensel notation 162

16.11 Setting a chain-rule e 163
16.12 Setting reaction-diffusion — rcode L Lo oL 164
16.13 Repeating the last ruleo L 165
16.14 Loading a singleruleo 165
16.15 Automatic saving of last rule oL oL 165
16.16 Single rule file encodingo 165
16.17 Create a similar kcode with increased & L Lo L 166
16.18 Show the rule in the terminal Lo 167
16.18.1 Immediate rule data 167
16.18.2 Immediate rule data for a rulemix by hand 167
16.18.3 Rule data in more detail — vertical layout 000 168
16.18.4 Additional rule data options for kcode oo 168
16.18.5 Swapping kcode values L Lo 169

16.19 The rule window oL 169
16.19.1 Decoding the rule window Lo 170

16.20 Complementary values o e e e e e e e 171
16.21 Transforming the singlerule00 o oo 171
16.22 Saving/Loading a rule as an ASCIL stringo vt 172

16.22.1 ASCII rule encoding i i 172

CONTENTS xxiil

17 Reviewing network architecture 173
17.1 The network architecture prompt L L Lo 173
17.2 The wiring matrix L L e 175

17.2.1 Viewing the wiring matrix and creating vector PostScript 176
17.2.2 Amending the matrix L 176
17.3 The wiring graphic L e 177
17.4 The wiring graphic reminder L Lo 178
17.4.1 Wiring graphic options summary Lo 179
17.5 Wiring graphic, mouse pointer/click o e 181
17.6 Wiring graphic, 1do e 182
17.6.1 Data — 1d wiring graphic L Lo 183
17.6.2 Moving or jumping between cells, 1d o000 184
17.6.3 Defining a block, 1d Lo 184
17.6.4 Toggling the block, 1d e 186
17.6.5 Include the pseudo-neighborhood, or direct wiring only, 1d. 186
17.6.6 Recursive inputs toa cell, 1d L oL 186
17.6.7 Recursive outputs from a cell, 1d oL 186
17.6.8 Untangling the wiring L o 189
17.6.9 Deletingacell o 189
17.7 Wiring graphic, 2do 190
17.7.1 Data — 2d wiring graphic L 190
17.7.2 Moving or jumping between cells, 2do 191
17.7.3 Alternative wiring presentation, 2d oL L. 191
17.7.4 Include the pseudo-neighborhood, or direct wiring only, 2d 191
17.7.5 Defining a block, 2d e 192
17.7.6 Toggling the block, 2d o 193
17.7.7 Expand/Contract the scale, 2d L 193
17.7.8 Shifting the 2d graphicupand down 193
17.8 Wiring graphic, 3d 194
17.8.1 Data — 3d wiring graphic oo oo 194
17.8.2 Moving or jumping between cells, 3do oL 195
17.8.3 Alternative wiring presentation, 3d oL 196
17.8.4 Include the pseudo-neighborhood, or direct wiring only, 3d 196
17.8.5 Defining a block, 3d oo 196
17.8.6 Toggling the block, 3d 197
17.8.7 Toggle 3d background grid Lo 197
17.8.8 Expand/Contract the scale, 3d 198
17.8.9 Shifting the 3d graphicupand down 0. 198
17.9 Further options for the 1d, 2d and 3d wiring graphics 199
17.9.1 Decoding wiring graphic data — 1d,2dand 3d 199
17.9.2 Computing the (weighted) average A and Z parameters 200
17.9.3 Options for learning pre-images oL 200
17.9.4 Hand rewiring L e 200
17.9.5 Random rewiring e 201
17.9.6 Biased random rewiring Lo 201
17.9.7 Local 1d, 2d or 3d wiring L 202
17.9.8 Changing the neighborhood size, k& 202
1799 Killacell o 202
17.9.10 Revising and copying therule oo oo 203
17.9.11 Transforming therule oo 203

17.9.12 Filing, from the wiring graphic 203

xXxiv CONTENTS
17.9.13 The histogram of the network’s k£ and output distribution 204
17.9.14 Creating a vector PostScript file of the wiring graphic 205

18 Transforming rules 206

18.1 Options for transforming rules L. L Lo 207
18.1.1 Transform options, singlerule Lo 207

18.1.2 Transform options, mixed-ko L 207

18.1.3 Transform options, mixed rule, homogeneous-k 207

18.1.4 Transform all cells in a mixed rule network 208

18.2 Saving or printing the transformed rule Lo oL 208
18.3 Imverting the rcode 208
18.4 Solidifying the ruleo 209
18.5 Equivalence classes and rule clusters L Lo oL 209
18.5.1 Complementary transformation o000 209

18.5.2 Equivalent rcode by the Negative transformation 211

18.5.3 Equivalent rcode by the Reflection transformation 211

18.6 Setting canalyzing inputs, single rcode L L oL 211
18.6.1 Canalyzing inputs at random, single rcode 211

18.6.2 Canalyzing inputs explicitly, single rcode 211

18.7 Neutral transformations of the neighborhood k£ 212
18.7.1 Equivalent rules with greater & oo oo 212

18.7.2 Reducing kmaesz to the maximum k in the network 212

18.7.3 Effective k.o 213

18.7.4 Reverse engineering - loading an exhaustivemap 213

19 File/print network architecture 214
19.1 Network filing options L 214
19.2 Wiring/rulemix filenames 215
19.3 Wiring/rulemix encoding e e 215
19.3.1 Mixed-k encoding 216

19.4 Loading networks and sub-networks Lo Lo oo 217
19.4.1 loading networks — compatibilityo o000 217
19.4.1.1 Compatibility with v o 217

19.4.1.2 Compatibility with & 218

19.4.1.3 Compatibility withn 218

19.4.1.4 Compatibility with edge sizes and dimensions 218

19.4.2 Loading a complicated network into a CA and vice versa. 219

19.4.3 Loading sub-networks in a set position oL 220

19.4.4 Loading k-mix networks oo oo 221

19.5 Saving just the k-mixo 222
19.6 Printing network data to the terminal or file 222
20 The network-graph, and attractor jump-graph 225
20.1 Unravelling the jump-graph and the network-graph 225
20.2 The network-graph L 227
20.2.1 The network-graph reminder o o 227

20.3 The jump-graph of the basin of attraction field 228
20.3.1 Selecting the jump-graph oL 228

20.3.2 The jump-graph reminder Lo Lo 229

20.4 Initial graph options oL Lo 231
20.5 Dragging nodes or fragments Lo e e 233

CONTENTS

20.6

20.7

20.8
20.9
20.10
20.11
20.12

20.13

21.1

21.2
21.3

21.4

21.5
21.6
21.7

21.8
21.9
21.10

21.11

20.5.1 Thedrag reminder
20.5.2 Drag graph options L L
20.5.3 Defining a block
Probabilistic “ant” Lo e
20.6.1 Show ant hits L
Redraw basins at jump-graph nodes L Lo
20.7.1 PostScript of jump-graph basins L oo
PostScript of the network-graph or jump-graph
Graph layout file e
Revise settings e
Unreachable nodes L L e
The adjacency-matrix and jump-table oo
20.12.1 Printing and scanning tables 0oL oL
Space-time patterns within the network-graph
21 The Seed or initial state
The seed prompt L e e
Methods for setting a seed L
Setting the seed at random L Lo
21.3.1 Seed at random — further options
21.3.2 Non-zero seed density-bias oL
21.3.3 Seed or block value-biaso
Setting the seed as bits or values L Lo
21.4.1 2d patch options e
21.4.2 Seed: bits/values reminder window L
21.4.3 Seed: bits/values options summary o
21.4.4 Seed: bits/values current settings inset L.
21.4.5 Seed: setting bits/values with the keyboard and mouse
21.4.6 setting bits/values: 1d segments o
21.4.7 setting bits/values: 1d shownas2d
21.4.8 Setting bits/values: filing and PostScript
21.4.9 Setting bits/values: saving a patch L oL
21.4.10 Setting bits/values: PostScript prompt Lo
21.4.11 Setting bits/values: PostScript 3d image L.
Setting the seed in hex oL
Setting the seed in decimal
Loading a seed, and loading constraints
21.7.1 loading a seed — all parameters equal
21.7.2 loading a seed — unequal value-ranges L Lo L.
21.7.3 loading a seed that fits within the base
21.7.4 loading a seed that does not fit within the base, 2d and 3d.
21.7.5 loading a seed that does not fit within the base, 1d
Saving a seed e e
Seed file encoding L
Saving/Loading a seed as an ASCII string,
21.10.1 ASCII seed encoding o o o i e
Saving/Loading a seed in the Golly file format
21.11.1 The Golly file prompt

22 The Derrida plot
Selecting the Derrida plot e

22.1

XXV

234
236
238
238
239
240
242
243
243
243
244
245
246
246

248
248
250
251
252
253
254
255
256
256
257
260
260
261
261
261
263
264
265
266
267
268
268
268
268
269
270
271
271
272
273
273
274

275

XXVi

23

24

22.2

22.3

224
22.5

22.6
22.7

Derrida plot options
22.2.1 Derrida plot parameters
Data within the Derrida plot
22.3.1 Network data
22.3.2 Derrida data
Interrupting the Derrida plot

Completing the Derrida plot

22.5.1
22.5.2
The Derrida coefficient

Completing the Derrida plot parameters

Automatic plots of CA ruleclusters.

Graphic conventions for attractor basins

23.1
23.2
23.3
23.4

Basins of Attraction — theidea

Network states, nodes

Attractor cycleso

Transient trees

23.4.1 Transient tree colors
23.4.2 Transient trees for uniform states L.
23.4.3 Subtreeonly

Output parameters for attractor basins

24.1

24.2
24.3
24.4
24.5

24.6

24.7
24.8
24.9

The first output parameter prompt for attractor basins

24.1.1 Output parameter prompt for attractor basins — options summary
PostScript of attractor basins

Activate the jump-graph e

Miscellaneous (hard to categorize) options
State-space matrix
24.5.1
24.5.2

State-space matrix — options summery

24.6.1 In-degree frequency cut-off
24.6.2 Drawing the in-degree histogram
24.6.3 In-degree data and prompts
24.6.4 in-degree window — data decode
24.6.5 in-degree window — options summery
24.6.6 In-degreelogplot L L
24.6.7 Rescaling the x/y-axis

Density classification problem — attractor basins
Screen-saver demo
G-density, Z and A

24.9.1 G-density, Z and A — options summery
24.9.2 G-density plotted against network size
24.9.3 G-density against Z and/or Aratio « « « e i
24.9.3.1 G-density for tcode, orrcode k <3
24.9.3.2 G-density for k >3 rcode
24.94 Z - Aratio PlOts . .. L
24.94.1 Z -)\ratio or Zleft - ZT'Lght
24.9.4.2 Z - Aratio OF Zieft = Zrigne for k>4 rcode
24.9.4.3 Z - Aratio OF Zieft - Zrighe for tcode
24.9.5 Proportions of canalyzing inputs and A\rqtio-P

Data at theend of each plot,

Toggle the matrix on-the-fly
In-degree frequency histogram Lo

CONTENTS

CONTENTS xxvii

24.10 “Backwards” space-time patterns oL Lo 310
24.10.1 Scroll space-time patterns Lo 310

24.11 Basin speed oL oL e e e 312
24.12 Basin on-the-fly options Lo 312
25 Layout of attractor basins 313
25.1 The layout preview L e 313
25.2 The first layout prompt oL Lo e 314
25.2.1 Reset all layout defaults L 315

25.2.2 Reset transient scale L L Lo 315

25.2.3 Mutants for single basins on one screeno 317

25.2.4 Basin scale, attractor radius L o 317

25.2.5 Basin start position L L L 317

25.2.6 Show the field as successive basinso oo 317

25.2.7 Basin spacing and stagger rowso Lo e e e e 317

25.2.8 Select minimum right border width 000000 318

25.2.9 Amend the spacing increase for arangeof n Lo 318
25.2.10 Accept or revise layout parameters oL 319

25.3 Amend the layout during pause Lo 319
25.3.1 Amend the orientation and fan angle during pause 319

25.3.2 Amend the spacing and right border during pause 319

25.3.3 Amend the next position during pauseo L. 320

25.3.4 Amend the spacing increase during pause 321

26 Display of attractor basins 322
26.1 Attractor basins with null boundary conditions L0 322
26.2 Compression of equivalent CA dynamics for periodic boundaries 323
26.2.1 Deactivate compressiono e 325

26.2.2 Pre-images of uniform states o000 0oL 325

26.2.3 Suppress copies of trees (and subtrees) Lo L. 327

26.3 Nodedisplay o . e e e 327
26.3.1 Node colors e e 329

26.3.2 Highlight attractor, or subtree root, in2d 330

26.3.3 Change the 2d node 4,5 Lo 331

26.3.4 Alter scale, divisions and dots — node as bits/values 331

26.3.5 Alter decimal or hex node scale 331

26.4 Change orientation, fan angle, edge color oo 332
26.4.1 Orientation e e e e e 332

26.4.2 Pre-image fan angle Lo L 332

26.4.3 Edgecolor e 333

26.5 Limiting backward steps Lo L 334
27 Pausing attractor basins, and data 335
27.1 Pause stages hierarchy oo 335
27.1.1 Pause after each field for a range of fields 336

27.1.2 Pause after each basin, tree, or pre-image fan 336

27.1.3 The pause prompt Lo e e e e e e e 336

27.2 Attractor basin complete — data windowo o Lo 336
27.2.1 Data on basin of attraction fields 0oL 337

27.2.2 Errors in basin of attraction fields oL oo 338

27.2.3 Dataonbasins e 338

xxviii

28

29

27.3
27.4

27.5

Mutation of attractor basins
The first mutation prompt
28.1.1 The first mutation prompt — options summary

28.1

28.2
28.3

28.4
28.5

Final
29.1
29.2
29.3

29.4

29.5

29.6

29.7

29.8

29.9

27.2.4 Data on trees
27.2.5 Data on pre-image fans
27.2.6 Data on subtrees
27.2.7 Data on subtrees from a uniform state
Print or save data
Data format
27.4.1 Network parameters data
27.4.2 Basin field data
27.4.3 Key to basin data order
27.4.4 Tree data
27.4.5 Key to tree data order
27.4.6 Single basin data
27.4.7 Subtree data

List of states

27.5.1 Just the list of states
27.5.2 The list of states with basin data
27.5.3 The list of states with basin and tree data

Mutate wiring

Special mutation options
28.3.1 Bit-flip or value-flip in sequence
Flip bits or values
No pause before next mutant

options for attractor basins
Subtree or single basin
Subtree: Run forward before running backwards
Single basin of attraction
29.3.1 Single basin history limit
29.3.2 Interrupting while looking for attractor
Final attractor basin prompt
29.4.1 Final attractor basin prompt — conditions and reminders
29.4.2 Final attractor basin prompt — options summary
Limit backward steps
29.5.1 The bare attractor — limit backward steps to zero
Viewing the partial pre-image stack
29.6.1 Partial pre-image stack, local wiring
29.6.2 Partial pre-image stack, nonlocal wiring
29.6.3 Reorder to optimize the nonlocal reverse algorithm
Exhaustive algorithm
29.7.1 Generating the exhaustive list
29.7.2 Saving the exhaustive pairs
29.7.3 Printing the exhaustive pairs in the terminal

Random map

29.8.1 Loading the random map or exhaustive pairs
29.8.2 Biasing the random map by Hamming distance
29.8.3 Random map data
Sequential updating

CONTENTS

CONTENTS

29.10

29.9.1 Random order e
29.9.2 Set specific order L
29.9.3 Listallorders e
29.9.4 List all orders — set order seed L Lo
29.9.5 Drawing the attractor basin with sequential updating
Neutral order components e e
29.10.1 Neutral subtree L
29.10.2 Neutral field o e

30 Drawing attractor basins, and changes on-the-fly

30.1
30.2

30.3
30.4
30.5

The progress bar for basin of attraction fields 0.
Attractor basins, interrupting and changing Lo oo
30.2.1 Abandoning a tree and continuing with the next tree
30.2.2 Errors in attractor basinso L oo
30.2.3 Abandon the attractor basin oo
Attractor basin options, on-the-fly oo oo
Attractor basin complete prompt L.
Further attractor basin complete options
30.5.1 Attractor basin — revising rule/s o Lo Lo
30.5.2 Attractor basin - revising the seed L L.

31 Output parameters for space-time patterns

31.1

31.2

31.3
314

31.5

31.6

The first output parameter prompt for space-time patterns
31.1.1 Output parameter prompt for space-time patterns — options summary
Miscellaneous options — space-time patterns L. L L.
31.2.1 Color cells by value or neighborhood
31.2.2 State-space matrix and return map Lo o Lo oo

31.2.2.1 State-space matrixo Lo

31.2.2.2 Return map by value L oo
31.2.3 Frozen generation size L oL e
31.2.4 Cellscale e e
31.2.5 Space-time patters in other than the native dimension
31.2.6 Scrolling 1d space-time patterns L oo
31.2.7 Pauseand step L
31.2.8 Speed of iteration
31.2.9 Glider rule order
31.2.10 Inverting the kcode in TFO-mode
Periodic or Null boundary conditions Lo
Asynchronous and noisy updating L oo
31.4.1 Probabilistic updating
31.4.2 sequential updating — space-time patterns
31.4.3 partial order updating — space-time patterns L.
Input-entropy and pattern densityo
31.5.1 Single cell input-entropy and pattern density
31.5.2 Generation size - moving window of time-steps
31.5.3 On-the-fly changes to input-entropy and pattern density
Damage, the difference between two networks oL oo oL
31.6.1 Duplicate the network and seed Lo oL
31.6.2 The Damage Histogram
31.6.3 Drawing the damage histogram L 00
31.6.4 Pausing the damage histogram oL

XXix

374
375
376
377
377
377
379
380

382
382
383
384
385
385
385
386
387
388
388

CONTENTS

XXX
31.7 Attractor histogram L L e 410
31.7.1 Density classification problem — attractor histogram 411
31.7.2 Drawing the attractor histogram 411
31.7.2.1 Histogram window information 411
31.7.3 Pausing the attractor histogram L oL 412
31.7.4 Rescaling the attractor histogram 415
31.7.5 Attractor histogram data L oL 415
31.7.5.1 Attractor histogram screen data 415
31.7.5.2 Attractor histogram data decode L. 416
31.7.5.3 Histogram data for density rules 416
31.7.6 Print/Save attractor state data L L 416
31.7.7 Sorting the attractor histogram L L L oL 417
31.7.8 Attractor histogram jump-graph o L oo 419
31.8 Skeleton (fuzzy attractor) histogram L0 oL 420
31.8.1 Skeleton parameters prompto 420
31.8.2 Drawing the Skeleton histogram L oo 422
31.8.3 Pausing the skeleton histogram 0oL 423
31.8.4 Skeleton histogram data L Lo 424
31.8.4.1 Skeleton histogram data decode 425
31.8.5 Sorting the skeleton histogram L0000 425
32 Drawing space-time patterns, and changes on-the-fly 426
32.1 On-the-fly key index 0 e 426
32.2 On-the-fly prompts — bottom title bar o000 428
32.3 Summary of on-the-fly options for space-time patterns 428
32.4 Updating (10g) . . . v v v v i i 434
32.4.1 U/Y.sync-seq/sync-porder 434
32.4.2 {/}..prob:updatel-0.95/output1-0.95 434
32.5 Changerule oL 434
32.5.1 rR/K/k.rnd/vrnd/tcode/kcode Lo 434
32.5.2 [/].dso/togflip(on)o 435
32.5.3 O/A/M/C..Orig/Alt/Maj/Chain 435
32.5.4 1/2.rnd bitflip/restoreo 437
32.5.5 Z/z.force Z higher/lower 437
32.5.6 b/B.flip all0s->0/allVs->Vo 437
32.5.7 8.rulemix-single 438
32.6 Rulesamples L 438
32.6.1 g.load glider rule (rnd) 438
32.6.1.1 creating a glider rule collection oL, 439
32.6.2 V.load, jmp, scan Lo e e e e 439
32.6.3 w/:/9.mext/prev/rnd 441
32.6.4 uBE.createsample 441
32.7 Change wiring L 441
3271 m/W.move 1 wires L 441
32.7.2 T.local-monlocal L 442
3273 T.rernd(off) ... 443
3274 |.periodic-null ..o 443
32.8 Change seed/size 443
32.8.1 4/v.rndseed/block 443
32.8.2 1/L.rnd value/block Lo 443

32.8.3 o/~.original/last 443

CONTENTS xxxi

32.9

32.10

32.11

32.12

32.13

32.8.4 5/6.singleton pos/neg 444
32.8.5 5/6.singleton zero/rnd 444
32.8.6 N/n..inc/decrease 1 cell 444
Presentationo 445
32.9.1 x.togslant(off)o 445
32.9.2 x.toghex(off) 445
32.9.3 i/ltogdivs(off) 445
3294 @Q@.togballsoutline 446
32.9.5 3/./A.incolor/dot/bground oo 447
32.9.6 d/-..colorsiswap/black-blue Lo 447
32.9.7 d/-..tog shuffle colors/restore oL 447
32.9.8 S..tog space-time display Lo 447
32.9.9 P.togskip steps=1 (off) L 447
32.9.10 S$.togsound e 448
32.9.11 e/c.expand/contr scale Lo Lo 448
1d 2d 3d . . . o 449
32.10.1 T.tog 1d-2d-3d 449
32.10.2 t.tog 2d-2d+time Lo e 450
32.10.3 Ltogballso oo 450
32104 PoPlANe .« o oo 450
32.10.56 J.invisible 450
Frozen/Filter 451
32.11.1 h.nor-dy-fl1-f2-bin oL oL 454
32.11.2 H.fgens (now 20)/bins(10) o oo 454
32.11.3 frozen generationsot e e e e e e 454
32.11.4 frequency bins 455
32.11.5 f/F/a.filter/undo/all 456
Analysis e 458
32.12.1 0/%..tog lookuphist:1-2/1-time L 458
32.12.2)/(.Jookhist: amplify/restore Lo L 458
32.12.3 _/&..lookhist: shrink/inc&colo 458
32.12.4 s..tog entropy-density Lo 460
32.12.5 j.togent-in-both L 461
32.12.6 u..tog entropy/density plot L L 461

32.12.6.1 entropy/density plot — linked history 463

32.12.6.2 entropy/density plot — output/save data 463
32.12.7 ;.density return map Lo L oL L e e 464

32.12.7.1 density return map — linked history 465

32.12.7.2 density return map — saving thedata 465
32.12.8 G.a~gens (now 10)o 465
32.12.9 D.return map by valueo 465
32.12.10 y..state-space oL e 466
32.12.11 =..tog diff (keep damage) 466
Miscellaneous 466
32.13.1 X.index display 466
32.13.2 *.togend pause (ON) 466
32.13.3 F.togscrollingo e 466

32.13.3.1 Idscrolling Lo e 467

32.13.3.2 2d diagonal scrollingo oo 467

32.13.3.3 network-graph scrolling oL oL 467

32.13.3.4 2d+time scrolling 467

xxxii CONTENTS
32.13.4 +..tog time-step pause Lo 467
32.13.5 </>.slow/max speed 468
32.13.6 q..pauSe e e e 468

32.14 Interrupting space-time patterns oL L 468
32.15 Rule details for space-time patterns L Lo o 468
32.16 Space-time pattern interrupt/pause prompto 469
32.16.1 Revising rule/meto 470
32.16.2 Classified samples of rule-space — load/keep 471
32.16.3 Directly scanning for PostScript oo oo 471
32.16.4 Revising the seed and native PostScript L. 471
32.16.5 Space-time patterns on the network-graph L0 473
32.16.6 Fixed borders L L e 473
32.16.7 Finer control of filtering oo 473
32.16.8 Space-time — skip, pause, step and speedo L. 474
32.16.9 Miscellaneous options oL Lo e 475

32.17 Quit and further optionso 475
32.18 Directly scanning STP for vector PostScript oo 476
32.19 Network-graph layout of space-time patternso L. 478
32.19.1 On-the-fly options within the network-graph 480
32.19.2 Network-graph space-time pattern as vector PostSeript 481

33 Classifying rule-space 482
33.1 Input entropy and variability (min-max or sdev) 485
33.2 Creating a rule sample — initial prompts L L Lo 486
33.2.1 Biasingrandomrules L Lo 487

33.3 Running atest e e 487
33.3.1 Testdata e 488

33.3.2 Test options L 489

33.4 Creating an automatic rule sample oL oL Lo 489
33.5 Loading, sorting and displaying a sample L oo 491
33.6 The rule sample scatter plot L 493
33.6.1 Probing the scatter plot with the mouse, and selecting rules 493

33.6.2 Defining a scatter plot patch with the mouse or keyboard 493

33.6.3 The scatter plot as a 2d frequency histogram 495

33.7 Scanning sample space-time patternso Lo 496
33.7.1 Scanning on-the-fly L Lo 497

33.7.2 Scanning automatically in blocks of time-steps L. 498

33.7.3 Scanning 1d sampleso 498

33.74 Scanning 2d or 3d samples Lo oL 500

33.8 Listing asample e e 501
33.8.1 Selecting a rule from the listo o oo 502

33.9 Listing by plot coordinates or probing with the mouse 502
33.10 Rule sample encoding oL oL e 503
34 Learning, forgetting, and highlighting 504
34.1 Learning/forgetting methods L 504
34.1.1 Highlighting states in attractor basins 505

34.1.2 Basin layout for learning Lo 505

34.2 Selecting the learn/forget/highlight window 507
34.2.1 Selecting the wiring graphic Lo oL 508

34.2.2 Selecting the network architecture prompt 508

34.3 Select the target state oL 508

34.4 Select aspiring pre-iImage/so oo e 509

34.4.1 Oddoreven parity e e 510

34.4.2 Range of decimal equivalents L L Lo 510

34.4.3 Pre-images according to Hamming distance 510

34.4.4 List of aspiring pre-images L e 511

34.4.5 Review target state and aspiring pre-images L. 511

34.5 Learn, forget, or highlight only 511

34.5.1 1d CA — local wiring and highlighting 512

34.5.2 Nonlocal wiring — learn, forget, or highlight only 512

34.5.3 Learning/forgetting by wire moves or bit/value-flips 513

34.6 Learning/forgetting by bit/value-flips L 513

34.7 Learning/forgetting by wire-moves 514

34.8 Highlighting options L 517

34.9 Learning/forgetting/highlighting complete 517

35 Filing 518

35.1 File naming constraints in DDlabo oo oo 518

35.2 File types, default filenames, and extensions Lo 518

35.3 The filing prompt L 521

35.4 Loading constraints and warnings 522

35.5 Changing the directory L 522

35.6 Listfiles L o e e 523

36 Vector PostScript capture of DDLab output 524

36.1 Cropping and editing vector PostScript L o oo 525

36.1.1 Cropping the PostScript imageo 525

36.1.2 Amending the width of lines 525

37 Glossary 526

References 532

Index 536
List of Figures

1 The basin of attraction field of a 3-value Cellular Automaton vii

2 A single basin of attraction e xii

1.1 The basin of attraction field of a Cellular Automaton 1

1.2 Themes in DDLabo e 2

1.3 The space-time pattern of a 1d complex CA with interacting gliders 5

1.4 The basin of attraction field of a complex CA, 6

1.5 A detail of a basin of attraction L L L 6

xxxiii

XXXiV

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17

5.1
5.2

6.1

7.1

8.1
8.2
8.3
8.4
8.5
8.6
8.7

9.1
9.2
9.3
9.4

10.1

LIST OF FIGURES

Cell value color scheme L 11
2d lattice with a hex/triangular lattice 12
Drawing a 2d seed L 14
Space-time patterns of a 1d CA L 16
The basin of attraction field of a random Boolean network 17
A basin of attraction of a random Boolean network 18
Order—chaos measures for RBN o 21
1d CA space-time patterns showing ordered, complex and chaotic dynamics 22
Subtrees of ordered-complex-chaotic CA 24
2-way glider-gun, 2d space-time Lo 30
Byl's self reproducing loop L 31
A basin of attraction field oL 35
A basin of attraction field, multi-value o0 0o 35
Backwards space-time patterns L Lo Lo 36
The state-apace matrix Lo e e e 36
Basin of attraction fields for a range of network size 37
Examples of single basins L L L 38
A subtree e e 39
A 1d space-time pattern e e e e 41
A 1d CA shown as a scrolling ring of cells. 0. 43
A 1d CA and filtered Altenberg rule 44
Space-time patterns of the 2d game-of-Life 45
Space-time snapshots of the 2d game-of-Life — frozen options 46
Space-time patterns of the 2d game-of-Life scrolling diagonally 47
2d space-time patterns, v2k7 CA on a hexagonal grid 48
2d space-time patterns, v3k6 k-totalistic 2d CA oL 49
Examples of 3d v2k7 CA e 50
The screen-savero e e e e 51
Typical graphical user interface when starting DDLab 56
The main sequence of prompts L Lo 60
A very small DDLab screen in Linux L Lo 67
Value color key, v.=2t08 70
Basin of attraction fields for a range of network size 75
Single basins for a range of network size L L oo 76
Subtrees for a range of network size L o oL 76
A subtree for a 1d CA chain-rule oL 78
Basin of attraction fields for a range of network sizes, k=5 79
CA Basin of attraction field, v2k3 rcode (dec)110, n=31 79
Basin of attraction fields for a range of network sizes, RBN, v2k3 80
A normal k distributiono oL 84
A power-law k distribution oL 86
An example k-mix 87
k-mix, 1d wiring graphic, time-steps oo 88

1d neighborhood templates L Lo 90

LIST OF FIGURES XXXV

10.2
10.3
10.4
10.5
10.6
10.7
10.8

12.1
12.2
12.3
12.4
12.5
12.6

13.1
13.2
13.3
13.4

14.1
14.2
14.3
14.4
14.5

15.1
15.2
15.3
15.4

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9
16.10
16.11
16.12
16.13
16.14
16.15
16.16
16.17
16.18
16.19

17.1

2d neighborhood templates Lo 91
3d neighborhood templates and indexing 000 92
3d neighborhoods displayed in 2d Lo L o 93
1d network indexing 94
2d network indexing L Lo e e e e 94
3d network indexing L e 95
3d network indexing, i, 7, h=1 e 95
Hypercube and degraded hypercube L oo, 101
Hypercubes for m > 32 e 102
Confining 1d random wiring within a local zone 104
Confining 2d £=9 random wiring within a local zone 105
Confining 3d random wiring within a local zone 105
Setting wiring by hand on the blank wiring matrix L. 107
The binary neighborhood neighborhood matrix k=1to 9. 112
Multi-value neighborhood matrix examples 114
Reaction-diffusion dynamics, 2d L Lo 118
Reaction-diffusion dynamics, 3do oo 118
Glider guns in v=8 Life L 123
Effective neighborhood k=0 124
2d CA perturbed by a chaotic block of rules o0, 126
Shifted majority kcode-mix with random wiringo L. 130
Multi-value neighborhood matrix, part only 0. 131
Canalyzing frequency/saturation - homogeneous-k 136
Canalyzing saturation - 2d, mixed-k oL 137
Canalyzing - 2d, mixed-k, for justone ko oL 138
Canalyzing for large networks, large &o Lo 139
v8k4 kcode according to the default rule value-bias 145
Setting bits starting with all Os 147
Setting values — alternative presentations L Lo oL 148
Drawing bits or values on the rcode pattern o000 150
Setting rcode in hex L. e 152
Majority rcode v2k9 oL e 153
Majority kcode v8k6 154
Majority tcode v8KT L e e 154
Flipped v=2 majority rcode with random wiring 155
Altenberg kcode v8KT L 155
The game-of-Life rule oL 156
Fredkin’s replicatoro 156
Glider guns in v=3 Life 157
Isotropic space-time patterns L L Lo 159
Encryption with chain-rules oL 163
Encryption with chain-rules, multi-value 00000 164
Analogous kcode with increased k.o 166
Rule window examples Lo 170
Equivalent kcode - two values swapped, v3k5o 171

Wiring matrix examples Lo e e e 175

XXXVi

17.2
17.3
17.4
17.5
17.6
17.7
17.8
17.9
17.10
17.11
17.12
17.13
17.14
17.15
17.16
17.17
17.18
17.19
17.20
17.21
17.22

18.1
18.2

19.1
19.2
19.3
19.4
19.5
19.6

20.1
20.2
20.3
20.4
20.5
20.6
20.7
20.8
20.9
20.10
20.11
20.12
20.13
20.14

21.1
21.2
21.3
21.4
21.5

LIST OF FIGURES

The 1d wiring graphic, time-steps. L 177
The 1d circle wiring graphic L Lo 182
The 1d graphic, showing wiring toa block 0. 183
The 1d graphic, showing the wiring of the whole network 184
Include the pseudo-neighborhood or direct wiring, 1d 185
Recursive inputs (direct and indirect) toacell 187
Recursive outputs (direct and indirect) from a cell L0 188
Untangling the wiring Lo 189
The 2d wiring graphic, pseudo-neighborhood, square, hex, direct 190
Alternative ways of showing cell connections, 2d 191
2d block, solid alternative L L 192
2d block, alternative presentations Lo oo oo 193
2d wiring graphic of a large network o Lo 194
3d wiring graphic oL 195
Alternative ways of showing cell connections, 3d 196
3d block, solid alternative e 197
3d block, alternative presentations Lo L Lo 198
3d wiring graphic of a large network oL 199
Hand rewiring a single cell L L 201
Unbiased random wiring, 2d and 3d L Lo L oo 201
Histograms of a power-law distribution of network links 204
Transforming rcode 208
Equivalence class —rule 193 Lo 210
Loading 3d network into 1d oo 217
Loading a 3d CAinto a 2d CA 219
Loading a DDN intoa CA e 219
Loading a 2d CA into a larger 2d CA 220
Loading a small 3d DDN intoa 3d DDN oL, 221
Space-time snapshot of a 2d CA inside another 2d CA with different k£ 222
Simple network-graphs L Lo 226
Power-law network-graphs) 227
The jump-graph + basins Lo 229
Screen shot of the basin of attraction field and jump-graph 230
Dragging the jump-graph, further examples 231
Unscrambling the network-graph of a scale-free RBN 232
Dragging network-graph nodes and fragments — 1d oL, 234
Dragging network-graph nodes and fragments —2d 234
Dragging network-graph nodes and fragments —3d 235
Probabilistic ant hits L o 240
Inserting basins in the jump-graph Lo oL 241
Basins of attraction at the jump-graph nodes o0, 242
Disconnecting and isolating unreachable nodes 244
A 2d CA shown as a scrolling ring of cells. 247
Seed array indexing, 1d oL 248
Seed array indexing, 2d L. 249
Seed array indexing, 3d L 249
Setting a seed at random Lo 252

Setting the density-bias L 254

LIST OF FIGURES xxxVvil

21.6
21.7
21.8
21.9
21.10
21.11
21.12
21.13
21.14
21.15
21.16
21.17

22.1
22.2
22.3
22.4
22.5

23.1
23.2
23.3
23.4
23.5
23.6

24.1
24.2
24.3
24.4
24.5
24.6
24.7
24.8
24.9
24.10
24.11
24.12
24.13
24.14
24.15
24.16

25.1
25.2
25.3
25.4
25.5
25.6

26.1
26.2

Playing with a 2d active patch oL o 256
Divisions between cells L Lo 258
1d seed aspect ratio L. e 258
Drawing bits or valueson a 2d seed L Lo 260
Examples of PostScript seed output L 262
Symbols for PostScript seed outputo 264
3d bit/value seed 266
Loading a 2d seed into a 3d network oL 266
Setting the seed in hex 267
Loading 3d and 2d seeds that fit into a 3d base network 269
Loading seed, 3d to 2d, and 2d to smaller 2d L. 270
Loading seed, 1d to 2d and 3d 271
Derrida plots« L L 276
The Derrida coefficient L 281
Derrida plots of the elementary rules 282
Derrida plots of v2k5 totalistic rules oL L 282
Rule cluster examples 283
Basins of attraction — theidea L L 285
Point attractors (period=1) 286
The pre-image fan of a single pre-image of a point attractor 286
Attractors with period 2 Lo 286
Attractors with periods>3 L L 286
Subtrees from a root state oL 288
The state-space matrix, n=0 e 294
The state-space matrix, n=12,13 295
State-space matrix, further examples oL o 296
In-degree histogram of a basin of attraction field, n=18 297
Rescaling the in-degree histogram of a subtree 298
in-degree histogram log-log L L 300
Density classification in emergent computation Lo, 301
A subtree showing exceptions to density classification 301
Basin of attraction field of a density classification rule 302
A view of rule-space e e e 303
The attractor basin window while drawing graphs 305
Plotting G-density against arangeof n Lo oL oL 305
G-density against both A\rqrio and Z . . . 0 L 0L oo 306
Aratio = Z PlOt o o o e e 307
Zieft - Jright raph . . 0 000 308
“Backwards” space-time patterns Lo 311
Layout preview, single basin oL 314
Layout preview, basin field Lo o 314
The layout preview Lo 315
Resetting transient parameters oL oL Lo 316
The basin of attracion field for a range of network size 318
Amending the layout of a basin of attraction field on-the-fly 320
1d CA Basin of attraction field with null boundary conditions 323

1d RBN basin of attraction field with null boundary conditions 323

XXXViii

26.3
26.4
26.5
26.6
26.7
26.8
26.9
26.10
26.11
26.12
26.13
26.14
26.15
26.16

27.1
27.2
27.3
27.4
27.5
27.6
27.7

28.1
28.2
28.3
28.4
28.5

29.1
29.2
29.3
29.4
29.5
29.6
29.7
29.8
29.9
29.10
29.11
29.12

30.1
30.2

31.1
31.2
31.3
314
31.5
31.6
31.7

LIST OF FIGURES

Compression of equivalent dynamics L L Lo 324
Compression deactivated Lo 324
CA uniform state attractors L. Lo 325
Suppressing equivalent subtrees Lo oL 326
Alternative node display oL 327
Symmetric states only Lo L 328
Just leaf-states or exclude leaf-states L Lo L 329
Bit pattern colors of a uniform state’s pre-images 329
Highlighting all non-equivalent attractor states 330
Highlighting all attractor statesina RBN 330
Changing the orientation of attractor basins 332
Decreasing the pre-image fan-angle of a subtree 0. 333
Increasing the pre-image fan-angle of a basin of attraction 333
Alternative edge start colors Lo 334
A basin of attraction field of a CA illustrating data 337
A subtree for a CA, n=150 340
subtree=basin. Lo e 341
Prototype subtrees from a uniform state, CA,n=14. 342
A single CA basin rule 110« . . oL L 345
Detail of basin rule 110 L e e 347
Listing states of a basin of attraction field 000000 348
Mutation by one wire moveo 353
Single basin mutation by one wire-move L0000 354
32 one-bit mutant basins of attraction Lo L oo oo 355
Mutation of field by one bit-flip Lo o 356
Single basin mutation by one value-flip oL o oo 357
Basin of attraction — limiting backward steps o oL 363
Game-of-Life glider-gun attractor L L 363
X-rule glider-gun attractors, GGaand GGb Lo 364
Partial pre-image stack of a 1d local CA L o 365
Partial pre-image stack of a 1d nonlocal CA oo 367
The final partial pre-image histogram, not reordered 368
CA, DDN/RBN, and random maps v v vv v v v e e e e e e 369
Random map graphs with different Hamming bias 372
Basin of attraction field with sequential updating, 375
The rule window for sequential updating L oo, 377
Neutral subtree oL 378
The neutral field L 379
The basin of attraction field progress bar. 0L 382
Drawing a basin of attraction field L o 383
1d space-time pattern, colors by value and neighborhood 392
2d space-time pattern, colors by value and neighborhood 393
3d space-time pattern, colors by value and neighborhood 393
State space matrix L Lo L e e e e 394
Return map oL oL e 394
Probabilistic updating Lo 398

Sequential and partial order L L L 400

LIST OF FIGURES XXXIX

31.8

31.9

31.10
31.11
31.12
31.13
31.14
31.15
31.16
31.17
31.18
31.19
31.20
31.21
31.22
31.23

32.1

32.2

32.3

32.4

32.5

32.6

32.7

32.8

32.9

32.10
32.11
32.12
32.13
32.14
32.15
32.16
32.17
32.18
32.19
32.20
32.21
32.22
32.23
32.24
32.25
32.26
32.27
32.28
32.29
32.30
32.31
32.32
32.33
32.34

Pattern Density and Input-Entropy plots o oo, 402
The difference in the dynamics between two 1d CA 404
A duplicated 2d network Lo 405
A duplicated 2d seed L 405
2d “damage” e e e e 406
2d automatic statistics on damageo Lo 407
The damage histogram showing actual damage 409
The damage histogram showing damage bins 409
The attractor histogram for density classification 412
The attractor frequency histogram L Lo 413
The attractor histogram sorted by different measures 414
Transient data oL e e e 418
The attractor histogram jump-graph L L 419
The skeleton histogram L L 421
Examples of frozen skeletons L Lo 421
The skeleton frequency histogram o 423
On-the-fly key index for space-time patterns 427
Setting a random k-rcode on-the-fly o o o000 435
1d isotropic rules 436
Mutate/restore on-the-fly by a random bit/value flip 436
Info when changing Z on-the-fly oo 437
Examples of v2k5 complex space-time patterns with interacting gliders 438
Space-time 2d snapshots of complex kcodeo 439
Loading complex rules on-the-fly 0000 440
Info when loading a complex rule on-the-fly 440
Randomizing wiring by stages L Lo 442
A positive and negative singleton seed oL oL oL 444
Slanting 1d space-time patterns L. L L 445
Hex or square 2d lattice o 445
Divisions between cells L L 446
The cell outline in network-graph space-time patterns 446
Skipping time-steps L L e 448
Time-step spacing in scrolling network-graph STP 448
A 3d network shown in 2do 449
3d cells shown as balls or parallelograms 451
2d+time, 2d diagonal scrolling — toggle “balls” 451
Top-right 5-way space-time pattern info 0. 452
Alternative presentations, 2d space-time patterns 453
Gilders with time-trails L 454
2d CA frequency bins L 455
frequency bins set by hand o Lo 455
Examples of filtering space-time patterns L oL 456
Filtered lookup-frequency histogram o000 457
Filtering a complicated background domain00, 457
Filtering showing discontinuities within a chaotic domain 457
input-frequency histogram presentationo oL oo, 459
The input-frequency histogram in 3d L L oL 460
Entropy/density scatter plot 461
Entropy/density plot, and the density return map 462

Pulsing dynamics from a randomly wiring a complex rule 463

32.35
32.36
32.37
32.38
32.39

33.1
33.2
33.3
33.4
33.5
33.6
33.7
33.8
33.9
33.10
33.11
33.12
33.13
33.14
33.15
33.16
33.17
33.18

34.1
34.2
34.3
34.4
34.5
34.6
34.7

35.1

Wave-length 0L 464
Directly scanned 1d space-time patterns for vector PostScript 477
PostScript 1d space-time patterns, dots and divisions, 477
1d CA space-time patterns in network-graph layout 479
2d CA space-time patterns within the network-graph 480
A 2d histogram of an entropy-variability scatter plot oL, 482
Input-entropy variability oL Lo 483
1d v8k5 tcode sample L 484
2d histogram - other presentations Lo oo 484
1d v8k3 kcode sample 485
Running a test e 488
Creating an automatic sample L L 490
Loading, sorting and displaying a sample 0. 491
The scatter plot color scheme L 493
rule sample scatter plot 494
2d frequency histogram of the rule sample scatter plot 494
scatter plot grid and 2d histogram at a lower resolution 495
rule sample scatter plot, Z-parameter and A\-ratio. 0L, 497
On-the-fly info when scanning sample space-time patterns 498
2d v4kT kcode sampleo Lo oL 499
Scanning a 2d CA in blocks of time-steps scrolling diagonally 500
Listing the rule sample L 501
Listing by plot coordinates or probing with the mouse 503
The basin of attraction field of a RBN, before learning 505
The basin of attraction field of a RBN after learning 506
The RBN networks before and after learning 506
Nodes other than target and pre-image suppressed 507
Selecting parity 510
Highlighting states in rule 110 o o o L 515
Highlighting states in a v=4 CA 516
Listing fileso 523

List of Tables

7.1
7.2

8.1
8.2
8.3
8.4

krim for different value-range v.o L L 72
Basin of attraction field: nr;n, for different value-range v 72
Times for increasing k and n for v=2, basin of attraction fields, 1d CA. 80
Times for increasing v and n for k=3, basin of attraction fields, 1d CA. 80
Times for increasing k and n for v=2, basin of attraction fields, RBN. 81
Times for increasing v and n for k=3, basin of attraction fields, DDN. 81

x1

LIST OF TABLES xli

9.1 Effective k=0 neutral rules e 83
13.1 The size of rule-tables Kk =1to 13 e 111
13.2 The size of rule-tables 113
13.3 kcode size: for v and safe krim . . « o o o oo e 115
13.4 The size of kcode-tables 115
13.5 kcode v=3 matrix e e e e 116
13.6 tcode size: for v and KLim - - -« « o o e e e e e e 116
14.1 Post function list v2k3 L e 132
14.2 Post function list v2k5 L 132
14.3 Post function list (multi-value) v3k5 Lo L 133
16.1 The default rule value-bias e 145
16.2 Rules in decimal — rule-table size limitations 153
16.3 details of 2d isometric a rule v2k5 L 158
16.4 The Hensel matrix e e e 160
16.5 Hensel’s full matrix e 161
16.6 Details for the Sayab rule 161
16.7 Group details, Sayab rule L 162
16.8 Immediate rule data in the terminal 167
16.9 Rule details in the terminal 168
16.10 Horizontal and matrix layout options for kcode in the terminal 169
16.11 Swapped kcode — some terminal layouts oL oo 169
20.1 The RBN used in the network-graph and jump-graph examples 226
20.2 The adjacency-matrix of the network-graph Lo 245
20.3 The jump-table e 246
21.1 2d and 3d seeds in the terminal 250
21.2 The default seed value-bias e 254
21.3 Seeds in decimal — network size limitations 267
24.1 Canalyzing, A\ratio and P data, k=3 Lo 309
24.2 Canalyzing, Aratio and P data, k=4 e 309
26.1 Alternative presentations bit/value nodeso Lo oL 331
29.1 Maximum network size for the exhaustive testing algorithm 369
29.2 Printing exhaustive pairs v2 Lo L L e 370
29.3 Printing exhaustive pairs v4o Lo 370

Chapter 1

Overview

Figure 1.1: The basin of attraction field of a Cellular Automaton, v=2, k=3, n=14. There are in fact
15 basins, but equivalent basins have been suppressed leaving just the 6 prototypes. State nodes have
been omitted. This is one of the computationally universal “elementary” rules, 193 (equivalent to the
famous rule 110 [31])

1.1 Introduction

DDLab is interactive graphics software, able to construct, visualize and manipulate a hierarchy of
discrete systems: Cellular Automata, Random Boolean Networks, Discrete Dynamical Networks in
general, intermediate or hybrid networks, and random maps, and investigate and visualize many
aspects of the dynamics on the networks, both from the time-series perspective —- space-time
patterns, and from the state-space perspective — attractor basins, with interactive graphical
methods, as well as data gathering, analysis, and statistics. The term “attractor basin” refers to
any type of state transition graph: a basin of attraction field, single basin, or subtree.

Figure 1.2 gives a glimpse of the main themes in DDLab, and also the broad, slippery, and
overlapping categories of the systems available, listed below (see also figure 29.7),

e CA: Cellular Automata: a local neighborhood of k inputs (1d, 2d, 3d, with periodic or null
boundary conditions), and one rule (but possibly a mix of rules to extend the definition).

e RBN: Random Boolean Networks: non-local or (possibly biased) random wiring of k inputs
(but possibly with mixed-k,) and a mix of rules (but traditionally just one rule).

2 CHAPTER 1. OVERVIEW

random
maps DDN-RBN

o

reverse

algorithms
N
basins of

attraction

stability

classifying

convergence

29
genetic
= cor%rqg;it regulatory
ch%os y content networks
emergent addressable
structures memory

Figure 1.2: The various themes, methods, functions and applications in DDLab, loosely connected.
Top Left: The expanding hierarchy of networks: CA — RBN/DDN — within the super-set of random
maps (directed graphs with out-degree one), imposing decreasing constraints on the dynamics. There
are also multiple sub-categories, for example totalistic rules (T), hybrids (H) and networks of networks.

e DDN: Discrete Dynamical Networks: as RBN, but allowing a value-range v > 2. Binary CA
are a special case of RBN, and RBN and multi-value CA are special cases of DDN.

e Random maps: directed graphs with out-degree one, where each state in state-space is
assigned a successor. CA, RBN and DDN, which are usually sparsely connected (k < n) are
all special cases of random maps, but if fully connected (k = n), mixed rule CA and the rest
are equivalent to random maps.

DDLab and its ideas have been used widely in research and education, and have been applied
to study complexity, emergence and self-organization [34, 41, 48], in the behavior of bio-molecular
networks such as neural [36, 37] and genetic [23, 28, 19, 39] networks, and in many other disparate
areas — from physics and cosmology [11] to art [3] and creativity [2].

The results in publications [34] to [53] and in this book can be implemented with DDLab.

As well as scientific applications, DDLab’s imagery has featured in art exhibitions [42], as the
light show at events, and has been applied for generative music [6, 7, g].

1.2 Source code and platforms

The DDLab code is free software under the GNU General Public License (GPL) as published by
the Free Software Foundation. Registration is subject to a modest fee, whereby the annoying
UNREGISTERED banner can be easily removed (section 5.4).

Compiled versions of DDLab (32-bit unless specified as 64-bit) are maintained for UNIX based
(Linux-like) operating systems, and also for DOS, as follows:

e Linux/PC: compiled in Ubuntu 6.06 and Ubuntu 11.04 (64-bit).

e MAC OSX with X11: compiled in PowerPC G4 10.4.11, MackBook Pro 10.5.8, and Mountain Lion
10.8.2.

e CygwinX/Windows/PC: this is a Linux environment running in MSWindows98 and above. The
default packages plus xorg-x11-devel, xorg-x11-fnts, must be installed. The CygwinX version is
preferable to the DOS version below.

e DOS/PC: compiled with WatcomC 11. There is no native MSWindows version of DDLab at present.

The following compiled versions from 2005 are available but no longer maintained, though
up-to-date versions could be compiled from source:

e UNIX/XWindows/Sun: compiled in SunOS 5.8. The libraries 1ibX11.s0.6.1 and libsunmath.so.1
need to be accessible.

e Irix/SGI: compiled for IRIX 6.5.27 with MIPSpro C 7.4.3m and -n32.

The manual covers all maintained versions, which function in essentially the same way, though
aspects of the graphics presentation might be slightly different. The manual will refer to the
Linux/MAC/CygwinX/UNIX/Irix versions as Linux-like, as opposed to the DOS version.

DDLab is in the process of continual development. New features are being added in response
to various research needs. Some aspects of this manual may be out of date or not applicable to
particular platforms.

For information on the latest versions, downloads, installation, documentation, registration,
platforms, source code, compiling, updates, examples of output, applications, and related publica-
tions, consult one of the DDLab web sites below:

http://www.ddlab.org
http://users.sussex.ac.uk/~andywu/ddlab.html (Univ. of Sussex)
http://uncomp.uwe.ac.uk/wuensche/ddlab.html (Univ. of the West of England)

1.3 Discrete dynamical networks

A discrete dynamical network in DDLab can be imagined as a software simulation of a collection
light bulbs which transmit information to each other about their color state (on/off for binary), and
change color according to arriving signals. More abstractly, the network is made up of automatons,
elements' or “cells”, connected to each other by directed links or “wires”, where a wire has an
input and output terminal. A cell takes on a value (or color, or cell-state), and transmits this value
down its output wires. Its value is updated as a function of the values on its input wires.

Updating is usually done in parallel, synchronously, in discrete time-steps, but may also be
sequential in a predetermined or random partial order. These dynamics are deterministic, but
noise can be added.

IThe term “cell” (as in cellular automata) denotes a network “element”, and should not be confused with a
biological cell. In random Boolean network models of genetic regulatory networks, a network element represents a
gene, whereas in neural network models, a network element represents a neuron.

http://www.ddlab.org
http://users.sussex.ac.uk/~andywu/ddlab.html
http://uncomp.uwe.ac.uk/wuensche/ddlab.html

4 CHAPTER 1. OVERVIEW

This is the system in a nutshell. It remains to set up the network according to its various
parameters,

e SEED, FIELD or TFO mode: An initial choice to establish the type of system (section 6.1).
SEED-mode requires a seed (an initial state) for running forward or seeding a single basin of
attraction. FIELD-mode is for a basin of attraction field which does not require an external
seed to be set — seeds are set automatically. TFO-mode (Totalistic Forwards-Only) restricts
DDLab to running forward only from a seed according to just totalistic rules. These initial
choices effect maximum safe sizes — of the network n, and its connectivity k. An additional
choice, “exLimits” allows these safe sizes to be exceeded.

e The “value-range”, v: The range of values (cell-states) available to a cell, currently from 2 to 8
(chapter 7). In other words, the number internal states, or colors, or letters in a cell’s
“alphabet”. Prior 2003 DDLab was limited to binary or Boolean logic — just 2 values (0,1).

e The system size, n: The number of network elements. Maximum n is much less in FIELD-
mode than in SEED/TFO-modes, but the new limits (section 8.3) have increased since the
2011 edition.

e The network “geometry”: How the elements are arranged in space: in a 1d, 2d or 3d lattice
with axial dimensions i, j, h, or some other arrangement (chapter 10). The network geometry
may have real meaning (depending on the “wiring scheme” below), or it may simply allow
convenient indexing and representation.

e The connectivity: The number of input wires, k, to each cell, or the “k-mix” if k is not
homogeneous. Maximum k currently supported in DDLab (k) depends on the value-
range v, and has increased since the 2011 edition (table 7.1).

e The “wiring scheme”: defining the location of the output terminals of each cell’s input wires
— its “neighborhood” (e.g. section 17). Cellular automata have a homogeneous near-
est neighbor (or next nearest etc.) local neighborhood throughout the network, in 1d,
2d or 3d. RBN and DDN may have a completely arbitrary wiring scheme (a “pseudo-
neighborhood”).The wiring can be assigned at random, or may be biased - for example, by
confining an element’s pseudo-neighborhood close to itself, or to make scale-free networks.
The wiring can be assigned to create a hybrid of CA/DDN, or a network of sub-networks in
any combination.

The wiring scheme defines the lattice and its boundary conditions. CA wiring usually requires
“periodic boundary conditions” where lattice edges wrap around to their opposite edges.

e The “rule scheme”: the rules or logical functions in the network (e.g. section 14). Each
element applies a rule to its inputs to compute its output. Usually this is made into a
lookup-table, the “rule-table”, listing the outputs of all possible input patterns (rcode), or
some subset of input patterns (e.g. isotropic rcode, kcode or tcode). Cellular automata
have a homogeneous rule scheme, the same rule throughout the network. DDN may have a
completely arbitrary rule scheme. The rule scheme can be a CA/DDN hybrid. Rules and
rule schemes can be biased in various ways.

A special case of a rule scheme are outer-totalistic rules where the rule to be applied depends
on a cell’s current value, thus requiring v separate rules. Outer totalistic rules are used to
implement reaction-diffusion, the game-of-Life, and other Life-like rules.

DDLab is able to create and modify these networks, and graphically represent and analyze
both the networks themselves, and the local and global dynamics on the networks - the changing
patterns made by the complex web of feedback.

Acronym glossary: (chapter 37 provides a detailed glossary)

e CA: cellular automata: homogeneous wiring/rules; a local universal wiring template
(for example: nearest neighbor) and a universal rule, the same rule everywhere.

e RBN: random Boolean networks: v=2, arbitrary wiring and heterogeneous rules, Kauffman’s
famous model [22], but possibly with heterogeneous connectivity k.

e DDN: discrete dynamical networks: as RBN, but allowing for a value-range v > 2
(CA and RBN are special cases of DDN).

1.4 Space-time patterns and attractor basins

DDLab has two alternative ways of looking at network dynamics. Local dynamics, running the
network forwards for space-time patterns, and global dynamics, running the network backwards
for attractor basins — the idea is explained in figure 23.1.

Running “backwards” generates multiple predecessors rather than a trajectory of unique suc-
cessors. This procedure reconstructs the branching subtree of ancestor patterns rooted on a
particular state. States without predecessors will be disclosed, the so called “garden-of-Eden”
states, the “leaves” of the subtree. subtrees, basins of attraction (with a topology of trees rooted
on attractor cycles), or the entire basin of attraction field (referred to collectively as “attractor
basins”) can be displayed in real time as directed graphs (state transition graphs), with many
alternative presentation options, and methods for gathering/analyzing data. The attractor basins
of “random maps” may be generated, with or without some bias in the mapping.

Figure 1.3: The space-time pattern of a 1d complex CA with interacting gliders. 308 time-
steps from a random initial state. Value-range v=2, neighborhood size k=7, system size n=700,
rcode(hex)=3b46 9c0e e4f7 fa96 f93b 4d32 b09e d0e0. Cells are colored according to neighborhood
look-up instead of the value. Space is across and time down the page. The basin of attraction field for
this rule (n=16) is shown figure 1.4.

6 CHAPTER 1. OVERVIEW

see detail

Figure 1.4: The basin of attraction field of a complex v2k7 CA, n=16, defined in figure 1.3, which
shows an its space-time patterns. The 2'6 = 65536 states in state space are connected into 89 basins
of attraction. Only the 11 non-equivalent basins are shown, with symmetries characteristic of CA [34].
The period (p), percentage of state space in each basin type(s), and number of each type (¢), of
the biggest three basins (top row), are as follows: (1) p=1 s=15.7% t=1. (2) p=5 s=55.8% t=16.
(3) p=192 s=22.9% t=1. The field's G-density=0.451, \,..+;,=0.938, Z=0.578.

Figure 1.5: A detail of the 2nd basin of attraction in figure 1.4. The states are shown as 4x4
bit patterns.

1.4.1 Totalistic rules - forwards-only

DDLab can be constrained to run “forwards-only” for various types of totalistic rules which depend
on just the totals of each value or color in a neighborhood, including outer-totalistic rules and
reaction-diffusion rules (e.g. chapter 13). The rule-tables of totalistic rules (tcode and kcode) are
much smaller than full rule-tables (rcode), so larger neighborhoods are possible (ki =25, instead
of 13) at the cost of disabling basin of attraction functions.

1.5 Categorization

It can be argued that attractor basins represent the network’s “memory” by their hierarchical
categorization of state-space [35, 36]. Each basin is categorized by its attractor and each subtree
by its root. Learning/forgetting algorithms allow attaching/detaching sets of states as predecessors
of a given state by automatically mutating rules or changing connections. This allows sculpting
the basin of attraction field to approach a desired scheme of hierarchical categorization. More
generally, preliminary “inverse problem” or “reverse engineering” algorithms are included to find
the network that satisfies a given set of transitions (chapter 34).

1.6 Size limits: network n and neighborhood k&

The size limits of networks n and neighborhoods k& have increased since the 2011 edition, especially
for 64-bit systems. The usual limits are indicated below, but can be increased with a new option
for extra limits — “exLimits”. However, high values of n or k may be impractical because of time
and memory constraints.

1.6.1 Network size limits

Whereas large networks may be run forward to look at space-time patterns (SEED/TFO-modes),
or backward to look at subtrees (SEED-mode), the system size n is limited when generating the
entire basin of attraction field (FIELD-mode), given that state-space S grows exponentially with n
(S = o™, where v is the value-range). DDLab’s upper limits, 1y, (including “exLimits” — extra
limits) in FIELD-mode are listed in table 7.2. For binary systems the basic npm, is 31 (with
exLimits active 35).

In SEED/TFO-modes the basic limit of n is 8388607 (with exLimits active 4294967295). For 2d
1,7 or 3d i, j, h any sub-multiples of n apply — for a square 2896 x2896, for a cube 203 x203x203.
In practice much smaller sizes are appropriate for single basins and subtrees®. Large size may
impose unacceptable time, memory or display constraints. For RBN and DDN, running backwards
generally imposes a greater computational load than for CA.

2Networks with disordered (chaotic) dynamics, which have low in-degree or branchiness in their subtrees such as
CA chain-rules [50], allow backwards computation of much larger networks than for ordered dynamics which have
high in-degree. For CA, rules giving chaotic dynamics have a high Z parameter, rules giving ordered dynamics have
a low Z parameter [41].

8 CHAPTER 1. OVERVIEW

1.6.2 Neighborhood size limits

The maximum neighborhood size k, depending on value-range v, is set out in table 7.1. For binary
networks (v=2) the upper limits of k, kr;m, is 27, which allows a 3x3x3 neighborhood in a 3d
network. The (pseudo-)neighborhoods are predefined in chapter 10.

1.7 Parameters and options

DDLab is an applications program, it does not require writing code. The network’s parameters,
and the graphics display and presentation, can be very flexibly set, reviewed and altered from
DDLab’s graphical user interface.

Space-time patterns can be altered on-the-fly (chapter 32), including changes to rules,
connections, current state, scale, and alternative presentations highlighting different properties.
Networks of whatever dimension can be interchangeably represented in 1d, 2d, and 3d. 2d
dynamics can be shown with a time dimension (2d+4time) in isometric projections.

The network architecture, states, data, and the screen image can be saved and loaded in a
variety of tailor-made file formats (chapter 35), and most graphic output can be saved as vector
PostScript files (chapter 36).

1.8 Measures and data

Various quantitative, statistical and analytical measures and data on both forward dynamics and
attractor basin topology are available in DDLab, as well as various global parameters for rules
and network architecture. The measures and data, shown graphically as well as numerically in
most cases, include the following:

e Rule parameters: A, P, Z.
e The frequency of canalyzing inputs. This can be set to any arbitrary level.

e Various measures on forward dynamics such as pattern density, frozen islands, damage spread
between two networks, the Derrida plot, rule-table lookup frequency — which allows filtering,
input entropy and its variability — which allows ordered, complex and chaotic rules to be
classified automatically [41].

e Various global measures on the topology of attractor basins including garden-of-Eden density
and in-degree frequency.

1.9 Contents summary

Chapter 2 provides a descriptive summary of DDLab’s functions.

Chapter 3 describes how DDLab can be accessed, and information about the GPL license,
copyright and registration.

Chapter 4 describes DDLab’s graphical user interface and gives some “quick start” examples.
Its probably a good idea to try these right away to get the flavor of DDLab before reading
on, or tackling the detailed reference manual.

e Chapters 5 to 36 contain the detailed reference manual.

For further background on the attractor basins of CA, RBN, DDN, and their implications, see
publications [34]-[53], which are available at:
http://uncomp.uwe.ac.uk/wuensche/publications.html

http://uncomp.uwe.ac.uk/wuensche/publications.html

Chapter 2

Summary of DDLab functions

This chapter provides a descriptive summary of DDLab’s functions.

2.1 DDLab’s prompts

DDLab’s graphical user interface (chapter 5) allows setting, viewing and amending network
parameters, and various presentation and analysis functions, by responding to prompts or
accepting defaults. The prompts present themselves in a main sequence and also in a number
of context dependent prompt windows. You can backtrack to previous prompts, and in some
cases skip forward. A flashing cursor indicates the current prompt. “Return” (or the left
mouse button) steps forward through the prompts, “q” (or the right mouse button) backtracks,
or interrupts a running process (a run), such as space-time patterns or attractor basins being

generated. There are also on-the-fly changes that can be made during a run.

2.2 Initial choices

Some initial choices in the prompt sequence set the stage for all subsequent DDLab operations,
and cannot be amended later (or not easily) without backtracking. These include the following,

2.2.1 Totalistic rules, forwards-only, TFO-mode

There is a choice to constrain DDLab to run “forwards-only” for various types of totalistic rules and
reaction diffusion rules (TFO-mode). This reduces memory load by cutting out full rule-tables and
all attractor functions (prompts for these will not be displayed), and allows larger neighborhoods,
(kpim=27, instead of 13). Choosing TFO-mode can only be made at the first prompt (chapter 6).

2.2.2 Basin field or initial state

If DDLab is not constrained in TFO-mode there is a further choice, to set either,

FIELD-mode — for the basin of attraction field, which does not require a seed (initial state), or
SEED-mode — for anything else (which does require a seed) — space-time patterns, a single basin
of attraction, or a subtree. This choice can be amended at a later stage, in section 30.4.

10

11

2.2.3 Exceeding normal limits of n and k

A new initial option since the 2011 edition “exLimits” allows exceeding the usual limits of system
size n and neighborhood size k, but with a warning that RAM may be exceeded (section 6.2.4).

2.3 Setting the value-range

Figure 2.1: The cell value color key window (for
cell valne-range = 8 a black background, v=8) that appears when the

.g. o L:‘ SD l,j 1|:| DD value-range is selected. The values themselves are
= indexed from 7 to 0. See figure 7.1 for all color keys.

color key:
cellstate: 7 6 3

The value-range v can be set from 2 to 8. If v=2 DDLab behaves as in the old binary version.
Note that as v is increased, kp,;,, will decrease (section 2.5), depending on whether TFO-mode was
set in section 2.2.1. The selection of the value-range can only be made at this early stage in the
program.

2.4 Setting the network size

The network size n for 1d is set early on in the prompt sequence, but this is superseded if a 2d (4, 7)
or 3d (i, j, h) network is selected in a subsequent prompt window. Although the size of n for 1d can
be increased or decreased by one cell on-the-fly when drawing space-time patterns (section 32.8.6),
in general the network size can only be changed at these early prompts.

For space-time patterns, the upper limit of network size np;,,=8388607 (with exLimits active
4294967295). For 2d i, j or 3d i, j, h any sub-multiples of n apply — this allows a square 2896 x 2896,
and a cube 203x203x203. This limit also applies for single basins and subtrees, though in practice
much smaller sizes are appropriate, except when generating subtees for maximally chaotic CA
chain-rules (section 16.11).

For basin of attraction fields, however, the upper limit of network size, nr;,, is much smaller,
and depends on the value-range v as set out in section 7.3.

2.5 The neighborhood k or k-mix

The size of the neighborhood k, the number of inputs each cell receives, can vary from 0 to
krim, which depends on the value-range v, and also on whether or not DDLab was constrained
to run forwards-only for totalistic rules (TFO-mode, section 2.2.1). For example, for v=8 and
unconstrained DDLab, kr;,,=4 to handle the large lookup-table whereas in TFO-mode k;,=11.
krim for increasing value-range v, for both cases, is set out in section 7.2.

k can be homogeneous, or there can be a mix of k-values in the network. The k-mix may be set
and modified in a variety of ways, including defining the proportions of different £’s to be allocated
at random in the network, or a “scale-free” distribution, A k-mix may be saved/loaded from a file,
but is also implicit in the wiring scheme (section 2.6).

12 CHAPTER 2. SUMMARY OF DDLAB FUNCTIONS

2.6 Wiring

The network’s wiring scheme (i.e. its connections) has predefined neigborhood templates for local
CA (for 1d, 2d and 3d) for neighorhood size, k=1 to kp;m (chapter 10). The 3d templates define
a cuboid lattice with periodic boundary conditions. In 2d, the templates define a toroidal lattice
which can be either square, hexagonal or new hex/triangular lattice for k3 or k4 (figure 2.2). The
square lattice includes the 5-cell von Neumann neighborhood and the 9-cell Moore neighborhood .
Wiring can also be set at random (nonlocal wiring), with a wide variety of constraints and biases, or
by hand (chapter 12). The predefined templates in this case act as pseudo-neighborhoods to which
the rule is applied. A wiring scheme can be set and amended just for a predefined sub-network,
which can may be saved/loaded (chapter 19).

Nonlocal wiring can be constrained in various ways (section 12.5) including confinement within
a local zone with a set diameter in 1d, 2d and 3d. Part of the network only can be designated to
accept a particular type of wiring scheme, for example rows in 2d and layers in 3d, and the wiring
can be biased to connect designated rows or layers.

The network parameters can be displayed and amended in a 1d, 2d or 3d graphic format, in
a “spread sheet” (chapter 17), or as a network-graph which can be rearranged in various ways,
including dragging nodes with the mouse (chapter 20).

Figure 2.2: New 2d hex/triangular neighborhood templates are available for k3 and k4 neighborhoods,
which permit investigating the dynamics on these simpler lattices, with many instances of complexity.
The example shown is a snapshot of v3k4 kcode 22945900 from a random initial state (88x88) —
growing and stable structures emerge which act as glider-guns. The inset shows the k4 hex/triangular
neighborhood template from figure 10.2.

13

2.7 Null boundary conditions

By default, a network’s neighborhood (or pseudo-neighborhood) is assigned with periodic boundary
conditions (PBC), where lattice edges (and wiring inputs) wrap around to their opposite edges.
This makes a ring in 1d, a torus in 2d, and a 3-torus in 3d.

New options (sections 26.1, 31.3, 32.7.4) allow null boundary conditions (NBC), where inputs
beyond the network’s edges are held at a constant value of zero. NBC are of interest in pattern
recognition, and other applications where the system is grounded or quenched, or bounded by an
edge, skin or membrane. As for PBC, NBC and their dynamics are interesting as mathemati-
cal/dynamical systems in their own right.

All DDLab functions and options for computation, display and analysis can now also be applied
to NBC systems, multi-value as well as binary. This includes CA in various dimensions, but also
random Boolian networks (RBN) and discrete dynamical networks (DDN), because irrespective
of the wiring scheme, for NBC any part of the pseudo-neighborhood that extends beyond the
network’s edges is made to take zero as its input.

NBC space-time patterns (running forward) apply to 1d, 2d and 3d networks (section 31.3) —
NBC and PBC can be toggled one on-the-fly (section 32.7.4). All (forward) functions and methods
apply — such as the look-up entropy, filtering, damage, and attractor histograms.

NBC basins of attraction (running backward) apply to 1d networks by means of three com-
pletely different reverse algorithms, where the original PBC algorithms have been modified for
NBC: (1) for CA, (2) for RBN/DDN as well as CA, and (3) the exhaustive reverse algorithm for
any of the above, thus providing a reality check of results. All (backward) methods and functions
for basin of attraction fields, single basins and subtrees apply (section 26.1).

2.8 Rules

The most general update logic or rule is expressed as a full rule-table (lookup-table), referred to as
“rcode”, but there are important subsets of the general case: the more physics-like isotropic rcode
where rotated/reflected neighborhoods have the same output (secton 16.10.2), and two types of
totalistic rules, “kcode” and “tcode” (chapter 13). The simplest, tcode, depends on the sum of
values in the neighborhood; kcode, necessarily isotropic, depends on the frequency of each value
(color) in the neighborhood. If k=2, tcode and kcode are identical. Both types of totalistic rules
can be made into outer-totalistic rules (also called semi-totalistic), where a different rule applies
for each value of the central cell — the game-of-life is one such rule. Outer-totalistic rules also
allow implementation of reaction-diffusion rules or excitable media [17].

As mentioned in section 2.2.1 DDLab can be constrained to run “forwards-only” for these
various types of totalistic rules (TFO-mode), which allows greater [v, k] networks than for rcode.
Transformations and mutations would then apply to just the restricted rule-table, kcode or tcode.

If DDLab remains unconstrained, tcode and kcode (but not outer-totalistic rules) can still be
selected, but they will be transformed into the full rcode rule-table, which allows attractor basins.
Transformations and mutations will apply to the rcode. Within rcode there are also subsets of rules
that can be automatically selected at random, including isotropic rules, majority rules, maximally
chaotic chain-rules, Altenberg rules, and “game-of-Life” rules.

A network may have one homogeneous rule as for CA (chapter 16), or a rulemix as for RBN and
DDN (chapter 14). The rulemix can be confined to a subset of pre-selected rules. Rules may be

14 CHAPTER 2. SUMMARY OF DDLAB FUNCTIONS

set and modified in a wide variety of ways, in decimal, hex, as a rule-table bit pattern, at random
or loaded from a file. A rule scheme can be set and amended just for a predefined sub-network
within the network, and can be saved/loaded (chapter 19).

Rules may be changed into their equivalents (by reflection and negative transformations), and
transformed into equivalent rules with larger or smaller neighborhoods (chapter 18). Rules trans-
formed to larger neighborhoods are useful to achieve finer mutations. Rule parameters A\ and Z,
and the frequency of canalyzing inputs in a network can be set to any arbitrary level (chapter 15).

2.9 Initial network state, seed

Figure 2.3: Drawing a 2d seed “portrait”, 88 x 88, v=8, with the mouse and keyboard, shown top-left.
The seed was then transformed by applying a CA majority rule (v8k4) for three time-steps.

An initial network state (a seed, chapter 21) is required to run a network forward and generate
space-time patterns. A seed is also required to generate a single basin, by first running forward
to find the attractor, then backward from each attractor state. A seed is required to generate a

15

subtree, by simply running backwards from the seed. However, for most CA/RBN/DDN, most
states in state-space have no predecessors (they are the leaves of a subtree, “garden-of-Eden”
states), so from a random seed its usually necessary to run forwards by a few steps to penetrate
the subtree before running backwards — this option provided is (section 29.2). A basin of attraction
field does not require setting a seed, because appropriate seeds are automatically provided.

As in setting a rule, there are a wide variety of methods for defining the seed (chapter 21),
in decimal or hex, as a bit pattern in 1d, 2d or 3d, or at random with various constraints or
biases. The bit pattern method is a mini paint program, using the mouse and keyboard to draw
colors. Figure 2.3 shows the method applied to draw a portrait, which is then transformed by
applying a CA rule for three time-steps. When loading, a seed-file can differ in value-range, size,
and dimension from the base network (section 21.7).

2.10 Networks of sub-networks

Its possible to create a system of independent or weakly coupled sub-networks within the base
network, either directly, or by saving smaller networks to a file, then loading them at appropriate
positions in the base network (section 19.4). Thus a 2d network can be tiled with sub-networks,
and 1d, 2d or 3d sub-networks can be inserted into a 3d base network.

The parameters of the sub-networks can be different from the base network, provided the base
network is set up appropriately to accommodate the sub-network. For example, to load an DDN
into a CA, the CA may need be set up as if it were an DDN. To load a mixed-k sub-network into
single-k base network, k in the base network needs to be at least as big as the biggest k in the
sub-network. Options are available to easily set up networks in this way. Once loaded, the wiring
can be fine-tuned to interconnect the sub-networks.

A network can be automatically duplicated to create a total network made up of two identical
sub-networks. This is useful to see the difference pattern (or damage spread) between two networks
from similar initial states (section 31.6).

2.11 Presentation options

Many options are provided for the presentation of attractor basins and space-time patterns.
Again, many of these settings can be changed “on-the-fly”.

2.11.1 Space-time patterns
chapters 31 and 32

A cell in a space-time pattern is colored according to its value, or alternatively according to a
predefined color depending on its neighborhood at the previous time step, the entry in the rule-
table that determined the cell’s value (figure 2.4). Space-time patterns can be filtered to suppress
cells that updated according to the most frequently occurring neighborhoods, and the presentation
can be set to highlight cells that have not changed in the previous = generations, where x can be set
to any value — these function are able to expose “gliders” and other structures (section 32.11). The
emergence of such frozen elements is associated with “canalyzing inputs”, and underlies Kauffman’s
RBN model of gene regulatory networks [23, 19].

1d space-time patterns are usual presented as successive time-steps scrolling vertically. 2d

16 CHAPTER 2. SUMMARY OF DDLAB FUNCTIONS

+— space —»

time

Figure 2.4: Space-time patterns of a 1d CA, v2k3, n=>51, rcode (dec)90. 24 time-steps from an initial
state with a single central 1. Two alternative presentations are shown. Left: cells by value.
Right: cells colored according to their look-up neighborhood.

networks are presented as a “movie” of successive time-steps, but can also be displayed with a time
dimension (2d+time) where successive time-steps scroll either vertically or diagonally, in isometric
projections. 2d networks can be toggled between square and hexagonal layout. 3d networks are
presented as a “movie” within a 3d “cage”. The presentation of space-time patterns can be switched
“on the fly” between 1d, 2d, 2d-+time, and 3d, irrespective of their native dimensions. DDLab
automatically unravels or bundles up the dimensions. There are many other on-the-fly options,
including changing the scale of space-time patterns, changing the seed, rule/s, wiring, and the size
of 1d networks (chapter 32).

Concurrently with these standard presentations, space-time patterns can be displayed in a
separate window according to the network-graph layout. This can be rearranged in many ways,
including various default layouts (section 32.19). For example a 1d space-time pattern can be
shown in a circular layout which can also be scrolled (i.e. figure 4.9).

2.11.2 Attractor basins
chapters 2/ to 30

Options for attractor basins allow the selection of the basin of attraction field, a single basin
(from a selected seed), or a subtree (also from a seed). Because a random seed is likely to be a
garden-of-Eden state, to generate subtrees an option is offered to run the network forward a given
number of steps to a new seed before running backward. This guarantees a subtree with at least
that number of levels.

Options (and defaults) are provided for the layout of attractor basins, their size, position,
spacing, and type of node display (as a spot, in decimal, hex or a 1d or 2d bit pattern, or none).
Local 1d and 2d CA produce attractor basins where subtrees and basins are equivalent by rotational
symmetry. This allows “compression” of basins (by default) into non-equivalent prototypes, though
compression can be turned off. Attractor basins are generated for a given system size, or for a range
of sizes. As attractor basins are generating, the reverse space-time pattern can be simultaneously
displayed.

An attractor basin run can be set to pause to see data on each transient tree, each basin, or
each field. Any combination of this data, including the complete list of states in basins and trees,
can be saved to a file (chapter 27). Normally a run will pause before the next “mutant” attractor
basin, but this pause may be turned off to create a continuous demo of new attractor basins. A
“screen-saver” demo option shows new basins continually growing at random positions (figure 4.17,
section 24.8).

Figure 2.5: The basin of attraction field of a
random Boolean network, v2k3, n=13, (also shown
in the jump-graph, Figure 20.3). The 2% = 8192
states in state space are organized into 15 basins,
with attractor periods ranging between 1 and 7.
The number of states in each basin is: 68, 984,
784, 1300, 264, 76, 316, 120, 64, 120, 256, 2724,
604, 84, 428. figure 2.6 shows the arrowed basin in
more detail. Right: the network’s architecture, its
wiring/rule scheme (n13RBN.wrs — section 3.6).

2.11.3 Interrupting a run

this basin shown
in more detail in
figure 2.6

17

cell wiring rule
12 10,1,7 86
11 6,2,9 4
10 | 10,10,12 | 196
9 2,10,4 52
8 5,6,8 234
7 12,5,12 100
6 1,9,0 6
5 5,7,5 100
4 4,117 6
3 8,12,12 94
2 11,6,12 74
1 6,5,9 214
0 12,9,6 188

At any time, a space-time pattern or attractor basin run can be interrupted to pause, save or print
the screen image, change various parameters, or backtrack through options (chapters 32 and 30).

2.12 Graphics

In Linux-like versions, the DDLab screen starts up at 925x694 or a smaller size automatically
set to comfortably fit on the monitor. This can be resized, moved and iconized in the usual way.
In DOS the graphics will start up at a resolution of 640x480 (VGA) but can be reset to higher
resolutions, or initially with a program parameter. The default background color is black, but can
be reset to white either from within the program or with a program parameter. The text size and

spacing is set automatically according to the screen resolution, but can be resized.

18

5 nnt\"."”
garden-of-Eden st{es' }‘!’ﬁ!KI'I-.' Q wA.
or leaves of subtrees

CHAPTER 2. SUMMARY OF DDLAB FUNCTIONS

(\\r\“i///’ 2 .

0D 00 700 g

Al

XD)
W [17Pps
‘ll/i,

(|
B

cycle

e one of 7
<€ atractor states

Figure 2.6: A basin of attraction (one of 15) of the random Boolean network, v2k3, n=13, shown in
figure 2.5. The basin links 604 states, of which 523 are garden-of-Eden states. The attractor period =7,
and one of the attractor states is shown in detail as a bit pattern. The direction of time is inwards from
garden-of-Eden states to the attractor, then clock-wise.

2.13 Filing and Printing

DDLab allows filing a wide range of file types, including network parameters, data, the screen
image and vector PostScript files. (sections 19, 35). For compatibility with DOS, filenames follow
the DOS format, so a filename has up to eight characters starting with a letter (but not “q”) plus
a 3 character extension. For example myfile25.dat. In DDLab, only the first part of the filename
is selected — without the extension (or a default filename can be accepted), the extension is

added automatically to identify the file type.

2.13.1 Filing network parameters

Network parameters and states can be saved and loaded for the following: k-mix, wiring schemes,

rules, rule schemes, wiring/rule schemes, and network states (chapter 19).

2.13.2 Filing data

Data on attractor basins, at various levels of detail (chapter 27) can be automatically saved. A file
of “exhaustive pairs”, made up of each state and its successor, can be created (section 29.7).

19

Various data including mean entropy and entropy variance of space-time patterns can be au-
tomatically generated and saved (chapter 33), This allows sorted samples of CA rules to be cre-
ated, discriminating between order, complexity and chaos (chapter 33), and complex rules, those
featuring “gliders” or other large scale emergent structures, to be collected automatically; some
collections/samples of 1d and 2d CA rules are provided with DDLab (sections 32.6.1, 3.6.4).

2.14 Vector PostScript images

Vector PostScript files can be generated for most DDLab graphics output: space-time patterns
or snapshots (1d, 2d and 3d), attractor basins, the wiring graphic, the network-graph, and the
attractor jump-graph (chapter 36). Vector graphics is preferable for publication quality images.
The methods work in both Linux-like systems and DOS. Images saved as vector PostScript files
can be printed in GhostView, or converted to .pdf files and printed in Adobe (acroread).

Previous bitmap methods, below, are still available. Most of the figures in this manual where
produced as vector PostScript files, others as bitimage PostScript files.

2.15 Bitmap images

The screen image can saved and loaded using an efficient compressed format only applicable within
DDLab (section 5.5). Alternatively, in Linux-like systems, a program such as XView can be used
to grab the DDLab screen or part of it, and to save the image in many standard bitmap formats.

In DOS, to save/print the image in a standard format, use a “stay resident screen grabber”.
A number of specialist screen grabbers are available, and others are part of “paint” programs.
Alternatively run DDLab as a DOS application in Microsoft Windows and use their “paint” screen
grabber.

2.16 Printing the screen image

Bitmap methods are still available to print the screen image directly from DDLab. In Linux-like
systems, the screen can be printed within DDLab as a bitmap PostScript file to a laser printer
(section5.6). Alternativly use XView to grab the bitmap image, in various formats.

2.17 Mutations

A wide variety of network “mutations”, as well as changes in presentation, can be be made, many
on-the-fly, while running forward for space-time patterns, or backward for attractor basins.

2.17.1 Running Forward

When running forward, key-press options allow changes to be made to the network and presentation
on-the-fly (chapter 32). This includes “mutations” to wiring, rules, current state, and size. A
number of 1d “complex” rules (with glider interactions) can be set for k=5, 6 and 7 (section 32.6.1).

20 CHAPTER 2. SUMMARY OF DDLAB FUNCTIONS

2.17.2 Running Backward

When running backward, and attractor basins are complete, a key press will regenerate the
attractor basin of a mutant network. Various mutation options can be pre-set (chapter 28)
including random bit-flips in rules and random rewiring of a given number of wires. Sets of
states can be specified and highlighted in the attractor basin to see how mutations affect their
distribution (chapter 34).

2.18 Quantitative, statistical and analytical measures

Some of the measures and data on network dynamics available in DDLab are listed below. In
most cases this information can be displayed graphically.

2.18.1 Behavior parameters

The following static parameters measured on rule look-up tables are available (section 16.19.1).

e The A parameter (sections 14.1.2, 16.3.1) and equivalent P parameter.
e The Z-parameter [34, 41] (section 24.9).

The (weighted) average A and Z for a mixed rule network (section 17.9.2).

The frequency of canalyzing “genes” and inputs — for a rulemix network (chapter 15), for
single rules (section 18.6).

Post-function data (section 14.12).

A, Z, and canalyzation can be set to any arbitrary level.

2.18.2 Network connectivity

The following measures on network connectivity, i.e. the wiring, are available,

e Average k (inputs), number of reciprocal links, and self links (section 17).

e Histograms of the frequency distribution of inputs, outputs, or both (all connections), in the
network (section 17.9.13).

e The recursive inputs/outputs to/from a network element, whether direct or indirect, showing
the “degrees of separation” between elements (sections 17.6.6, 17.6.7).

e The network-graph (section 20.2), where the wiring is analyzed in two ways, as an adja-
cency matrix (figure 20.2): a matrix showing links between cells, and as a network-graph
(figure 20.1) a graph with (weighed) vertices and edges. The network-graph can be ana-
lyzed and manipulated in various ways, and rearranged and unraveled, including dragging
vertices and defined components to new positions with “elastic band” edges (analogous to
the jump-graph in section 2.18.4).

21

=
oo
=1

=]
=

frequency log

=

T
1 3 7 15 31 63 127
C-25% 48% frozen C=52% 85.5% frozen damage size logz

C=0%
i

il =254 Figure 2.7: Order-chaos measures for a RBN v2k5, n=36x36.
C' = the percentage of canalyzing inputs in the randomly biased
network. Top-Left: frozen elements that have stabilized for

%% 20 time-steps are shown, Os-green, 1s red, otherwise white, for

C=25% and 52%. Top-Right: the log-log “damage spread”

histogram for C'=52%, sample size about 1000. Left: the Derrida

plot for C=0%, 25%, 52%, and 75%, for 1 time-step, H;=0-0.3,
interval = 5, sample for each H;=25.

Cc=75%

Hamming distance (t+l) ¢, 3

[

0.3

o

Hamming distance (t)

2.18.3 Measures on local dynamics

The following measures on local dynamics, i.e. running the system forward from some initial state,
its space-time patterns or trajectories, are available,

e A rule-table lookup frequency histogram (figure 32.30), which can be toggled between 2d and
3d to include a time dimension (figure 32.31).

e The entropy of the lookup frequency over time (section 32.12.5).

e The variability of the entropy, mim-max or standard deviation (section 33.1), and the
entropy/density scatter plot where complex rules have their own distinctive signatures
(figure 32.32).

e A plot of mean entropy against entropy variability for large samples of CA rules, which allows
ordered, complex and chaotic rules to be classified automatically (chapter 33), also shown as
a 2d frequency histogram (figure 33.1).

e The pattern density in a moving window of time-steps (section 31.5).

e “Frozen” options allow visualizing the activity/stability of network elements (section 32.11)
— the fraction of “genes” unchanged for z generations (figure 2.7 Top-Left), or that fall into
preset “frequency bins” (firure 32.21).

e The damage spread, or pattern difference, between two networks differing by 1 bit or value
(section 31.6). A histogram of damage distribution can be generated for a sample of initial
state pairs (figures 2.7 Top-Right and 31.13).

e The Derrida plot, and Derrida coeflicient, analogous to the Liapunov exponent in continuous
dynamical systems, measures how pairs of network trajectories diverge/converge in terms of
their Hamming distance. This indicates if a random Boolean network is in the ordered or
chaotic regime (chapter 22, figure 2.7 Left).

e A scatter plot of successive iterations in a 2d phase plane, the “return map by value”, showing
fractal structure, especially for chaotic rules (section 31.2.2.2).

22 CHAPTER 2. SUMMARY OF DDLAB FUNCTIONS

e Scatter plots of successive iterations, the “entropy/density plot” (section 32.12.6), and the
“density return map” (section 32.12.7). This can be interesting when the densities follow
rhythmic oscillations, “pulsing” dynamics[54, 55], which occurs for a network with random
wiring but one complex glider rule.

input-entropy lock-up frequency
space—time pattern 0-————— entropy-————max O----histogram———max
‘QI‘ \ ¥ 31
CRDERED
- low entropy
lowvariance
- rule 01 dc 36 10
- - 0
I =31
o COMFLEX
!— medium entropy
y high variance
E_ rule fc le 53 al
= -+ 0
' | -— 31

H CHAOQTIC
= high entropy
! low variance
H rule 99 4a 6a 55
- -

Figure 2.8: Typical 1d CA space-time patterns showing ordered, complex and chaotic dynamics, n=150,
v2k5 rcodes shown in hex. Alongside each space-time pattern is a plot of the input-entropy, where only
complex dynamics exhibits high variability, caused by glider collisions.

2.18.4 Measures on global dynamics

Measures on global dynamics, i.e. attractor basins — the basin of attraction field, single basins
and subtrees, are available as follows,

e Data on attractor basins. The number of basins in the basin of attraction field, their size,
attractor period and branching structure of transient trees. Details of states belonging
to different basins, subtrees, their distance from attractors or the subtree root, and their
in-degree (chapter 27).

23

e A histogram showing the frequency of arriving at different attractors from a sample of random
initial states (figure 31.17) provides statistical data on the basin of attraction field for large
networks. The number of basins, their relative size, period, and the average run-in length can
be measured statistically (section 31.7). A new feature analyses the transient data to record
the set of unique transients states to each attractor, without duplication (figure 31.19). An
attractor jump-graph can be constructed from this data (figure 31.7.8).

An analogous methods show the frequency of arriving at different partly frozen patterns,
fuzzy attractors called “skeletons” (section 31.8).

e Garden-of-Eden density plotted against network size (figure 24.12), and against the A and Z
parameters (figure 24.13).

e A histogram of the in-degree frequency (section 24.6) in attractor basins (figure 24.4), in
subtrees (figures 2.9, 24.5).

e The state-space matrix (section 24.5), a scatter-plot of the left half against the right half of
each state bit/value string, using color to identify different basins, or attractor cycle states
(figure 24.2).

e The attractor jump-graph, an analysis of the basin of attraction field tracking where all
possible 1-bit (or 1-value) flips to attractor states end up, whether to the same, or to which
other, basin (section 20.2). The information is presented in two ways, as a jump-table
(figure 20.3): a matrix showing the jumps between basins, and as a jump-graph: (figure 20.12)
a graph with (weighed) vertices and edges. The jump-graph can be analyzed and manipu-
lated in various ways, and rearranged and unraveled, including dragging vertices and defined
components to new positions with “elastic band” edges (analogous to the network-graph in
section 2.18.2).

2.19 Reverse algorithms

There are three different reverse algorithms for generating the pre-images of a network state, thus
generate attractor basins.

e An algorithm for local 1d wiring [34] — 1d CA but rules can be heterogeneous.

e A general algorithm [35] for RBN, DDN;, 2d or 3d CA, which also works for the above.

e An exhaustive algorithm that works for any of the above by creating a list of “exhaustive
pairs” from forward dynamics. Alternatively, a random list of exhaustive pairs can be created
to implement attractor basin of a “random map” (section 2.20).

The first two reverse algorithms (section 29.6) generate the pre-images of a state directly; the
speed of computation decreases with both neighborhood size k, and network size. The speed of
the third exhaustive algorithm (section 29.7) is largely independent of k, but is especially sensitive
to network size.

The method used to generate pre-images will be chosen automatically, but can be overridden.
For example, a local 1d CA can be made to use either of the two other algorithms for benchmark
purposes and for a reality check that all methods agree. The time taken to generate attractor basins
is displayed in DDLab. For the basin of attraction field a progress bar indicates the proportion of
states in state-space used up so far.

24 CHAPTER 2. SUMMARY OF DDLAB FUNCTIONS

” 54129
in-degree 0
6000

number of nodes
N
g 5
g 2
g B

max in degree=1439—

number of node log2

[.

20 40 60 Sb 100 120 140 160 180 200+ 0 1 3 7 15 31 63 127
in-degrees in-degrees log2

(=]
o3

Ordered dynamics. Rule 01dc3610, n=40, Z=0.5625, \;q:i0=0.668.
Above: in-degree histogram (normal and log-log). Right: complete
subtree 7 levels deep, with 58153 nodes, G-density=0.931.

max in degree=451—

! Iﬂﬂﬂm

o 10 20 30 w0 13 7 15 3163 127
in-degrees in-degrees log2

Complex dynamics. Rule 6cle53a8, n=50, Z=0.727, \;qti0=0.938.
Above: in-degree histogram (normal and log-log). Right: subtree,
stopped after 12 levels, with 144876 nodes, G-density=0.692.

[+ 100351
in-degree 0

N oW
2 ¥ 5
S 2 &
s & 2

number of nodes
=
=]
=1
=1

number of node log2

=

<]
]
=1

4733

£ o~
2 in—degree 0 Eﬂ
= 3540 e
< g
© 2630 %S
o
2 5
2
g 1180 max in degree=27 g
0 | = 12
0 10 20 30 01 3 7 15
in-degrees in—degrees log2

Chaotic dynamics. Rule 994a6a65, n=50, Z=0.938, \;4ti0=0.938.
Above: in-degree histogram (normal and log-log). Right: subtree,
stopped after about 75 levels, with 9446 nodes, GG-density=0.487.

Figure 2.9: Subtrees of ordered-complex-chaotic CA. The rules
and space-time patterns are shown in figure 2.8. The in-degree
histogram of a typical subtree showing that convergence (bushi-
ness of subtrees) is: ordered-high, complex-medium, chaotic-low.

2.19.1 1d CA wiring reverse algorithm

The CA reverse algorithm applies specifically for networks with 1d CA wiring (local wiring) and
homogeneous-k, such as 1d CA, though the rules may be heterogeneous — a “rulemix”. This is
the most efficient thus fastest algorithm, described in [34, 41]. Furthermore, compression of 1d CA
attractor basins by rotation symmetry (section 26.2) speeds up the process.

The inset (cellular automata wiring) will appear in the data window in section 27.2.

25

2.19.2 Nonlocal wiring algorithm

Any other network architecture, with nonlocal wiring, will be handled by a slower general reverse
algorithm described in [35, 41]. A histogram revealing the inner workings of this algorithm can
be displayed. Local 2d or 3d CA will also use this general reverse algorithm though in principle
more efficient algorithms that take advantage of 2d or 3d local wiring could be devised. However,
compression algorithms will come into play in 2d to take advantage of the many rotation symmetries
on the torus'.

The inset (non-local wiring) will appear in the data window in section 27.2.

2.19.3 Exhaustive reverse algorithm

A third, brute force, reverse algorithm first creates a list of “exhaustive pairs” of each state in
state-space and its successor (section 29.7) from forward dynamics — this can be saved. The
pre-images of states are generated by reference to this list. The exhaustive algorithm is restricted
to small systems because the size of the mapping increases exponentially as v™, and scanning the
list for pre-images is slow compared to the direct reverse algorithms for CA and RBN. However,
the method is not sensitive to increasing neighborhood size k, and is useful for small networks with
large k. Exhaustive testing is also used for sequential updating (section 29.9).

The inset (exhaustive algorithm) will appear in the data window in section 27.2.

2.20 Random map

The random mapping routine (section 29.8) also creates a list of “exhaustive pairs” as in
section 2.19.3 above, but this is done by assigning a successor state at random to each state in
state space, possibly with some bias — rules and wiring previously set are ignored. The attractor
basins of this “random map” (with out-degree one) are reconstructed by reference to this list using
the exhaustive testing algorithm (figure 29.8). The space of random maps for a given system size
corresponds to the space of all possible basin of attraction fields and is the super-set of all other
deterministic discrete dynamical systems.

The inset (random map, using the exhaustive algorithm) will appear in the data
window in section 27.2.

2.21 Asynchronous and Sequential updating

By default, network updating is synchronous, in parallel. DDLab also allows asynchronous updat-
ing. For space-time patterns (section 31.4) the updating can be sequential, partial order, or noisy.
Attractor basins? (section 29.9) can also be based on a sequential order. Sequential orders can be
forwards, backwards, a random order, or any specific order can be set, out of the n! possible orders
for a network of size n. The order can be saved/loaded.

LCompression does not apply for a local 2d CA with a hexagonal lattice, or for 3d CA, as the algorithms to take
account of these symmetries have not been resolved.
2Sequential orders do not apply for a range of sizes (section 8.1).

26 CHAPTER 2. SUMMARY OF DDLAB FUNCTIONS

2.21.1 Neutral order components

An algorithm in DDLab computes the neutral order components (section 29.10). These are sets of
sequential orders with identical dynamics. DDLab treats these components as subtrees generated
from a root order, and can generate a single component subtree (figure 29.9.5), or the entire set of
components subtrees making up sequence space (the neutral field, figure 29.12) which are drawn
in an analogous way to attractor basins.

2.22 Sculpting attractor basins

Learning and forgetting algorithms (chapter 34) allow attaching and detaching sets of states as
predecessors of a given state by automatically mutating rules or wiring couplings. This allows
“sculpting” the attractor basin to approach a desired scheme of hierarchical categorization. Because
any such change, especially in a small network, usually has significant side effects, the methods
are not good at designing categories from scratch, but might be useful for fine tuning a network
which is already close to where its supposed to be.

When an attractor basin is complete, within the learning routine, a “target” state, together
with a number of “aspiring pre-images” (predecessors) can be selected. These states may be
just highlighted in successive mutant attractor basins, or the learning/forgetting algorithms will
attempt to attach/detach the aspiring pre-images to/from the target state, and can be set for
either rule-table bit-flips or wire moves. In fact the bit-flip method cannot fail. New attractors
can be created and subtrees transplanted. The result of learning/forgetting, including side effects,
will be apparent in the new attractor basins. The algorithms, and their implications are described
in [35].

More generally, a very preliminary method for reverse engineering a network, also known as
the “inverse problem” is included in DDLab, by reducing the connections in a fully connected
network to satisfy an exhaustive map (for network sizes n < 13, section 18.7.4). The inverse
problem is — to find a minimal network that will satisfy a full or partial mapping (i.e. fragments
of attractor basins such as trajectories).

Chapter 3

Accessing and running DDLab

This chapter gives instructions for downloading, unpacking and running DDLab, and the various
files available. Information is also given about the DDLab web site, manual, GPL license, copyright,
and registration. The Linux, Cygwin, Mac, Unix, and Irix versions will be referred to as Linux-like,
as opposed to the DOS version.

3.1 The DDLab web site

For the latest compiled versions, source code, makefiles and readme files, and manual, check the
DDLab web site located at one of the following,

Ly http://www.ddlab.org
R http://www.sussex.ac.uk/~andywu/ddlab.html
i http://uncomp.uwe.ac.uk/wuensche/ddlab.html

At the time of writing the latest release was ddlabz06 in January 2018.

3.2 DDLab at SourceForge

DDLab compiled versions, source code and manual are also available at SourceForge.

http://sourceforge.net/projects/ddlab/files/

3.3 Unzipping and running — Linux-like versions

The relevant readme files, for Linux, Mac, Cygwin and DOS, give the most up-to-date instructions.
In general, place the .tar.gz file in its own directory, called say, ddlab. To unzip and unpack
follow the example below (substitute the relevant filename),

27

http://www.ddlab.org
http://www.sussex.ac.uk/~andywu/ddlab.html
http://uncomp.uwe.ac.uk/wuensche/ddlab.html
http://sourceforge.net/projects/ddlab/files/

28 CHAPTER 3. ACCESSING AND RUNNING DDLAB

gunzip ddlabz06_linux64.tar.gz ... to unzip the .gz file
tar -xvf ddlabz06_linux64.tar ... to unpack the .tar file

This will give the GNU license and the executable file! dd1abz06 — we will use this filename
although the executable may be named dd1abz06 macTiger64, ddlabz06_cygwin32.exe, etc.
To run the program enter

./dd1labz06 & (if dot is in your path ./ is not required)

The “&” retains control of the terminal window, where messages and data are sometimes shown.
The default background is black — change to white with the program parameter -w,

./ddlabz06 -w &

If working with DDLab file types for rules, seeds, networks etc. (chaper 35), its preferable
to run DDLab from a sub-directory (say ddlab/ddfiles) containing the ddextra.tar.gz files
(section 3.6) — in that case enter,

../ddlabz06 & (two dots before the slash)

This ensures that files created within DDLab stay within the ddfiles subdirectory, and do not
clutter up the ddlab directory.

3.3.1 Unix library files

DDLab for Linux-like versions is compiled with “static” set, so that missing library problems
should not occur. However, the libraries 1ibx11 and libsunmath need to be in your system —
they usually are. If missing, they can be downloaded from the file unix_libs.tar.gz, which will
unzip and unpack to give the following files, which should be installed in the same directory as
DDLab.

1libX11.s0.6.1
libsunmath.so.1

3.4 Unzipping and running - DOS

The latest DOS version of DDLab, ddl1abz06_dos32.tar.gz can be unzipped with Winzip in
earlier versions of Windows. For Windows Vista, open source “7zip” works to uncompress, and
there are other tool available. The DOS version may have some drawbacks; for better results
install Cygwin/X, (a Linux environment inside Windows) and use the Cygwin version of DDLab,
or run the Linux version in VMware Player.

The DOS version will unzip to give the GNU license, two font files, and the following,

dd1labz06_dos32.exe ... the program (for ezample).
dosdgu.exe ... the DOS extender, access to extended memory.

If the executable permission is missing for some reason, it can be restored with the command
chmod +x ddlabz06.

29

Keep all these files together in their own directory. For best results DDLab should be run in
pure DOS (available in Windows98 and before), otherwise, prior to Vista, DDLab can be run from
a DOS or “command line” window (some precautions will apply, section 5.2.

In Vista, Windows 7 and later, DOS from the command line is no longer supported, but the
DOS version of run, but slowly, in “DOSBox”, an open source MS-DOS emulator, intended for old
PC games.

In pure DOS you can also add the following program parameters for a different graphics setup
(this can also be changed later).

-w ... for a white background.
-m ... for 800x600 resolution.
-h ... for 1024 x 768 resolution.

For example, for a white background and 1024x768 enter dd1abz06_dos32 -w -h.

3.5 The Quick Start Examples

Chapter 4 gives brief “quick start” examples for a number of typical routines. Its a good idea to
try these first to get the flavour of DDLab before reading the detailed manual.

3.6 Extra data files

The files in dd_extra.tar.gz, common to all platforms, contain data used by DDLab, though
DDLab will run without the files. The files should be either in the same directory as the DDLab
executable, or in a sub-directory and DDLab run from that sub-directory by prefixing ../ before
the executable (section 3.3).

The lists below show some, but possibly not all, the files.

3.6.1 Complex rule collections

These are collections of complex rules for various combinations of v, k& and lattice dimensions,
which can be loaded on-the-fly when running space-time patterns (section 32.6.1). Enter g for a
random rule, or the next rule in the sequence, depending on the setup in section 31.2.9.

1d complex rule collections, based on rcode
gv2k5.r_s, g v2k6.r_s, g v2k7.r_s ... v2 complex rules, as in binary DDLab.
g-v3k3.r_s, g vdk2.r_s, g v4k3.r_s, g vbk2.r_s ... v > 3 complex rules.

2d complex rule collections, based on kcode, hexagonal lattice except square for k=5
gv3k3.r v, g v3kd.r v, g v3k5.r_v, g v3k6.r_v, g v3k7.r_v ... v=3 complex/glider rules.

3.6.2 Selected 2d complex rules, v=3

Selected v=3 complex 2d rules based on kcode. These rules can be loaded individually while
running space-time patterns. For k=6 and k=7, the default lattice is hexagonal, otherwise the
default lattice is square. Some k=6 and k=7 rules also give interesting dynamics in 3d.

30 CHAPTER 3. ACCESSING AND RUNNING DDLAB

Figure 3.1: A 2-way glider-gun made by rule
v3k6n6.vco and seed v3kdgun.eed shooting glid-
ers in opposite directions, shown as a 2d diagonally
scrolling space-time pattern (100 x 100 hexagonal
lattice) in an isometric projection — the present mo-
ment is at the bottom right (see also 4.13). Once
the glider-gun has shot a glider in one direction,
it turns itself inside-out and shoots a glider in the
opposite direction. The period between firing suc-
cessive alternate gliders is 67 time-steps.

v3k4x1.vco ... sd-way glider gun (seed v3k4gun.eed below).

v3kbx1.vco ... gliders bounce off static structures.

v3k6x1.vco ... the Beehive rule [47], hexagonal lattice.
v3k6x2.vco ... spirals overcome gliders, hexagonal lattice.
v3k6B1.vco ... burning-paper or predator-prey, hexagonal lattice.
v3k6n6.vco ... 2-way glider-gun (figure 3.6.2), hexagonal lattice.
v3k7wl.vco ... the spiral rule [48], hexagonal lattice.

3.6.3 Selected seeds

Selected 1d, 2d and 3d seeds (initial states) which can be loaded while running space-time patterns
for interesting results for various rules.

pento.eed, Lgun_v2.eed, Lguns_v3.eed, Lguns_v8.eed ... game-of-Life seeds.
v3k4gun.eed ... seed for 4-way glider-gun (2d or 3d) — v3k4x1.vco
v3k6n64.eed ... initial state for 2-way glider-gun — v3k6n6.vco

seeds for the 2d and 3d Beehive-rule — v3k6z1.vco

Bcgun.eed, Bpuff.eed ... seeds for the 2d 6-way glider-gun, and the amazing
puffer-train.

B3d_ggx.eed ... seed for the 3d 4-way glider-gun.

seeds for the 2d and 3d Spiral-rule — v3k7wl.vco
ssgl.eed, sgg2.eed ... seeds for two types of 2d 6-way spiral glider-guns.
sgun3d.eed, sgun3dl.eed ... seeds for the 3d 4-way glider-guns.

31

3.6.4 Sorted rule samples

Samples of CA rule-space, sorted by input-entropy and its variability, classify rules between order,
complexity and chaos [41]. The samples can be loaded and displayed as scatter plots (section 33.6),
and rules can be selected on-the-fly (section 32.6.3) when running space-time patterns. The topic
is described in “Classifying rule-space” chapter 33. The following sample files are available,

1d complex rule samples, based on rcode
v2k5ss.sta, v2k6ss.sta, v2k7ss.sta ... v=2, standard deviation.
v3k3ss.sta, vdk2ss.sta, v4k3ss.sta, vbk2ss.sta ... v >2, standard deviation.

1d complex rule samples, based on tcode
v8k5tm.sta ... max-minmax-entropy

2d complex rule samples, based on kcode
v3k4bs.sta, v3kbbs. sta, v3k6bs. sta, v4kdbs.sta v4k6bs.sta ... standard deviation.

v3k7bs.sta, v8k3B50.sta, v2kbiso.sta, v4k72d52.sta ... max-minmax-entropy.

3.6.5 Byl’s self reproducing loop
J.Byl’s self reproducing loop [9], is a v6k5 2d CA, a simplification of Langton’s loop.

v6k5_byl.rul ... Byl’s self reproducing loop rule (rcode).
v6k5_ byl.eed ... a seed to initiate Byl’s loop.

Figure 3.2: Byl's self
reproducing loop —
148 time-steps from
this seed: WM

32 CHAPTER 3. ACCESSING AND RUNNING DDLAB

3.7 Copyright, License and Registration

Copyright
DDLab is copyright (¢) 1993-2016, Andrew Wuensche.

License

DDLab is free software: you can redistribute it and/or modify it under the terms of the GNU
General Public License (GPL) as published by the Free Software Foundation, either version 3 of
the License, or any later version (http://www.gnu.org/licenses/gpl.html), which includes a
Disclaimer as follows: This program is distributed in the hope that it will be useful, but without
any warranty; without even the implied warranty of merchantability or fitness for a particular
purpose.

Registration
By registering and paying a modest fee, the annoying UNREGISTERED banner (section 5.4) can
be easily removed — http://www.ddlab.org/ddinc.html provides details.

3.8 Source code, and compiling

The DDLab source code is written in c, and consists of about 63000 lines excluding blanks and
comments, contained in 21 *.c files and two *.h files — a description can be found on the DDLab
website, including Makefiles and notes on how to comple. The same code compiles for all platforms.

3.9 Previous versions of DDLab

Previous versions of DDLab released at intervals since 1995 are still available, as are previous
versions of the DDLab Manual — refer to http://www.ddlab.org.

http://www.gnu.org/licenses/gpl.html
http://www.ddlab.org/ddinc.html
http://www.ddlab.org

Chapter 4

Quick Start Examples

This chapter briefly describes the DDLab graphical user interface (more details in chapter 6), and
gives a number of examples of DDLab functions and routines. Try these examples first, to get the
flavor of DDLab, before tackling the detailed program reference — chapter 5 onwards.

4.1 The DDLab screen

In Linux-like systems, or Windows supporting DOS, DDLab starts in a window within the monitor
screen. In pure DOS the whole screen is occupied. For simplicity we will refer to the DDLab
“screen”, and various panels which appear within the screen as “windows” or “prompts” — their
location is usually indicated, for example “top-right”, “top-left”, “bottom-left”, etc.

If the executable filename is dd1abz06, to run DDLab, for DOS enter dd1abz06 at the DOS or
command prompt. For Linux-like systems enter ./ddlabz06 &) — always add a final & to retain
control of the terminal window, where various data may be displayed.

When DDLab is run with no program parameters, the screen appears with a black
background. The program parameter -w gives a white background, i.e. ./ddlabz06 -w & for
Linux, dd1abz06 -w for DOS. Descriptions of colors assume a white background.

If an UNREGISTERED banner is displayed, enter return to continue'. A title bar is
displayed across the bottom of the screen. A series of prompts are presented to set up the network,
functions to be performed, and presentation. These prompts appear either in a main sequence for
the most common settings, or in various windows that automatically open up.

The mouse pointer is used to set bits or values in rule-tables and network states, for “drawing”
patterns, especially in 2d networks, for dragging nodes in the network-graph and jump-graph, and
for some other functions, but most user inputs are from the keyboard.

4.1.1 User Input

The flashing cursor (usually green) prompts for input. Enter appropriate input from the keyboard.
To revise the input, press q, backspace, or the right mouse button. To accept the input, and
move on to the next prompt or routine, press return or the left mouse button. If no input was
entered, or if the input was inappropriate, a default input is automatically selected.

L Another program parameter turns off the UNREGISTERED banner for registered users.

33

34 CHAPTER 4. QUICK START EXAMPLES

4.1.2 Backtrack

To backtrack to the preceding prompt, to revise, or interrupt a running routine such as space-time
patterns or attractor basins, press q, or the right mouse button. You can backtrack to any stage
in the prompt sequence with q (or right mouse button), eventually to exit the program.

4.1.3 Quitting DDLab

To quit DDLab immediately (except in DOS) enter Ctlr-q at any prompt, followed by q. Otherwise
backtrack with q to the start of the program, then enter q to exit.

4.1.4 Skipping Forward

At some points in the prompt sequence, its possible to skip forward, to avoid a succession of
prompts for special settings. When the following top-center banner is visible,

accept defaults-d | ... enter d followed by return to skip forward.

4.1.5 The graphics setup

The screen will start with a black background if no program parameters were set, and with a
resolution automatically set to comfortably fit the monitor, but with an initial maximum of
925%x694 pixels in Linux-like systems — resize by dragging the corners (or edges) in the usual
way. For DOS (section 5.2) the initial size is 640x480, which can be reset to higher resolution
— SVGA. To change the graphics setup after DDLab has started, at the first prompt select g for
graphics (section 6.3). A graphics setup screen will appear. Enter b to toggle the background
between black and white. Other options allow changing the resolution, font size, text line spacing
and cursor flash speed.

4.2 Basin of attraction fields

To generate a basin of attraction field similar to figure 4.1, do the following:
1. From the first prompt keep accepting defaults with return or left mouse button (about 13

presses), until the top-center ‘ basin parameters ‘ banner appears, and a top-right window
with a list of options starting with accept all basin defaults -d. Enter d to skip these
special options.

2. A final top-right prompt window appears, just before drawing basins. Enter return.

3. The basin of attraction field will be generated. Copies of equivalent basins are suppressed.
The initial default setup is for a 1d CA, network size n=10, value-range v=2, and neighbor-
hood size k=3. If these parameters were changed they become the new defaults. The rule
(chosen at random by default) appears in a window at bottom of the screen. A top-right
window shows brief data on the field once it is generated. A progress bar below this window
shows the proportion of state-space as it is used up. Vertical lines on this bar indicate the
states used to seed the basins.

35

Figure 4.1: A basin of attraction field of a binary 1d Cellular Automaton, v2k3, n=10, decimal rule 9,
with copies of equivalent basins suppressed.

Figure 4.2: The basin of attraction field of multi-value v3k3 n=6 1d CA. The lookup table
is 120201201020211201022121111 (1886122584a655 in hex). Just the 8 nonequivalent basins are
shown from a total of 23, and attractor non-equivalent states are shown as 2d patterns. State-
space=v"=3%=729. Note that the overlap can be fixed with layout options (chapter 25 or section 20.7).

4. A prompt window appears top-left. Enter return for a new basin of attraction field, a
one-bit “mutant” of the previous rule, with corresponding data. This process can continue
indefinitely (it can also be set on automatic).

5. Enter q to interrupt and backtrack up the prompt sequence.

4.2.1 Changing basin parameters

Try the previous routine again, changing v, n or k, which require backtracking to the main series
of prompts. For example, to create figure 4.2 procede as follows,,

1. To revise v backtrack to the prompt Value range ... : enter 3.
2. To revise n, at the prompt Network size ... : enter 6.

36 CHAPTER 4. QUICK START EXAMPLES

3. To revise k, at the prompt Neighborhood size k: ... enter 3.
4. At the prompt Select v3k3 rule ... : enter h for the rule in hex, then enter 1886122584a655,
then return to accept (for a random rule just enter return or r).

The scale, position, node display etc. can be fine-tuned with the special ‘ basin parameters ‘

options, which can be accessed one by one, or by jumping directly to a category (chapter 31).

1. At the top-right revise from: options, enter p for the “display” category.

2. Enter return until the prompt highlight attractor ... : enter a for “all”, then d twice to
accept further defaults and start drawing basins.

3. Enter return for a mutant basin, or q to backtrack.

Note that increasing v will reduce the maximum allowable k and n (sections 7.2, 7.3), and as
these values increase basins will take longer to generate.

4.3 Backwards space-time patterns, and state-space matrix

Figure 4.3: Backwards
space-time patterns re-
lating to the basin of
attraction field of the
v=2 CA in figure 4.1.
Space across, time top
down. The red and

white bit patterns are Figure 4.4: The state-apace matrix
the predecessors of black represents state-space, plotting the
and white bit patterns. left half of each state bitstring

against the right half. Colors repre-
sent different basins of attraction in
figure 4.1.

While the attractor basins are generating, various display settings, indicated in the bottom title
bar, can be changed on-the-fly. However, basins may generate too fast to intervene on-the-fly.
In this case, at the pause when a basin is complete, enter s for speed in a top-left window, and
follow self-explanatory prompts to slow down. Alternatively, backtrack to slightly increase n, v or k.

1. Enter s to toggle the “backwards” space-time pattern on-off, and see predecessors (pre-
images) being generated on the left of the screen (figure 4.3). Initially the attractor states
will be displayed, then each state and its set of pre-images. Expand or contract the scale of
the backwards space-time pattern with e and c. Toggle scrolling on/off with #.

37

2. Enter m to toggle the display of the state-space matrix in the lower right corner (figure 4.4).
This reveals interesting symmetries. Different colors represent states in different basins.

3. Enter < to incrementally slow down, or > to restore maximum speed.

4. Enter q to interrupt and backtrack up the prompt sequence.

4.4 Basin of attraction fields for a range of network sizes

10.

11.

12.

Figure 4.5: Basin of attraction fields for a range of network size n=5-12. v2k3, rule(dec)=30

To produce output similar to pages in the “Atlas of Basin of Attraction Fields”, Appendix 2 of
the book “The global ynamics of Cellular Automata” [34], proceed as follows,

1. Backtrack with g (or right mouse button) to the start of the program.
2. At the third prompt, range of network size-r: enter r.

3. Enter return until the top-center ’basin parameters‘ banner appears, then a to restore
all defaults, then d to skip further special options, then enter return to start the range of
CA basin of attraction fields (with the same rule), for increasing sizes from 5 to 12.

38

7.

CHAPTER 4. QUICK START EXAMPLES

When complete, enter return for the next “mutant” CA rule.

Toggle the display of the “backwards” space-time patterns with s and the state-space matrix
with m as described in 4.3.

To slow down the generation of basins (probably required to intervene on-the-fly) enter s for
speed at a pause in the top-left window, and follow self-explanatory prompts.

Enter q to interrupt and backtrack up the prompt sequence.

You may need to readjust the size of basins for everything to fit. To do this, backtrack to

‘ basin parameters ‘ and enter 1 for layout, then adust the size and spacing of basins with various

self-explanatory prompts (chapter 25).

4.5 A single basin of attraction

Backtrack with q (or right mouse button) to the start of the program.

1.

At the very first prompt enter s.

2. At the Neighborhood size k: ... prompt, enter 4.

3. Enter return until the top-center ‘ basin parameters | banner, then a to restore all defaults,

then d to skip further special options, then return in response to further prompts, to generate
a singe basin for a CA, size 14.

Enter return for the next mutant.

Toggle the display of the “backwards” space-time patterns with s and the state-space matrix
with m as described in 4.3.

Enter q to interrupt and backtrack up the prompt sequence.

states 4333, period 140, rcode(hex) 76b5 states 15541, point attractor, rcode(hex) ac88

Figure 4.6: Examples of single basins of attraction: v2k4, n=14, decimal seed=3187.

39

4.6 A subtree

Figure 4.7: A subtree with 11324 states generated from the bit pattern at the center. 1d CA, v2k5,
n=27 shown as 9x3, hex rcode bafbblae, hex seed 055addaf.

Backtrack with q (or right mouse button) to the start of the program.

Ll s

At the very first prompt enter s.

Enter return in response to further prompts until the prompt Network size ... : select 27.
At the prompt Neighborhood size k: ... select 5.
Enter return in response to further prompts until the Select SEED ... : prompt. Enter

r for a “random seed” then a to set all cells at random.
Enter return until the top-center ‘ basin parameters ‘ banner, then a to restore all defaults,
then d to skip further special options.
At the prompt backward for subtree-b, forward for basin-(def): select b.
At the next prompt, forwards before backwards?
how many steps (default 0): select 3.

This runs the CA forward by 3 time-steps (from the “seed”), before running backward from
the state reached. The original randomly selected seed is likely to be a “garden-of Eden”
state with no predecessors, so not much use as the root of a subtree.

Enter return in response to further prompts to generate the subtree. For a deeper sub-
tree, enter a greater number of forward time-steps at the previous prompt. This might

40 CHAPTER 4. QUICK START EXAMPLES

reach an attractor state, in which case the whole basin will be generated with the message
subtree=basin in the top-right data window.
9. Enter return for the next mutant.
10. Enter q to interrupt and backtrack up the prompt sequence.

To highlight the “root” state as a bit pattern, backtrack to ‘ basin parameters |, enter p for

display, then return until the prompt highlight attractor (or subtree root ... : enter 1.
There are various ways of displaying states or nodes in basins, described in section 26.3.

4.7 Space-time patterns — SEED-mode or TFO-mode

Space-time patterns can be run in either SEED-mode (based on rcode) which also allows
single basins, or alternatively TFO-mode, where basin functions (and prompts) are disabled,
so space-time patterns become the only possibility, and rules are restricted to totalistic rules
expressed as tcode or kcode, with shorter rule-tables than rcode, allowing larger [v,k]. This is
decided at the very first prompt (section 6.2.1), where initially FIELD-mode is active,

Exit-q, graphics setup-g, randseed-r, TFO:totalistic/forward only-t
SEED:forward only/single basin/subtree-s (FIELD-def):

Enter s for SEED-mode — the main sequence prompts continue, or enter t for TFO-mode —
the first prompt changes to,

EXIT-q graphics setup-g randseed-r, disable TFO allow basins-b
TFO:totalistic rules and forward only (def:) (this line in red)

Enter return to accept TFO-mode and continue, or b to revert to FIELD-mode.
SEED-mode allows either single basins (the default) or space-time patterns. The choice is

made after the main prompt sequence, at the ‘basin parameters‘ banner, and the prompt

. space-time pattern only-s.

Entering s changes the banner to ‘space-time parameters‘ and presents the space-time

pattern options (section 31.1),

accept all space-time defaults-d
revise from: start/misc-ret updating-u
entropy-e damage-m attractors-a skeletons-s: (skeletons for v=2 only)

In TFO-mode, these prompts are presented directly, after the main prompt sequence.

4.8 1d Space-time patterns

Backtrack with q (or right mouse button) to the very first prompt.

1. At the very first prompt, enter s for SEED-mode.
2. At the prompt Network size ... : select 150.

41

Figure 4.8: A space-time pattern of a 1d v2k5 complex CA, rcode(hex) e9f6a815, n=150. About 360
time-steps, including some analysis shown by default. Left: the space-time pattern colored according
to neighborhood, and progressively “filtered” at three times with key f, suppressing the background
domain to show up “gliders” more clearly. Center: the input-entropy/time plot. Right: the lookup
frequency histogram for the last time step shown. S

3. At the prompt Neighborhood size k: ... select 5.
4. Enter return until the top-center | basin parameters‘ banner appears, then enter s for

space-time pattern only — the top-center banner changes to ‘ space-time parameters

5. At the next prompt, accept all space-time pattern defaults-d, enter d to skip special
options. The 1d space-time pattern is generated, scrolling upwards, on the left of the screen.
To the right is a histogram of the lookup frequency for each neighborhood relating to a
window of 10 time-steps, and a plot of the entropy of this histogram, the “input-entropy”.
The on-the-fly key index on the right of the screen gives a complete list of immediate
changes that can be made with a key hit (section 32.1). Some of these options are repeated
on the right of the bottom title bar. Try the following (or any other) to see what happens:

g ... to change the rule to a “complex” rule, chosen at random from a database of complex
rules in the file g v2k5.r_s, available in the “ddextra” download.
3 ... to toggle cell color according to the lookup neighborhood or the value.

u ... to toggle the input-entropy - density plot.

42

6

7

4.8

CHAPTER 4. QUICK START EXAMPLES

4 ... for a new random initial state.
f ... toprogressively “filter” the space-time pattern, and a to restore the unfiltered pattern.
1 ... for a random “bit-flip” (mutate one output in the rule-table), and 2 to flip back.
If “bits” are flipped successively with key1, key 2 will flip them back in reverse order.
e/c ... enter e or cto expand or contract the scale of the space-time pattern.

. Enter q to pause, a top-right prompt appears with further options 32.16. For example, to
select or revise a particular rule enter v. A bottom-right prompt appears, enter return, then
h for the new rule in hex, and enter the hex characters e9f6a815 for the rcode in figure 4.8,
then enter return until the space-time pattern continues from where it left off, but with the
new rule.

. Enter q to backtrack further.

.1 1d ring of cells, and scrolling the ring

A 1d CA has periodic boundaries, effectively a ring or circle of cells. Space-time patterns can be
displayed as a movie of the changing patterns on this ring (section 32.19, figure 32.38), and the

ring

itself can be scrolled, making a scrolling tube (figure 4.9).

To display the ring alongside the normal space-time pattern (figure 4.8) proceed as follows,

1.

Set up the normal space-time pattern as in section 4.8.

2. Enter q for the interrupt prompts, then g to show the network as a graph, then return. A

4.8

circle of cells will appear.
Enter q to exit the graph and continue. On-the-fly changes work on the circle as well as the
normal space-time pattern.

.2 Scrolling the ring

To display the ring and make it scroll, proceed as follows,

1.

Set up the normal space-time pattern as above in section 4.8.

. Enter T on-the-fly to toggle the display the 1d space-time pattern to 2d.

Enter q for the interrupt prompts (section 32.16), then g to show the network as a graph,
then return. A circle of cells will appear. The appearance/position of the ring can be altered
(chapter 20) but the default setting will be fine.

. Enter q to exit the graph and continue. Space-time patterns will play out as a movie on the
ring.

Enter # or & to toggle scrolling the ring.

Enter J to toggle hiding the scrolling 2d space-time pattern which may be also superimposed
on the ring.

Initially the ring will move diagonally towards the bottom-right, then scroll diagonally upward,
so that the present moment is the ring at the bottom-right.
Most on-the-fly options work as usual with the ring. Try the following key hits,

3 ... to toggle to cell color; according to the lookup neighborhood or the value.

@ ... to toggle the cell outline.

c ... to contract (or e expand) the spacing between successive rings (time-steps).

43

Figure 4.9: A 1d space-time pattern shown as a ring of cells scrolling diagonally upward — a scrolling
tube. The present moment is the ring at the bottom-right — the closest ring. The space-time pattern is
colored according to neighborhood, and has been filtered. 1d CA, v2k5, rcode (hex) e9f6a815, n=150.

4 ... for a new random initial state.
f ... to progressively filter, a to totally unfilter.
4 ... for a new random initial state.

4.8.3 Multi-value 1d space-time patterns in TFO-mode
Set TFO-mode at the first prompt as described in section 4.7, then procede as follows,

At the second prompt, value-range ... : select 8, the current maximum in DDLab.

At the prompt Network size ... : select 150.

At the prompt Neighborhood size k: ..., select 7.

Enter return until a top-center | space-time parameters | banner appears, together with
the top-right prompt accept all space-time pattern defaults-d — enter d to skip special
options.

o=

A space-time pattern is generated, scrolling upwards on the left of the screen, as in section 4.8.
Because of high [v, k], the randomly selected rule will appear extremely disordered, with high
entropy. To set a rule with a much more ordered pattern, as in figure 4.10 Try the following
on-the-fly key hits,

44

CHAPTER 4. QUICK START EXAMPLES

|
(

Figure 4.10: A 1d CA with a filtered Altenberg rule, kcode v8k7, n=150, where the probability of a
rule-table output depends on the fraction of colors in its neighborhood. On the right the color density
is plotted for each of the 8 colors, relative to a moving window of 10 time-steps.

A ...

50r6...

for an totalistic “Altenberg” rule, where the output of each neighborhood relates to
the fraction of colors in the neighborhood (section 16.9).

. to toggle between input-entropy and the density plot, the fraction of colors relating

to a moving window of 10 time-steps.

. for a random rule, followed by A for another Altenberg rule, and 4 for a random

initial state.

. to filter the space-time pattern repeatedly as required (unfilter with a). This highlights

domain boundaries (figure 4.10). Filtering applies only if the input-entropy plot is
active.

for a singleton seed, one random non-0 cell against a uniform background of 0s (5),
or a random singleton seed against a random but different uniform value or color (6).
Note that the pattern symmetry is conserved however many times the totalistic rule
is changed (try with r) because totalistic rules are isotropic.

4.8.4 Noisy space-time patterns

Its possible to introduce noise for any space-time pattern updating, in the 1d examples above, and
the 2d and 3d examples to follow. To do this:

While space-time patterns are running, enter one of the curly brackets on-the-fly, { for update
probability, } for output probability, which toggles between correct updating and 95% of cells
updating at each time-step, or 95% correct and 5% updating randomly, where 95% is the initial
default setting for both types of noise, which can be combined. Try this with “complex” rules
(on-the-fly g, section 4.8), and with the “Altenberg” rules (on-the-fly A, section 4.8.3).

Changing the default settings is described in section (section 31.4).

45

4.9 2d Space-time patterns

The 2d lattice is defined in the first top-right wiring prompts that appear after Neighborhood ...
during the main prompt sequence, starting with,

WIRING: special-s load-1 random-r
local: 3d-3, 2d-2(hex+x square+s), 1d-def:

Subsequent top-right prompts reset the network size n and neighborhood size k — previous
main sequence settings are superseded.

e

E: [
A colors by neighborhood look-up
Figure 4.11: Space-time patterns of the 2d game-of-Life, (k=9, n=66x66) with time-steps stacked
below each other in a isometric projection scrolling upwards. Left: starting from the “r-pentomino”
seed. Center: re-scaled to the smallest scale, with new seeds set on-the-fly at intervals.
Upper Right. The state at time-step 230. Lower Right: the same state colored according to the
neighborhood look-up instead of the value.

46 CHAPTER 4. QUICK START EXAMPLES

-.."l-—_ I " A S

P BN
kS &S

f1 — frozen purple, rest by value f2 — frozen 1s red, Os green bin — frequency bin colors

Figure 4.12: Space-time snapshots of the game-of-Life (k=9, n=66x66), time-step 230 as in
figure 4.11, but showing three alternative “frozen” presentations set on-the-fly (section 32.11.1). This
produces a time-trail behind gliders.

4.9.1 2d space-time patterns — game-of-Life

Backtrack with q (or right mouse button) to the start of the program.

1. At the very first prompt, enter s for SEED-mode.

2. At the second prompt Value range ...: enter 2.

3. Enter return until the top-right WIRING: prompt window appears, and enter 2s for a
hexagonal lattice.

4. At the next top-right prompt, 2d, enter width (def-40): enter 66, which is followed by
depth (def 66): enter return, for a 66 x 66 square lattice.

5. At the next top-right prompt,

Neighborhood size k: kmix-m, or enter 1-13 (def 3): enter 9.

6. Enter return until the main sequence prompt for rule selection appears,

Select v2k9 rcode (S=512): ... select life-L for the “game-of-Life”. The lookup-table of
the rule will be displayed as a bit pattern.

7. Enter return until the prompt Select SEED (v2 2d ij=66,66) ...: enter return for
a random block. Alternatively select empty-e to “empty” all cells to zero, then load-1 to
load a seed, then enter the filename “pento” at the LOAD SEED... prompt. This is the
“r-pentomino” pattern E that guarantees gliders. Alternatively, enter bits2d-b to draw the
seed (section 21.4).

8. Enter return until the top-center ‘basin parameters‘ banner appears, then enter s for

space-time pattern only.

9. The top-center banner changes to ‘space-time parameters‘ with the top-right prompt,
accept all space-time pattern defaults-d, enter d to skip special options.

The 2d space-time pattern is generated in the top-left corner of the screen. The on-the-fly
key index appears on the right of the screen. Try the following on-the-fly key hits (among others)
to see what happens.

47

Figure 4.13: Space-time patterns of the game-of-Life (k=9, n=66x66) consisting of time-steps stacked
in front of each other in a isometric projection scrolling diagonally upwards, with new seeds set at
intervals, and alternate time-steps skipped.

. to toggle cell color — according to the lookup neighborhood or the value.

. to toggle three ways of displaying “frozen” regions — the stability of the pattern
(figure 4.12).

. to restore the original seed.

. to toggle between the 2d display and an isometric projection scrolling vertically upwards.

. to toggle between the 2d display and an isometric projection scrolling diagonally upwards.

. to toggle skipping alternate time-steps.

. for a new random central block. 4 for a fully random seed.

. to expand/contract the scale of the space-time pattern.

=W

FW‘"U:H:;-PO

Enter q to interrupt and backtrack up the prompt sequence.

48 CHAPTER 4. QUICK START EXAMPLES

4 4 ;
(a) v2k7 majority rule (b) v2k7 modified majority rule
tcode=11110000. tcode=11101000.

Figure 4.14: 2d space-time patterns of a v2k7 CA on a hexagonal grid (240x240), from a random
initial state showing aggregating behavior.

4.9.2 2d Space-time patterns — binary totalistic rules

Backtrack with q (or right mouse button) and follow steps 1 and 2 as for the game-of-Life
(section 4.9.1).

1. Enter return until the top-right WIRING: prompt window appears, and enter 2x for a
hexagonal lattice. Any previous network and neighborhood size settings will be superseded.

2. At the next top-right prompt, 2d, enter width (def-40): enter 240, which is followed by
depth (def 240): enter return, for a 240 x 240 hexagonal lattice.

3. At the next top-right prompt,

Neighborhood size k: kmix-m, or enter 1-13 (def 9): enter 7.
This results in a hexagonal 2d lattice, where each cell has 6 nearest neighbors.

4. Enter return until the main sequence prompt totalistic: tcode-t...: enter t.

5. At the prompt Select v2k7 rule (S=128) ...: select select majm. The lookup-table of
the majority rule will be displayed as a bit pattern with a flashing cursor on the left bit.
Enter return to accept the majority rule 11110000 for figure 4.14(a), or first modify the bit
pattern to 11101000 (enter 1 or 0, arrow keys to move) for figure 4.14(b).

6. Enter return until the prompt Select SEED (v2 2d ij=66,66)...: enter rnd-r for a random
seed, then all-a for “all” of the lattice, as opposed to a central block.

7. Enter return until the top-center ‘basin parameters‘ banner appears, then enter s for

space-time pattern only.

8. The top-center banner changes to ‘space—time parameters‘ with the top-right prompt,

accept all space-time pattern defaults-d, enter d to skip special options.

The 2d space-time pattern is generated in the top-left corner of the screen. The on-the-fly
key index appears on the right of the screen. Try the previously mentioned key hits, or any others
listed.

49

(a) v3k6 kcode(hex)=0a0282815a0154 giving (b) v3k6 kcode(hex)=a0468298295220 (set at
spiral structures, from a random initial state. random) from a singleton seed.

Figure 4.15: 2d space-time patterns, v3k6 k-totalistic 2d CA on a hex lattice (240x240).

4.9.3 Multi-value 2d space-time patterns in TFO-mode

Backtrack with q (or right mouse button) to the start of the program.

1.
. At the second prompt Value range ...: enter 3.

At the very first prompt, enter t for TFO-mode, if not already active.

Enter return until a top-right WIRING prompt window appears,

WIRING: special-s load-1 random-r

local: 3d-3, 2d-2(hex+x), 1d-def: enter 2x for hexagonal 2d wiring.

Any previous network and neighborhood size settings will be superseded.

Enter return until the top-right prompt, 2d, enter width (def-40): enter 240, then at
the continuation prompt depth (def 240): enter return, for a 240 x 240 lattice.

At the next top-right prompt,

Neighborhood size k: kmix-m, or enter 1-25 (def 3): enter 6.

This results in a hexagonal 2d array, where each cell has 6 nearest neighbors.

Enter return until the main sequence prompt

totalistic only: outertot-o/4o0, tcode-t, (def-kcode): enter return for kcode.

At the prompt Select v3k6 rule ... : enter h to specify the kcode in hex. Then enter
0a0282815a0154 for the kcode in figure 4.15(a). To correct an entry use backspace or the
arrow keys.

Enter return until the prompt Select SEED (v3 2d ij=240,240), ... : enter return for
a random central block.

Enter return until the top-center ‘ space-time parameters ‘ banner appears, with the top-

right prompt, accept all space-time pattern defaults-d, enter d to skip special options.
To activate input-entropy, the default for 1d as figure 4.8, first enter e twice.

The 2d space-time pattern is generated in the top-left of the screen. The on-the-fly key index
appears on the right of the screen. Try the previously mentioned key hits, or any others listed.
Enter q to interrupt and backtrack up the prompt sequence.

50 CHAPTER 4. QUICK START EXAMPLES

‘Dﬁ OO ".f
e a®
- ¥
(a) 3d CA 20x20x%20, (b) 3d CA 40x40x40,
random v2k7 from a singleton seed v2k7 tcode=11101000

Figure 4.16: Examples of a 3d v2k7 CA, with a neighborhood arranged as a 3d cross. The projection
is isometric seen from below, as if looking up at the inside of a cage. Cells are shown colored according
to neighborhood lookup for a clearer picture (instead of by value: 0,1).

(a) a snapshot (20x20x20) with a randomly selected rule from a singleton seed.

(b) a snapshot (40x40x40) — the maximum size DDLab supports, from an initial state set at random,
but with a bias of 45% 1s. The rule is the same as in figure 4.14(b) showing aggregating behavior.

4.10 3d Space-time patterns

The 3d lattice is defined in the first top-right wiring prompts that appear after Neighborhood ...
during the main prompt sequence, starting with,

WIRING: special-s load-1 random-r
local: 3d-3, 2d-2(hex+x square+s), 1d-def:

Subsequent top-right prompts reset the network size n and neighborhood size k& — previous
main sequence settings are superseded.

4.10.1 3d Space-time patterns — examples
Backtrack with q (or right mouse button) to the start of the program.

1. At the very first prompt, enter s, enter s for SEED-mode, or t for TFO-mode.
2. Enter return until the top-right WIRING: prompt window appears, and enter 3 for a 3d
hexagonal lattice.
3. At the next top-right prompt, enter the width, depth and height.
3d, enter width (def-9): depth (def 9): height (def 9):

The maximum cube would be 40 x 40 x 40. The lattice has 3-torus boundary conditions.

o1

4. At the next top-right prompt,
Neighborhood size k: kmix-m, or enter 1-13 (def 6): enter 7.

The neighborhood is arranged as a 3d cross.

5. Enter return to accept further defaults, including the rule and seed, until the top-center
output parameters | banner appears (for SEED-mode), then enter s for space-time
pattern only. For TFO-mode this step is omitted.

6. The top-center banner changes to ‘space—time parameters | with the top-right prompt,
accept all space-time pattern defaults-d, enter d to skip special options.

The 3d space-time pattern is generated in the top-left of the screen. The on-the-fly key index
appears on the right of the screen. Try the previously mentioned key hits, or any others listed.
Enter q to interrupt and backtrack up the prompt sequence.

4.11 “Screen-saver” demo

Ligerara Liynzinies Lze =

early exit - in pre-image fan
hext tree-n, options-o, stop basin-q, cont-ret:m
T,

§ rule(hex) 29 05 48 05 da 84 44
d size-10 10-0.593 1d-r—0.889 z1-0.407 2—0.259 Z-0.407407 C-0/3

Figure 4.17: Screen-saver demo for Cellular Automata, v=3, k=3, n=10. Single basins with rules and
initial states chosen at random are generated at random positions in the DDLab screen. Keys E/C
expand/contract the scale on-the-fly.

52 CHAPTER 4. QUICK START EXAMPLES

The “screen-saver” demo? provides a continuous show of single basins of attraction or subtrees
popping up on the screen, generated at random positions, from random seeds, and according to
the network architecture selected. For each successive basin (or subtree) the rules or wiring are
mutated as specified in chapter 28 — the default is a random rule. For larger systems its unlikely
that the same basin would ever repeat.

For a screen-saver demo of a CA similar to figure 4.17, backtrack with q (or right mouse
button) to the start of the program.

At the very first prompt, enter s for SEED-mode.

At the second prompt Value-range v (def 2, max 8): select 3.
At the Network size ... prompt, select 10.

At the Neighborhood size k: ... prompt, select 3.

Enter return until the top-center ‘ basin parameters ‘ banner appears, then enter all-a to

U W

restore all defaults, then return until the savescreen demo -s prompt; enter s to accept
the option.

6. Then enter d to accept all further defaults, then return twice — the demo will start. The
rule picked at random will be shown in the bottom rule-window.

On-the-fly changes can be made while the savescreen demo is in progress (section 30.3). Keys
E/C expand/contract the basin scale Key m toggles the state-space matrix (section 4.3) — toggling
this off also gives a clean slate subsequent basins. Key s toggles the display of the “backwards”
space-time patterns (section 4.3). Enter q to interrupt and backtrack up the prompt sequence.
Try the savescreen demo with other setting of v, n, anf k.

4.12 RBN and DDN

Until now, the Quick Start Examples have dealt with cellular automata, which have a homo-
geneous local wiring template and a single rule throughout the network. A random Boolean
network (RBN), or the more general Discrete Dynamical Network (DDN, where v > 3), departs
from CA network architecture by allowing each cell in the network to have different nonlocal
wiring, a different rule, and a different number of inputs, k, or any combination of the above.
However, the value-range v must be homogeneous. The network can be assigned a wiring scheme,
rule scheme and k-mix in a variety of ways, including randomly (with or without biases).

just a wiring scheme may be set, the rule and k remain homogeneous, as in CA, by default.

just a rule scheme may be set, the local wiring template and k& remain homogeneous, as in

CA, by default.

e both a wiring scheme and rule scheme may be set, k£ remains homogeneous by default.
If v=2, this is what is usually understood as a random Boolean network (RBN).

e a k-mix may be set, which implies both a wiring scheme and a rule scheme, but the wiring

scheme remains local by default.

a network with a k-mix, a nonlocal wiring scheme and a rule scheme may be set.

2See also section 24.8

To generate attractor basins and space-time patterns for DDN, for any combination of
parameters listed above, the preceding examples in sections 4.2—4.11 can be adapted as described
below. Note that running backwards for networks with non-1d-CA wiring employs a different
algorithm, with a greater computational load than for 1d CA wiring (section 1.6.1), so when
generating attractor basins for non-1d-CA wiring, v, k, and especially n, should be kept small,
and 2d or 3d networks should be tackled with caution.

1. For random wiring (chapter 12), at the first top-right wiring prompt,

WIRING: special-s load-1 random-r
local: 3d-3, 2d-2(hex+x square+s), 1d-def:

2. select r for 1d random wiring — no further setting required.
3. select s for special wiring, which includes 2d or 3d random wiring, then follow further top-
right prompts as follows:

(a) 3d-3, 2d-2 (hex+x square+s), 1d-def: enter 2 for 2d.

(b) hand wire-h,
local 2d-2 (hex+x square+s), 1d-1, random-def:
enter return for random wiring.

(c) 2d: square edges, safe<255 max=2896 incr with causion!
enter i (def 40): j (def 40): enter return, or set the size.

(d) Neighborhood size k: kmix-m ... select k (try 5), or enter m for mixed-k, in which
case there will be a series of further prompts to set the k-mix (section 9.3), but just
enter return for a random k-mix.

(e) bias random wiring:. .. these further options (section 12.5) can be skipped with d.

(f) Note: any new entries here for n and k will supersede earlier entries.

4. Whatever wiring is defined, local or random, in any dimension, the next top-right prompt
(similar to below) allows the wiring to be examined in detail, and amended (section 17.1),

2d network (122x122), review/revise, wiring only - rules not set
graph-g, matrix: revise-m view-M prtx-Mp
graphic:1d+timestep-1 circle-c 2d-2:

5. After totalistic:... in the main sequence of prompts, a top-right window appears with
options for a single rule or a rulemix (chapter 14),

RULES: single rcode (def), load rcodemix-1, list Post-P, nhood-matrix-a
mix: no limit-n, or set limit up to 200:

Enter n for a rulemix, or return for a single rule.
6. If a random k-mix is required, stepping back with q to the main prompt sequence prompt,

Neighborhood size k: kmix-m, or enter 1-13 (def 3): enter m.

Various further options to set and bias the k-mix are presented (chapter 9). If in doubt enter
return. For a random k-mix for a 2d or 3d network, first select the random wiring in 2d or
3d as above.

7. Once rules have been set in the main prompt sequence, top-right options are presented to
examine and amend the resulting network in detail, wiring and rules, similar to this (also
applicable to CA),

54 CHAPTER 4. QUICK START EXAMPLES

1d network (n=150), review/revise/learn, wiring and rcode
graph-g, matrix: revise-m view-M prtx-Mp
graphic: 1d+timestep-1 circle-c 2d-2:

e Enter return to skip and continue, q to backtrack.

e Enter 1, ¢, 2 (or 3 for 3d) to review the network as a wiring graphic, using the arrow
keys and mouse clicks to examine the wiring and rules of chosen elements (chapter 17).

e Enter m or M to review the network as a wiring matrix (section 17.2)

e Enter g to review the network as a graph, which can be rearranged by dragging nodes
with the mouse (chapter 20).

e The options above have their own follow-up options described in the section listed.
Having set up the RBN or DDN, follow the guidelines in previous sections in this chapter to

generate attractor basins (for example figures 2.5, 2.6, 8.7), and space-time patterns (for example
figures 2.7, 16.9, 32.22).

Chapter 5

Starting DDLab

This and the following chapters provide the detailed program reference, listing and explaining all
the various options and prompts with examples of DDLab’s behavior. Before tackling this part
of the manual, its a good idea to try some of the “Quick Start Examples” in chapter 4 to get a
feeling and flavour of DDLab. This chapter includes starting DDLab, the initial DDLab “screen”,
and some permanently available options to save, load and print the DDLab screen image.

In Linux-like systems run DDLab from a terminal (xterm) window rather than directly from an
icon on the desktop, because messages and data are often shown in the terminal. Before starting
DDLab, make sure you are in the directory containing the DDLab executable files, or in the
appropriate sub-directory (section 5.1). The executable files downloaded from the DDLab website
will be similar to the following,

ddlabz06 ... for Linux-like operating systems
ddlabz06_dos32.exe ... for DOS. dos4gw.exe and *.fon files must be in the same directory.

The files in dd_extra.tar.gz are not essential for DDLab to run, but are required for some
functions. They can be placed in the DDLab directory, or in a subdirectory which can be changed
into within DDLab, or DDLab can be started from this subdirectory as shown in section 5.1 below.
In either case the subdirectory becomes the default directory for filing (chapter 35).

The latest instructions are provided in “readme” files such as dd_linux readme z06.txt,
dd_cygwin_readme_z06.txt, dd_mac_readme_z06.txt, and dd_dos_readme_z06.txt.

5.1 Running in Linux-like operating systems

For Linux-like systems (Unix, Linux, MacOSX, Irix, and Cygwin) enter,

ddlabz06 & ... if “dot” is in your path.
./ddlabz06 & ... if “dot” is not in your path.
../dd1labz06 & ... from a subdirectory of the DDLab directory (containing the files in

dd_extra.tar.gz).

i.e. the name of the executable followed by &, to retain control of the terminal (or xterm) window,
where information is often printed.

55

o6 CHAPTER 5. STARTING DDLAB

ddlahz03 64bit Sept2015 res=925x694 pt=10 randsead-3149538066
mouse huttons: left=ret right="q'=hacktrack

EXIT-q graphics-g randseed-r, TFO:totalisticAforward only-t
SEED:forward/single basin/suhtrees (FIELD-def) exLimits+L:8

‘DDL@ ©1993-2015 adv ret hack/i t-q i ‘

Figure 5.1: Typical graphical user interface when starting DDLab, with the command line argument
-w for a white screen.

On startup, the DDLab screen/window will appears, similar to figure 5.1. Information will
also appear in the terminal window showing if the system is a 32 or 64 bit, the resolution of the
computer monitor!, and the size of the DDLab screen within it, which is autamatically set to a
reasonable size for any screen resolution.

Here are some examples of startup messages in terminal window,

64 bit system
Display=1366x678 DDLabScreen=925x694 ...for a ThinkPad

64 bit system
Display=1440x690 DDLabScreen=975x732 ...for a Mac PowerBook

32 bit system
Display=3200x1800 DDLabScreen=2165x1624 ...for a Dell XPS13

Finally, “Using backing store” indicates that the DDLab screen will be restored in the usual

way when covered by other windows or moved off the screen?.

5.1.1 Linux within Windows — Cygwin

Compiled versions of DDLab are provided for Cygwin (CygwinX), a freely available Linux-like
environment for Windows. For notes on running DDLab in Cygwin see the Cygwin readme file.

IThe latest version, ddlabz06, is compiled in Ubuntu 16.04 LTS on a Dell XPS13 laptop with a resolution of
3200x1800 pixels.

2However, if DDLab is iconized, resized, or if the “desktop” (or “workspace”) is changed, the immediate current
contents in the screen may blank out, but the contents will reappear as DDLab continues.

5.1.2 Linux within Windows — VMware Player

VMware Player allows Linux Ubuntu (and other Linux distributions) to be setup as a “Virtual
Machine” within Windows. Within this, the compiled DDLab Linux versions provided will run in
the usual way, or the source code can be recompiled if necessary.

5.2 DOS within Windows

DDLab is still compiled for old fashioned DOS (MS-DOS) in the Watcom compiler, now open
source and freely available as Open Watcom 1.9 (http://www.openwatcom.org). DOS operation
differs according to the chronology of Windows versions, roughly as follows,

e In Windows 98 or prior, DDLab can run in pure DOS. There is an option “Restart the
computer in MS-DOS mode” where DOS takes over the whole screen. The resolution might
need to be changed to correspond to the monitor and graphics driver, otherwise fonts might
appear distorted (sections 5.7, 6.3.2).

e In later editions of Windows but prior to Vista and Windows7, DDLab can run from a DOS
“command line” window in low resolution, but this window can expand to full screen —
Alt+Enter toggles between the two.The initial resolution will be 640x480. Do not use the
program parameter -m or -h unless in full screen. In full screen the resolution should
be changed to correspond to the monitor and graphics driver (otherwise fonts may appear
distorted). However, before toggling back from a full screen to a DOS window, the resolution
must be changed back to “low” to avoid Windows warnings and unforeseen consequences. In
higher resolutions than 640x480 the mouse pointer will probably not be visible.

e In Vista, Windows7 and later, DOS no longer exists at the command line. However, DDLab
will run (slowly) in DOSBox, an open source MS-DOS emulator, intended for antique PC
games. For notes on running DDLab in DOSBox see the DOS readme file.

Enter dd1abz06 or the name of the DOS executable without the .exe extension. Alternatively,
from a subdirectory (ddfiles — containing the files in dd_extra.tar.gz)® of the DDLab directory,
enter ..\ddlabz06. This will keep files generated by DDLab in the ddfiles subdirectory.

Note that the Linux-like versions perform better, and are better supported, than the DOS
version, so Linux within Windows, either Cygwin (section 5.1.1) or VMware (section 5.1.2), are
better options than DOS.

5.3 Command line arguments

Command line arguments for various settings can entered after the executable name — first a
space, then a dash (-), then the arguments, without spaces, in any order, for example,

./dd1abz06 -wt & ... for Linux-like systems, where & is the final entry.

The following command line arguments are available,

31t may be necessary to copy the *.fon files into the ddfiles subdirectory.

http://www.openwatcom.org

o8 CHAPTER 5. STARTING DDLAB

W ... white screen
b ... black screen (the default)
t ... TFO-mode, totalistic rules and space-time patterns only - basins disabled

Additional commands for DOS only,

1 ... low resolution (VGA) 640x480
m ... medium resolution 800x600
h ... high resolution (SVGA) 1024x768

These setting can also be reset once DDLab starts.

5.4 The UNREGISTERED banner

On start-up (and also before exiting) an unregistered version of DDLab will first display the
following “UNREGISTERED” banner in the center of the screen. Press return to continue.
By registering (section 3.7) this annoying banner can be easily disabled.

UNREGISTERED, see www.ddlab.org, continue-ret:

5.5 Title bar

On start-up of a registered version (or if return is entered at the “UNREGISTERED” banner)
DDLab’s graphical user interface appears as described in figure 5.1. A title bar is displayed across
the foot of the screen, including a copyright reminder, the current mode if set (TFO, SEED, or
FIELD), and some reminders of key presses which can be activated whenever the prompt cursor
is flashing.

‘ DDLab (©1993-2016 advance-ret back/interrupt-q screen:print/save/load-Q/> /<

key press reminder ... what it means — permanently displayed
advance-ret ... enter return (or click the left mouse button) to register entries
to prompts (or accept defaults) and advance through the prompt
sequence.

back/interrupt-q ... enter q (or click the right mouse button) to backtrack through
prompt sequence or to interrupt a run.

key press reminder ... what it means — displayed while the prompt cursor is flashing
screen:print-@ ... enter @ to print the DDLab screen image, described in section 5.6.2.
screen:save/load >/< ... enter > to save, or < to load the screen image as a .nat file,

in DDLab’s own format, described in section 5.6.1.

The title bar displays other on-the-fly options while generating attractor basins (section 30.3),
or space-time patterns (section 32.2).

5.6 Saving, Loading and Printing the DDLab screen

The screen image can be saved and loaded within DDLab itself using its own file format.
Alternatively the screen image can be saved and printed as a PostScript file for Linux-like systems.
These options are permanently available while the prompt cursor is flashing.

5.6.1 Saving and Loading the screen in DDLab’s own format

DDLab has its own file format *.nat for saving and loading the DDLab screen image, which works
for both Linux-like and DOS versions. If > or < is entered at any time when the prompt cursor
is flashing, the following top-right prompt is presented,

SAVE SCREEN-filename(no ext) .nat will be added (if > is entered)
or

LOAD SCREEN-filename(no ext) .nat will be added (if < is entered)
then

change dir-d, now: /home/andy/sussex/ddlabz06: (for example)
list-?, quit-q, default myimage:

Filenames within DDLab (for all systems) follow the old DOS conventions: eight characters
plus a three character extension. Enter the filename without the extension (.nat) which is added
automatically, or accept the default filename myimage. There are further details on these filing
options, changing directory and listing files, in chapter 35.

When loading a texttt*.nat file there is a further option,

filename=myimage.nat REVISE-q keepscreen-k cont-ret: (for example)

Enter return to overwrite the existing screen with textttmyimage.nat, or k to add it on top.
Note that a DDLab screen image loaded as above can subsequently be saved and printed as
described in section 5.6.2 below for Linux-like systems.

5.6.2 Saving and Printing the screen in Linux-like systems

If @ is entered at any time when the prompt cursor is flashing, the DDLab screen can be printed
to the default printer, or saved as a bitmap PostScript *.ps file*. In the DOS version, although
this option to print (but not to save) still exists, it only works for some ancient printers, so is not
recommended.

In Linux-like versions of DDLab, the following prompt is presented,

save/print: without frame -s/p, with frame -S/P, no greyscale +n
then click mouse button in window, quit-q:

Enter s or S to just save, or p or P to save and print, were lowercase selects the DDLab screen
without its frame. Add n (i.e. sn) to save or print in black only, i.e. suppress greyscale or colors
- some lighter colors will not be printed.

1A PostScript file can be viewed with GhostView, in a terminal enter textttgv filename.ps.

60 CHAPTER 5. STARTING DDLAB

~
x - 0

cell value- e=2
color key:
cellstate: 1 0

keys: validraw-{1-0) vert-v move-arrows [1d 1=149 val=1 scalke=5 =1
mouse: move-click draw-drag width-w PSript-P file F

tog: gapsAlcolr/dots/divs/divcolr-g/*/./i/! contr-e/c xaxis{/]

rot-Lr/+/- flip-X comp-m back/cont-g/ret

EXIT-y graphics-g randseed-r, TFO:totalistic/forward only-t
SEED:forward/single hasin/subtree-s (FIELD-def) exLimits+L:s
Value range v (def 2, max 8): kLimit=13

range of network size-r:

Network size n, 1d (other: see WIRING]), def 14:150
Neighhorhood size k: kmix-m, or enter 1-13 (def 5):

totalistic: tcode-t keode k (def-reode):

4—

-3 Fuen F
31 15 0
Select v2kS reode (S=32): empty-e fill-f prtx-x val-v rmd-r

bits-h hex-h dec-d maj-m/ Alt-A life-L chain-¢ RD-R iso-irep-p load-1 (def-r):
1NZ- BAPS-E, & X peoml-gic olale-1ir annther-n bias-sfy Z-ud comp-m back-q accepl-rel

(dec) 1530369283
(hex)5h37 9503

Select SEED (v2 1d n=150) win-w empty-e fillf prtx-xval-v
rnd-r bits1d-b bits2d-B hex-h repeat-p load-1 (def-h):
segment: enter length (maccidef=150):

5

v3k5 reode(deci 1530389283 (hex)5h37 9503
1d size=150 1d=0.5 ld-r=1 P=0.5 z1=0.625 zr=0.5 Z=0.625 C=0/5
|DDLab ©1993-2015 SEED advanceret back/interrupt-q sereen:print/save/load-@/»/< |

Figure 5.2: The main sequence of prompts, for the most commonly applicable 1d CA parameters, are

presented down the left side of the screen, other prompts occur in various pop-up windows, for example
in the top right hand corner.

On pressing return the cursor becomes a cross-hair, —+ or X . Make sure this cursor is within
DDLab and click the left mouse button. The DDLab screen image will be saved as a bitmap
PostScript file called temp_window_file.ps (size about 285k) in the current directory. If printing
was selected, the file will be sent to the default printer. While this is happening the message wait
will appear in a top right window, followed by,

done - press any key to continue:

This reverts the program to the place before printing was selected. Note that the PostScript
file temp_window_file.ps remains current until overwritten with another print instruction®.
The following messages might show up in the terminal window,

pnmtops: writing color PostScript...
xwdtopnm: writing PPM file

pnomtops: warning, image too large for page, rescaling to 0.7 (for example)

The last indicates that the size of the DDLab screen was too large for the printer paper size, so
was automatically rescaled to fit. If the following error message is shown in the top-right window,

5To convert the PostScript to a PDF file, enter ps2pdf filename.ps in the terminal. The command to print a
postscript file from the terminal is (for example) 1pr -Pprintername filename.ps.

61

could not print --- xwdtopnm not found

or the following appears in the terminal window,

You need to set the environment variable ""XWDTOPNM_PATH""
to the full path of your xwdtopnm to print in greyscale

. consult your systems manager.
A more versatile way to save/print the DDLab screen, or a selected parts, is with XV°, or
another screen grabber. XV can grab, save, scale and print the image in one of the many file
formats, including GIF and bitmap PostScript. available.

5.6.3 Printing the screen in DOS

In DOS, the option to enter @ to print the DDLab screen is retained, but is largely redundant
because it only works for some ancient printers (Epson MX-82 dot matrix, Cannon BJC 4000
bubble jet). The alternative is to use a DOS or Windows compatible screen grabber.

5.7 DDLab version and graphics info

On startup a DDLab screen appears similar to figure 5.1, with information in a top-right similar
to this,

Linux-like systems

ddlabz06 64bit Feb2017 res=925x694 pt=10 randseed=3149538066

mouse buttons: left=ret right="q’=backtrack

DOS — screen resolution is 640x 480, 800x 600 or 1024x 768

ddlabz06 32bit Feb2017 res=640x480, randseed—=24081

mouse found: buttons: left=ret right="q’=backtrack (if a mouse is detected)
or mouse not found: ... (probably because of a missing DOS mouse driver)

This shows the following,

ddlabz06 ... the version of DDLab — check the latest at http://www.ddlab.org
32bit ... 32bit CPU, or 64bit CPU. 32bit works on a 64bit CPU but not vice-versa.
Feb2017 ... the release date.
res=925x694 ... DDLab screen resolution, which can be reset.
pt=10 ... the current text point size, which can be reset (also it weight).
randseed=24081 ... the random number “seed”, 32bit CPU unsigned short int, 64bit CPU
unsigned long int. The random number seed changes each time DDLab is
run, and can be reset to exactly repeat default parameters.
mouse buttons ... a reminder that the left mouse button is equivalent to return, and the
right mouse button is equivalent to q for backtracking through prompts.

In Linux-like systems the default DDLab screen resolution is automatically set to 925x694,
but can be resized by dragging with the mouse in the usual way, or set to an exact size
(section 6.3.1). In either case the text size will attempt to resize according to the screen width
but can be reset manually

Shttp://www.trilon.com/xv/ (enter xv & in the terminal)

http://www.ddlab.org
http://www.trilon.com/xv/

62 CHAPTER 5. STARTING DDLAB

In DOS the default screen resolution is 640x480 pixels (VGA), but can be set higher within
DDLab (section 6.3), or with a command line argument (section 5.3). In DOS, the resolution
should be reset to higher (or lower) only when DDLab in full screen mode.

5.8 The mouse pointer in DOS

In DOS and Windows the mouse pointer behaves as it should in VGA resolution (640x480),
and also in higher resolutions (SVGA) in Windows95 and prior. However, in Windows98 and
above, at higher resolution only, the mouse is recognised and present (its position can be tracked),
but it is not visible. This remains an unresolved problem.

5.9 Memory (DOS only)

DDLab allocates and frees memory as required. In DOS the RAM available is monitored, mainly
for diagnostic purposes. A top-center “memory window” shows the amount of RAM available
in bytes (including extended memory), for example ’mem:349049312 which is frequently
updated. Other information is also displayed in this window from time to time.

5.9.1 Virtual Memory

skip this section unless your computer is antique

You may create a swap file on disk to augment RAM, using Watcom’s “Virtual Memory Manager”
(VMM), and use more memory than your computer actually has. When RAM is not sufficient,
part of the program is swapped to the disc file until needed. The combination of the swap file and
available RAM is the virtual memory.

To specify virtual memory, set the DOS environment variable, dos4gvm by entering the following
at the DOS prompt,

set dosdgvm=[option[#value]] [option[#valuel]...
or
set dosdgvm=1 to accept all defaults

the VMM options and default values are listed below,

minmenm ... the minimum amount of RAM managed by VMM, default 512KB.
maxmen ... the maximum amount of RAM managed by VMM, default 4MB.
swapname ... the swap filename, default dos4gvm.swp in the root directory.
virtualsize ... the size of the virtual memory space, default 16MB.

For example, typing
set dos4gvm=maxmem#8192 virtualsize#32768 swapname#c:\ddlab\ddlab.swp

. at the DOS prompt before running DDLab gives 32MB of virtual memory in a swap file called
ddlab.swp in the ddlab directory. The virtual memory available will be displayed in the memory
window (section 5.9).

63

5.10 DDLab prompts, and backtrack

On startup, the first of a series of prompts is displayed, described in chapter 6.2. A flashing cursor
(usually green) prompts for input. Just enter return if in doubt, or the appropriate input from the
keyboard. Press q, backspace (or the right mouse button) to revise, return (or the left mouse
button) to accept and move on to the next prompt or routine. Just return (or left mouse button)
automatically selects a default.

To backtrack to the preceding prompt, or up the prompt sequence, or to interrupt a running
process such as space-time patterns or attractor basins, enter q (or right mouse button).

5.10.1 Prompts: main sequence and pop-up windows

Prompts occur in a main sequence for the most common 1d CA parameters, and also in various
pop-up windows for RBN/DDN, 2d and 3d networks, network architecture graphics, analytical
measures, data collection, presentation settings, and other special settings. Note that for 2d and
3d CA, and RBN/DDN, the main sequence prompts for the network “wiring” and neighborhood
size are superseded in the first pop-up window, labelled “WIRING”.

5.11 Exit DDLab

To exit DDLab immediately in Linux-like systems, enter Ctlr-q at any prompt. Otherwise
continue backtracking with q (required for DOS) beyond the start of the program. The following
central prompt will appear,

EXIT DDLab-q, Restart-ret: ‘ ‘

Enter q to exit (or return to restart). On exiting, the following message should appear in the
terminal, or at the DOS or command line prompt: DDLab clean exit. If not, a bug report would
be appreciated.

Chapter 6

The first prompt in DDLab

Prompts in DDLab are presented in a main sequence down the left side of the screen for the most
commonly applicable parameters including 1d CA. Other prompts are presented in various pop-up
windows (figure 5.2).

This chapter describes the very first main sequence prompt (figure 5.1) which makes basic
choices that set the stage for all subsequent DDLab operations: TFO-mode, SEED-mode, and
FIELD-mode (the default), and a new “exLimits” option (section 6.2.4) for extra limits which
allows greater (but risky) neighborhood size k, and network size n (sections 7.2 and 7.3). The first
prompt also provides pop-up windows to amend the graphics, and the random number seed.

6.1 TFO-mode, SEED-mode, FIELD-mode

e TFO-mode: constrains DDLab to run “forwards-only” for space-time patterns, at the same
time limiting the rules to various types of totalistic, outer-totalistic and reaction diffusion
rules. Totalistic rule-tables (kcode and rcode) are much smaller than full rule-tables (rcode).
All attractor functions, which depend on rcode (and their prompts) are disabled in TFO
mode. These constraints reduce memory load, allowing larger neighborhoods (section 7.2).
Selecting and deselecting TFO-mode can only be made at this first prompt. TFO-mode
requires an initial state or seed, in the same way as SEED-mode (below).

e If DDLab is not constrained in TFO-mode (above), there is a further choice,

— FIELD-mode: to show the basin of attraction field, which does not require an initial
state (the seed).

— SEED-mode: show anything else (other than TFO-mode) which does require an initial
state or seed: running forward for space-time patterns, or generating a single basin of
attraction, or a subtree.

The FIELD/SEED-mode setting can also be swapped when attractor basins are complete
(section 30.4). Note that totalistic rules, kcode and tcode, can also be selected in FIELD
and SEED-modes, but in this case the equivalent rcode will be applied.

64

65

6.2 The first prompt

The first (main sequence) prompt in DDLab is as follows,

EXIT-q graphics-g randseed-r, TFO:totalistic/forwards onty-t
SEED:forward/single basin/subtree-s (FIELD-def) exLimits—+L:

At the same time, a top right DDLab information window appears as described in section 5.7.

6.2.1 TFO-mode: totalistic forwards-only
Enter t to select TFO-mode. The first prompt changes:

EXIT-q graphics setup-g randseed-r, disable TFO allow basins-b
TFO:totalistic rules and forward only (def:) exLimits+L:

Enter return to continue in TFO-mode. Enter b to deselect TFO-mode, and restore the
original prompt in section 6.2.

6.2.2 FIELD, or a run requiring a SEED

If TFO-mode is not selected (section 6.2.1 above), a choice needs to be made between SEED and
FIELD-modes.

Enter return at the first prompt in section 6.2 for FIELD-mode (the default) to generate a
“basin of attraction field”, which does not require a seed because successive basins are seeded
automatically, starting with the null state (all 0’s).

Enter s at the first prompt in section 6.2 for SEED-mode, to generate any of the following,
which do require a predefined seed,

e forward space-time patterns, starting from a seed.

o single basin of attraction, containing a seed.

e subtree running backwards from a seed, or from a state downstream from the seed by a
predefined number of time-steps.

The seed will be set at later stages in the prompt sequence (chapter 21). Its easy to change
between forward, single basin and subtree at later stages.

6.2.3 Notice of the current mode

A reminder of the current mode set (TFO, SEED, or FIELD) will appear in the bottom title bar
(section 5.5), for example,

‘ DDLab (©1993-2016 FIELD advance-ret back/interrupt-q screen:print/save/load—@/> /<

66 CHAPTER 6. THE FIRST PROMPT IN DDLAB

6.2.4 The exLimits option

To activate the “exLimits” (extended limits) option and allow greater (but risky) maximum sizes
of both the network mp;, and the neighborhood kr;, enter L, or sL for SEED-mode, at the
first prompt (section 6). The resulting maximum sizes depend on your CPU and DDLab version®,
32-bit or 64-bit. The value-range v to be selected in section 7.1 also affects kr;n, (section 7.2), and
Nrim for FIELD-mode (section 7.3). For SEED-mode and TFO-mode np;,, is independent of v

(section 8.3). The following top-right notice (and prompt) is presented,

for SEED-mode, TFO-mode, or a 32-bit DDLab and CPU
caution! exLimits selected high values of k or n might exceed memory

for FIELD-mode and a 64-bit DDLab and CPU
caution! exLimits selected high values of k or n might exceed memory
enter total RAM+SWAP (def 4.00 GiB): (for a 32-bit CPU 0.5 GB)

With exLimits active, higher limits for the neighborhood size kp;, will be offered in
section 7.1.1.

For FIELD-mode with a 64-bit CPU, np;,;, (section 7.3) can be increased from the basic limit
of 31 depending on available memory — random access memory (RAM) plus swap-space (SWAP).
The default RAM+SWAP avaliable is assumed to be 4.0 gigabytes. Enter return to accept the
default, or enter a different measure of gigabytes for your computer?. The available memory and
the value-range v will set np;,. For example, for 4.0 gigabytes and v=2, nr;,=35. To increase
Nnrim by one usually requiers doubling available memory.

6.3 Graphics setup

Enter g in section 6.2 or 6.2.1 to change the window size, background color, font size and line
spacing (section 6.4), or flashing cursor speed (section 6.5). A new graphics screen shows the
current font and color palette. A top-right window gives prompts as below®. When the graphics
changes are complete the program will revert to the first prompt in section 6.2.

Uniz/Linuz

window size=925x694 resize/restore-w/W

character width=9 height=15 pointsize=10 revise/restore-s/S (for example)
colors: toggle background-b showold-o showall-a

flashing cursor speed-f quit-q cont-ret:

DOS

screen=640x480 change:1024x768-h 800x600-m (where h=high m=medium I=low)
colors: tog background-b

fontsize-s linespace-v

flashing cursor speed-f, quit-q cont-ret:

132-bit DDLab runs on a 64-bit CPU with 32-bit maximum sizes. 64-bit DDLab will not run on a 32-bit CPU.

2Memory information for Linux or Mac can usually be found by entering “cat /proc/meminfo” in a terminal.
One gigabyte (GB) = 10243 bytes, also known as a gibibyte (GiB).

3The same graphics setup prompt is available when running attractor basins (section 30.4) or space-time patterns
(section 32.17).

67

Figure 6.1: The smallest DDLab
screen in Linux, 300x250 pixels, that
can be set from the graphics setup
prompts. It is really too small to con-
SEf LI tain prompts and data. This example
has the default black background.

In Linux-like systems, the initial resolution of the DDLab screen is set at 925x694, but can be
resized with the mouse in the usual way, or a particular size can be set from these prompts. In
DOS there are three alternative resolutions, given an appropriate monitor and graphics driver.

6.3.1 The DDLab screen resolution, Linux-like systems

Enter w in section 6.3 to resize the DDLab screen to a particular size in pixels, or W to restore
the start size 925x694. The following top-right prompt is presented,

new window size (start=925x694, min 300x250, max=1366x768)
width (default 925): (for ezample)
height (default 694):

The smallest size allowed by this method is 300x250 shown in figure 6.1 and the maximum
is the monitor size. The window can also be resized by maximising, or dragging a corner with
the mouse in the usual way. Note that when the window is resized the font size is automatically
changed to an appropriate size, but can be revised (section 6.4).

6.3.2 The DDLab screen resolution in DOS

Section 5.2 describes the DDLab screen in pure DOS, and in a DOS or command line window
in various versions of Windows, which can be toggled to full screen with Alt+Enter. Once in
full screen enter 1, m or h in section 6.3 above to change the resolution, where 1=low:6404 x 480,
m=medium:800x600 and h=high:1024x768. Take care to reset low resolution before toggling
back to the DOS or command line window, to avoid bad things!

In pure DOS, the program parameters -m or -h can be entered, i.e. enter ddlabmO06 -h to start
in high resolution.

68 CHAPTER 6. THE FIRST PROMPT IN DDLAB

6.3.3 White or black background

Select b in section 6.3 to toggle between a black and white background. In both cases the new
color palette will be shown. A black background may look more elegant but is expensive in ink
when printing. References to colors in this manual are based on a white background. Colors on a
black background may be different. In DOS, toggling the background works in full screen, not in
a DOS window.

6.3.4 The color palette

The graphics screen shows a color palette of 16 colors (including black and white). In DOS just
these colors are used. In UNIX these are the main colors, but more colors are also used, and can be
seen by entering a (showall-a) in section 6.3, reverting to the 16 main colors with o (showold-o).
This feature is intended mainly for program development.

6.4 Changing the font size and line spacing

The default font size and spacing between lines of text can both be changed. The methods differ
between Linux-like systems and DOS.

6.4.1 Font size and line spacing, Linux-like systems
If s is entered in section 6.3, the following top-right prompts are presented in turn,

set new font size (min 7 max 35, now 10): weight, bold-2 medium-1
set new linespacing (now 15): (values shown are ezamples)

Enter the new font size, followed by weight, followed by new linespacing, or enter return
to accept defaults. The new settings will take effect immediately and appear in the Graphics setup
prompts (section 6.3) where they can be readjusted. Enter S to restore all the original defaults.

6.4.2 Font size, DOS

If s is entered in section 6.3, a new screen appears showing some text in numbered fonts of various
sizes, including a line segment font, and the following prompt,

font 5, to change enter font no: (values shown are examples)

Enter the font number corresponding to the new font.

6.4.3 Line spacing, DOS

If v is entered in section 6.3, the following top-right prompt is presented,
set new linespace (now 20): (values shown are evamples)

Enter the new line spacing.

69

6.5 Changing the flashing cursor speed

The default cursor flash speed is set automatically at about 0.5 seconds independent of your CPU
speed. However this is not always reliable — to adjust the flash rate enter f in section 6.3. The
following top-right prompt is presented,

change flashing cursor speed(1.0): restore-r(1.0) or enter factor:

Enter a factor to slow down or speed up the current flash rate. For example to make it twice as
fast as the current speed enter .5. For twice as fast enter 2. To restore the default setting enter r.

6.6 Random number seed

A new random number seed is generated by the computer’s “timer” whenever DDLab is started.
To change the random number seed, enter r at the first prompt in section 6.2. A specific random
number seed can be set, or a random random number seed. The following prompt appears in a
top-right window,

enter random number seed 0-4294967295 (rnd-def):

Using the same random number seed results in the same sequence of pseudo random numbers
being produced by the random number generator. This allows identical multiple runs using
default random settings of network parameters such as wiring, neighborhood mix, rules and initial
state. Alternatively these setting can be loaded from previously saved files.

Chapter 7

Value-range v, and n,k limits

cell value a=2
color key:
cellstate: 1 0
Figure 7.1: The cell value color key cell value-
top-left window appears when the "Ulﬂrkﬂﬁ'rﬁg-m
value-range is selected, and also at cellstate: 2 1 0
other times, with the colors indexed cell value-
from v-1 to 0. culurkeyrﬁg- L]
] . cellstate: 3 2 1 0
Right: The color key windows for
value-range v= 2 to 8, on a white ceuvam‘”ﬁg-
back gd color key: .D
ackground. cellstate: 4 3 2 1
Below: Colors are different on a black ol Y
background (section 6.3.3) — the culurkey:lﬁg-.DDD
v=8 black background color key. cellstate: 5 4 3 2 1 0
cell value- e="7
cell vale range = 8 color key: EEEACL]
color key: .g . DDDD cellstate: 6 5 4 3 2 1 0
cellstate: 7 6 5 4 3 2 1 0 call vaha a=18
color key: . . D D D D
cellstate: 7 6 5 4 3 2 1 0

The “value-range”, v, available to a cell or network element, can be set from 2 to 8, which can
be thought of as the number of its potential internal states, colors, or the size of its “alphabet”.
Greater v limits the maximum neighborhood size kr;,, (section 7.2), and also, for basin of attrac-
tion fields, the maximum network size, nr;,, (section 7.3) — this chaper describes the basic and
extended limits. Note that for SEED-mode and TFO-mode, ny;,, is independent of v (section 8.3).

7.1 The value-range prompt
The value-range prompt, the second prompt in the main sequence, is as follows,
Value-range v (def 2, max 8): (v=2 on startup — then defaults to the last v that was set)

Enter a new value-range (which becomes the new default) or enter return to accept the default.
The selection of the value-range can only be made at this early stage in the program.

70

71

7.1.1 extending k;, with exLimits

If “exLimits” was activated in section 6.2.4, after the value-range prompt in section 7.1 above, the
following top-right prompt is presented to set an extended maximum neighborhood size, krim,

change -/4 max neighborhood (kLimit): increase with caution!
enter new kLimit (def 13, max 27): (for basic v=2, FIELD mode, and 64bit CPU)

The maximum kr;, (and the default) depends on the value-range v, the current mode —
FIELD, SEED or TFO, and your CPU and DDLab version, 32-bit or 64-bit, as set out in table 7.1.

For FIELD-mode and high walues of kr;;,, a top-right notice will monitor the progress of
setting up the rcode k-matrix (sections 13.3 and 13.5), for example,

setting up k matrix: abort-q: 32%

For higher values of kr;,, this can take some time! — enter q to abort and revert to the
“extending limits” above.

7.2 Limits on neighborhood size, kj;,,

The upper limit of neighborhood size (krim,)? decreases with increasing value-range v because
rule-tables become too large. The size, S, of a full rule-table (rcode) is given by S=v*, which is
larger than a k-totalistic rule-table (kcode) where S=(v+k — 1)!/(kl(v — 1)!), so kr:m is bigger in
TFO-mode (section 13.2.1).

Other factors affecting k1, are “exLimits” (extended limits), the option that allows high values
of k and n which may be risky (set in sections 6.2 and 7.1.1), and whether DDLab and your CPU
are 32-bit or 64-bit. All possibilities of kp;,, are set out in table 7.1 for v= 2 to 8, including the size
of the corresponding rule-tables, S, and this information is included in the prompts. There is a
distinction in kp;., between “basic” limits — relatively safe sizes, and extended limits “exLimits”.

Note that kp;m, does not exceed 27 because this is the maximum k in predefined neighborhood
templates, described in chapter 10.1.

7.2.1 TFO-mode with high v, k

High values of v, k (values-range combined with neighborhood) as in table 7.1(b), can result in a
longish delay while constructing the v, k kcode tree, required in TFO-mode irrespective of whether
kcode or tcode is later selected.

While the kcode tree is being constructed (with no abort option) a top center panel monitors
progress as a percentage.

setting up kcode 95% | (for ezample)

If this delay occurs, it will be after the “WIRING” prompt in section 11.1.

L About 20min for the highest kz iy, values with “exLimits” active, on my ThinkPad laptop running ubuntu 11.10.
2Note that k1im is different from kj,q. which is a deliberate selection of the maximum k in a k-mix, a network
with mixed neighborhood sizes, kmaz < KLim-

72 CHAPTER 7. VALUE-RANGE V, AND N,K LIMITS

applies to 32bit and 64bit

basic — safe exLimits — risky > safe(a)
FIELD/SEED | TFO kcode TFO kcode
v | krim S kLim S v | kLim S
2 13 8162 27 28 2 27 28
3 9 19683 27 406 3 27 406
4 7 16484 26 33654 4 27 4060
5 6 15629 25 23751 5 27 31465
6 5 16807 17 26334 6 27 201376
7 5 16807 13 27132 7 25 593775
8 4 4096 11 31824 8 20 888030
(a) (b)
32-bit 64-bit
exLimits — risky exLimits — risky
FIELD/SEED FIELD/SEED
v kLim, S v kLim S
2 23 8388607 2 27 134217727
3 14 4782968 3 19 1162261466
4 11 4194303 4 15 1073741823
5 9 1953124 5 13 1220703124
6 8 1679615 6 11 362797055
7 8 5764800 7 11 1977326742
8 7 2097151 8 10 1073741823

(c) (d)
Table 7.1: The upper limits of k (k) and the sizes S of rule-tables for different value-ranges v.
FIELD/SEED-modes (rcode) are capable of computing basins of attraction or subtrees. TFO-mode
(kcode or tcode) have smaller rule-tables so kr;, can be larger. Other factors allowing greater but
risky kpm are “exLimits” and whether DDLab and your CPU are 32-bit or 64-bit.

basic — 32-bit and 64-bit — safe exLimits — 64-bit — 4.0 GB risky
v | Npim | v"~billions | memory~GB v | Npim | v"&billions | memory~GB
2 31 2.15 0.25 2 35 34.36 4.00
3 20 3.49 0.41 3 22 31.38 3.66
4 15 1.07 0.13 4 17 17.18 2.00
5 13 1.22 0.15 5 15 30.52 3.56
6 12 2.18 0.26 6 13 13.06 1.53
7 11 1.98 0.24 7 12 13.84 1.62
8 10 1.07 0.13 8 11 8.59 1.00

Table 7.2: For a basin of attraction field (FIELD-mode) the tables show the maximum network size,
Nrim, for different value-ranges v, the corresponding maximum state-space v™ in approximate billions,
and the memory required in gigabytes (GB). Left: basic npy,. Right: increased np;, with exLimit set
and default available memory of 4.0 GB — usually doubling memory increases 11, by one.

These limits also apply to the maximum number of most significant bits/values for the state-space
matrix (section 31.2.2.1).

73

7.3 Limits on network size for FIELD-mode, n;,,

For basin of attraction fields (FIELD-mode) the upper limits® of network size np;,, decrease with
the increasing value-range v, as set out in table 7.2, and these limits are included in the prompts.
In practice much smaller sizes are advisable because of probable time/memory constraints. To
increase np;;, beyond the basic settings (64-bit only), select “exLimits” in section 6.2, and set the
available memory (RAM+SWAP) as described in section 6.2.4 — the default is 4.0 GB.

7.4 exLimits risks and insufficient memory

Extending kpm or np:, to high values with “exLimits” can be risky because it can test your
available memory or your patience — attractor basins for large networks can take a long time.
Various progress reports and warnings are provided, but if RAM+SWAP is exceeded for any
reason DDLab usually exits gracefully with a top-left notice similar to the following,

insufficient memory for tickoff-FIELD (for ezample)
image: print/save-p/s, options-o
return to Exit:

If this fails for any reason, in Linux-like systems use “top” to “kill” the DDLab process.

7.5 Limits on network size — exhaustive algorithm, n.,;s,

The exhaustive reverse algorithm (section 29.7) relies on computing the sucessor of every sate in
state-space — a list of v™ “exhaustive pairs”, so is highly sensitive to increasing network size n
but independent of neighborhood size k, though the kr;,, in table 7.1 still applies. The network
size limits me,pr for the exhaustive algorithm for both FIELD-mode and SEED-mode (single
basins and subtrees), are shown in table 29.1 and do not depend on “exLimits” (section 7.1.1).
The exhaustive algorithm applies to random maps (section 29.8) and sequential /asynchronous up-
dating (section 29.9), as well as providing an alternative reverse algorithm for CA, RBN and DDN.

3These limits are required so that the size of state-space v™ is within the maximum value of an unsigned long
integer, 232-1 for a 32-bit CPU and 264-1 for a 64-bit CPU. This number is used to index bits in a char array that
identifies “used” states, and this array must also fit within available memory: RAM+SWAP.

Chapter 8

1d network size n, or range-n

This chapter describes setting the 1d network size n, or a range of sizes. Setting the size of 2d or
3d networks, as well as other special options, is done at a later stage (section 11.6) in which case
any 1d size will be superseded and can be ignored by entering return.
1d n is set here in the main sequence of prompts (as is k in section 9) to simplify setting up
CA attractor basins, which are usually 1d, and to run 1d CA forward for space-time patterns.
The chapter also looks at the upper limits of n in DDLab, and the practical computational and
speed limitations of combinations of v, k and n for attractor basins, with examples.

8.1 Setting range of sizes, 1d

In FIELD-mode, it is possible to generate a series of basin of attraction fields for a range of 1d
network sizes (figure 8.1), with the network size printed on the left of the screen. The presentation
is similar to the “Atlas” in “The Global Dynamics of Cellular Automata” [34]. In SEED-mode,
single basins or subtrees for a range of network sizes may also be generated. If not in TFO-mode,
the following main sequence prompt is presented,

range of network size-r:
If r is selected, top-right prompts are presented to set the start and end size of the network,

FIELD-mode range n: safe<=20 exceed with caution! nLimit=31
range size n: start (def 6): end (def 15): (for v=2)

SEED-mode range n: safe<=27 exceed with caution! nLimit=131071
range size n: start (def 13): end (def 18): (independent of v)

For FIELD-mode defaults depend on the value-range v, in SEED-mode they are independent
of v. Enter the start and end sizes, or enter return to accept the defaults, taking care to avoid
excessively large sizes (section 8.3 below). Maximum network sizes in FIELD-mode are shown
in table 7.2. In SEED-mode, large sizes' are only practical for “chain rule” subtrees (see 16.11)
because of time/memory constraints.

LFor 64-bit systems and exLimits set, nLimit=67108863 in SEED-mode

74

(6]

10.

11.

12.

Figure 8.1: Basin of attraction fields for a range of network size 5-12. v2k4 rcode(hex)=61a4.

8.2 Setting the size of one network, 1d

If a range of sizes was not selected in section 8.1, the size of a single 1d network is set with the
next main sequence prompt — one of the following is presented, depending on the current mode
— FIELD, SEED, or TFO (selected at the first prompt, section 6.2),

for FIELD-mode

Network size n, max 31, default 10: (for v=2, maz n depends on v, section 7.3)
for SEED-mode

Network size n, 1d (other: see WIRING), def 14:

for TFO-mode

Network size n, 1d (other: see WIRING), def 150:

Enter the required 1d network size, n. The 1d network size can also be set later as part of
the wiring options (chapters 11 to 12), where 2d or 3d network sizes are set, in which case these
prompts in sections 8.1 — 8.2 are superseded and may be ignored with return.

76 CHAPTER 8. 1D NETWORK SIZE N, OR RANGE-N

oﬁyoéof%o‘o}
I S I S

Figure 8.2: Single basins for a range of network sizes containing the state all 0s, n= 1 to 15, v4k2
rcode(hex)=a7857c0d.

Figure 8.3: Subtrees for a range of network sizes from a root state containing from the string 3210,
which is highlighted, n=4 to 15, v4k3 rcode(hex)=1c49a5b05dbcdd148377635fb0b60d84.

At the same time that the network size main sequence prompts are presented, a top-right
warning is displayed as follows,

for FIELD-mode
FIELD-mode: network size n: safe<=20, nLimit=31
exceed with caution! (for v=2, for limits in general see section 7.3)

for SEED/TFO-modes — SEED-mode shown
SEED-mode: network size n: safe<=65535, nLimit=8388607 (or 429/967295)
exceed with caution! can be reset in WIRING for 1/2/3d, rnd/special

The network size n cannot be greater than nr;,,, described in section 8.3 below. If a larger n
is selected, the default n is applied with a message similar to the following,

. :33 too big! n=10 (for FIELD-mode, nrim is listed in table 7.2)
. :8400000 too big! limit=8388607! n=14 (for SEED/TFO-mode)

7

8.3 Network size limits

Network size limits are also discussed in sections 1.6.1 and for FIELD-mode they are listed in
section 7.3 for values-range v. For SEED/TFO-modes np;,, is independent of v. To summarize,
the upper limit of network size, nr i, supported by DDLab is as follows,

for FIELD-mode

Basin of attraction fields: np;,, is set out in table 7.2, and varies according to value-
range v (from 2 to 8), and if “exLimits” is set in a 64-bit CPU (section 6.2.4). For
v=2 and basic limits, nr;,=31 (figure 8.6) and for v=8 nr;»=10. In practice
n should be well below these maximum limits.

for SEED-mode running backwards

Single basins and subtrees: n;,=8388607, or 4294967295 if “exLimits” is set in a
64-bit CPU (section 6.2.4). In practice n should be very much below these
maximum limits. For a single basin try n=18, for a subtree n < 50 — but for a
practical size try n=25. However, the subtrees of “chain rules” (section 16.11)
can be run backwards for extremely large n, as in figure 8.4.

for SEED-mode running forwards, and TFO-mode

Space-time patterns (1d, 2d or 3d): np;,;,=8388607, or 4294967295 if “exLimits” is
set in a 64-bit CPU (section 6.2.4). For 2d i,j or 3d 4,7, h any sub-multiples
of n apply: giving a square with sides 2896 (or 65535), a cube with sides 203
(or 1625). For reasons of speed and memory, much smaller sizes are appropriate.
For 1d networks shown in 1d, a preferable size is n=150 to 200, to fit the screen
and for a clear view of analytical graphic windows, but to see these windows for
larger 1d networks, they can be shown in 2d or 3d.

8.4 Computational and speed limitations for attractor
basins

In general, large networks (size n) may be run “forwards” to generate space-time patterns, and
also find attractors for rules with a low Z-parameter [411], but only networks with modest n can
be run “backwards” to generate attractor basins. Of these, a subtree allows the largest networks,
and basin of attraction fields the smallest. If in doubt, small sizes should be tried first. Larger
sizes might exhaust computer memory or take an excessive length of time to compute, especially
for networks other than local 1d CA.

It is not only n that effects the computational and speed limitations for attractor basins.
The complexity, thus speed, of computation for running backwards to find predecessors, and gen-
erate basin of attraction fields, single basins or subtrees, depends on a combination of v, k and n.
It also depends on the reverse algorithm, which is different and slower for random (nonlocal) wiring;
if wiring is local 1d, the faster algorithm is applied, even if rules are mixed.

The speed also depends on the quality of the rule itself — how “branchy” are the resulting
subtrees, the “in-degree”. Typical in-degrees (number of predecessors of states) are predicted by
a rule’s Z parameter [41] which varies between 0 and 1, or the average Z across the network for

78 CHAPTER 8. 1D NETWORK SIZE N, OR RANGE-N

Figure 8.4: A subtree for a 1d CA chain-rule for a large network. n=1600 shown as 40x40, v8k4. The
root state of the subtree is located left of center.

RBN and DDN. A rule with low Z will have high “in-degree” (characteristic of “order”), thus
short transients; excessive in-degree can overwhelm computer resources. On the other hand, a rule
with high Z will have low in-degree (characteristic of disorder or “chaos”), allowing subtrees for
large n to be computed, but transients and attractor periods tend to be extremely long, making
basins of attraction difficult to reconstruct. The subset of “chain-rules” (section 16.11) have the
lowest in-degree, usually just one, which does not increase with n; 1d CA chain rules can therefore
be run backwards for extremely large n, as in figure 8.4.

Finally, the speed will of course depend on the computer itself and what other programs are
running.

8.4.1 Times for basin of attraction fields

The elapsed times to generate basin of attraction fields for a range of v, k and n, for CA, RBN
and DDN, on a 1.66GHz Laptop running Linux/Ubuntu 6.06? are shown in tables 8.1- 8.4. below.
These times are displayed as part of the data in a top-right window when the field is complete
(section 27.2).

The system size n that is appropriate for generating attractor basins in a reasonable time for
combinations of v and k can be inferred from these examples. Large sizes may be tried, but may
impose unacceptable time, memory and display constraints. Single basins, and especially subtrees,
may be generated for relatively much larger systems, especially for chain-rules (section 16.11),
or close mutants of chain-rules, which have low in-degree.

2Lenovo 3000 N100 Laptop, Duo processor T2300e 1.66GHz, 1024 Mb RAM, running Linux Ubuntu 6.06.

79

18. TpPhoeseie o

19, [RN

20. *EB e B

21. EPeoeBoecPes

22, $rero0 000080 ..

23, & . s s 5 8 8w

24, ’“PE..-*.------------

Figure 8.5: Basin of attraction fields for a range of network sizes, v2k5, n=18 to 24, to assemble part
of the data for table 8.1 below.

Uigeraiz Lyglzies bzlo E=dhEd focd

graphics-g ops-o spesd{max)-s - | basin types=17 total hasins=407
toggle:field-single-t STP-P y 2 (n=31 field=2147483648 g=1729328211=0.805 450min 11.01%sec

net-n back-q cont-ret:m i
T *<*}”

L

v2k3 reode(dec) 110 (hex)6e
1d size=31 1d=0.625 1d-r=0.75 P=0).625 21=0.75 zr=0.625 Z=0.75 C=0/3

DDLeb @1993-2010 FIELD advanceret back/intermupt-q screen:print/save/load-@/>/<

Figure 8.6: The basin of attraction field of v2k3 rcode (dec)110, for n=31, which is the usual nr,, for
v=2, elapsed times to generate 7.5 hours. The field is shown on the DDLab screen, with compression
on (section 26.2), equivalent trees and subtrees suppressed (section 26.2.3), and nodes suppressed.
(section 26.3).

80

14.

15,

16.

17.

18.

19.

20.

CHAPTER 8. 1D NETWORK SIZE N, OR RANGE-N

Figure 8.7: Basin of attraction fields for a range of network sizes, RBN, v2k3, n=14 to 20, to assemble
part of the data for table 8.3 below.

8.4.2 Examples for 1d CA

Examples of the time needed to generate the basin of attraction field of some 1d CA rules for a
range of v, k and n, are shown in tables 8.1 and 8.2. The rules are specified in hex for v=2, and as
the rule filenames for v > 3.

n 18 19 20 21 22 23 24 | k and rule (hex)
2.2s | 4.6s | 9.4s | 19.4s 40.2s | 1m 23s | 2m 52s | k=3 rule ¢l (dec) 193
time | 3.8s | 6.8s | 13.9s | 28.8s 58.0s | 1m 59s | 4m 10s | k=4 rule €924
9s | 10s | 20.9s | 41.8s | 1m 26s | 2m 5ds 6m Os | k=5 rule b755d3d9

Table 8.1: Times for increasing k& and n for v=2, basin of attraction fields, 1d CA.

n 12 13 14 15 16 17 18 v and rule file
7.2s 18.5s 59s | 3m Os | 84m 54s | 27m 558 | 100m | v=3 s_v3k3.rul

time 6m 56s | 20m 37s | 109m v=4 s_v4k3.rul
132m 34ss v=b s_vbk3.rul

Table 8.2: Times for increasing v and n for k=3, basin of attraction fields, 1d CA.

8.4.3 Examples for RBN and DDN

A similar exercise for RBN and DDN gave the timings shown in tables 8.3 and 8.4.

The same rules were used as for the CA in section 8.4.2, shown in hex for v=2, and as rule
files for v > 3. However, the random wiring was not recorded. Note that it is the random wiring
that requires a different and slower reverse algorithm, not the inhomogeneity of rules, so having
one rule still provides a good indication of the speed, and allows a meaningful comparison between
the various examples.

81

n 14 15 16 17 18 19 20 | k and rule (hex)
0.81s 4.4s 8.4s 24.6s 39.2s | 1mb0s | 4mbdss | k=3 rule cl (dec: 193)
time | 10.7s 25.7s | 1mb3s 4m19s | 12m31s | 26m46s | 64m40s | k=4 rule €924
32.3s | 2mb0s | 9m1bs | 15m24s | 75m28s 143m 195m | k=5 rule b755d3d9

Table 8.3: Times for increasing k& and n for v=2, basin of attraction fields, RBN.

n 10 11 12 13 14 v and rule file
8.0s 2mbs | 9m20s | 28m7s | 152m | v=3 s_v3k3.rul

time | 9m2s | 59m43s | 268m v=4 s_v4k3.rul
223m v=>5 s_vbk3.rul

Table 8.4: Times for increasing v and n for k=3, basin of attraction fields, DDN.

Chapter 9

Neighborhood, k, or mixed-£

This chapter describes setting a homogeneous 1d CA neighborhood k with local wiring (nearest
neighbour, next nearest etc.), or a k-mix (a mix of k sizes) with the exact k-mix to be specified
in a top-right window. Randomizing this wiring (making it nonlocal), setting 1d, 2d or 3d wiring,
and other special wiring options come at a later stage (chapters 11, 12) — in that any 1d k entries
in this chapter will be superseded, and can be ignored by entering return.

1d k is set here in the main sequence of prompts (as is n in section 8) to simplify setting up
CA attractor basins, which are usually 1d, and to run 1d CA forward for space-time patterns.

9.1 Selecting k, or a k-mix, for 1d networks

To set the neighborhood size k, or a k-mix for 1d networks, the following main line prompt
is presented, where the default k and kr;, depend on TFO-mode (section 6.1), value-range v
(section 7.1), and “exLimit” (sections 6.2.4 and 7.1.1) as previously set,

Neighborhood size k: kmix-m, or enter 1-13 (def 3): (for ezample)

Enter the required value of k (or m for a k-mix). A valid k set here becomes the new default.
If the k entered is larger than kr;,, (section 7.2) the default k is applied with the following
message,

. :33 too big! k=3 (for example)

If m is entered for a k-mix, the actual mix will be set in section 9.3 below.
At the same time that the “Neighborhood” promp above, a top-right notice is displayed as
follows,

k and kmix can be reset in WIRING for 1/2/3d, rnd/special

This is a reminder that k, the k-mix, the network wiring for 1d, 2d, and 3d, and other special
features can be reset in subsequent wiring options (chapters 11, 12), so the main sequence prompt
can be ignored by entering return.

Once the network’s rule or rules have been set (chapters 13 to 16), the network’s k or k-mix may
be “neutrally” modified, both by increasing k or reducing to effective k (sections 18.7.1—18.7.3),
for the network as a whole or for a particular cell.

82

83

9.1.1 kr;, and minimum £k

The maximum number of input wires to a cell, kr;m, is constrained by increasing value-range
v (section 7.2) because rule-tables get longer, bearing in mind that rcode (FIELD/SEED-mode)
has longer rule-tables than kcode (TFO-mode). All possibilities of k., are set out in table 7.1
and depend also on your CPU and DDLab version, 32-bit or 64-bit, and if “exLimit” is active
(section 6.2.4) and if so whether kr;, was extended (section 7.1.1). For example, for basic rcode
krim=13 for v=2 and kr;,,=4 for v=8, but for 64-bits and exLimit applied kr;,,=27 for v=2 and
krim=10 for v=8, though these higher limits can test your available memory or your patience
(section 7.4). For basic kecode k., =27 for v=2 and kr;,,=10 for v=8. Note that kp;,, is different
from k,,q, which is a deliberate selection of the maximum k in a k-mix, kmaee < KLim-

9.2 Effective £=0

Setting k=0 directly is illegal in DDLab. For effective k=0 you need single self-wiring and a neutral
rule that conserves a cell’s value. Set k=1 with the cell wired to itself (local wiring in 1d, 2d or
3d), and set its rule-table as follows,

rule-table hex dec
10 02 2 Table 9.1: Effective k=0 neutral rules — the
210 24 21 .
3910 1 558 same for all rule types. v=2 to 8, for single self-
c wiring, where k=1 is wired to itself. The rules
43210 4688 2930

can be entered in three alternative ways — as
a bit/value rule-table, as the equivalent in hex-
adecimal (hex), and in decimal (dec).

543210 | 02c688 44790
6543210 | 1ac688 800667
76543210 | fac688 | 16434824

O || U x| W N2

Because k=1 these rule-tables are exactly the same for all rule types, rcode, kcode and tcode.
Setting a neutral rule to a self-wired cell ensures that the cell is not receiving any inputs from
other cells, and that it will conserve its current value. However, other cells may receive inputs
from the effective k=0 cell. DDLab can identify any self-wired k=1 cells in a mixed-k network,
and gives an option to set the rule at these cells to make them effectively k=0 automatically
(section 14.3), or this can be done by hand — the easiest way is to “kill a cell” from the 1d wiring
graphic (section 17.9.9). Setting effective k=0 is useful for providing a fixed input signal to a
network, or potentially for an arbitrary external input.

9.3 Specifying the k-mix
If m is selected in section 9.1 above, the following prompt appears in a top-right window,

set k-mix: load-1 hand-h norm-n power/specify-s rnd-(def):
(norm-n only if n > kpim — i.e. not for very small networks)

The k-mix can be set in a variety of ways described below. Note that settings for particular
cells in a k-mix can be changed later in the “wiring graphic” options (chapter 17).

84 CHAPTER 9. NEIGHBORHOOD, K, OR MIXED-K

9.4 Loading a k-mix file

Enter 1 in section 9.3 above to load the k-mix as a .mix file (section 35.3). The file would have
been saved in sections 19.5 or 9.11.3. If the file is for a bigger network, as much k-mix data
as will fit into the current network will be loaded, starting from cell index 0. If on the other
hand the file is for a smaller network, all the data will be loaded from cell index 0, the ex-
cess cell indexes will be allocated a uniform background k-mix with the following top-right prompt,

k-mix loaded (10) less than net size (150) (values shown are examples)
enter background k-mix 1-13, (default 5):

The k-mix encoding is described in section 19.3.1. The k-mix can be also be save/loaded in
Network filing options — section 19.1 (see also section 17.9.12).

9.5 Setting the k-mix by hand

If h is selected in section 9.3, a series of prompts allow the k at each cell index (starting from 0)
to be set.

set neighborhood size (1-13) at cell 0 (back-b restrnd-r):

Enter the required k, or return for a random k value between 1 and kp;,,. b allows backtracking
to the previous cell index. Enter b to assign k at random for all remaining cells.

9.6 Setting a normal distribution

Enter n to set a normal (Poisson) distribution of the frequencies of different k. This option does
not apply for very small networks, when n < kp;,. The distribution is achieved by assigning
potential links at random to the network, up to a preset limit. However, every cell will be assigned
at least one link. The following top-right prompts are presented in sequence,

set k upper bounds (def 13, limit 13):
set average k (def 2.60, max 8.67): (values depend on k upper bounds)

Enter the upper bounds of k for the distribution, followed by the target average k in the
network. An example of a normal distribution is shown in figure 9.1 generated in section 9.11.

III Figure 9.1: An example of a normal
Poisson) distribution of the frequen-

_-.I I.--__ (I fd'mzf t k. ned0x40 th d

Kfremeney % 11 34 68 IL1 U0 167 133 124 80 54 40 17 1 cles or dirrerent k. n=4UX4U, the range

total= 18 108 178 224 267 221 199 128 86 - —
dA-18 M LR N o7 ok e nox of k=13 and the average k=6.5
n=1600 av-k=6.50 reset-q, cont-ret:

85

9.7 Specify each k, or power-law distribution

Enter s in section 9.3, to specify the distribution of different k, or to select a power distribution.
The following top-right prompt is presented,

power-law-p, specify-(def):

These options are explained in sections 9.7.1 to 9.7.3 below.

9.7.1 Specify the percentage of different &

If return is entered in section 9.7 above, the percentage of cells with different k& can be specified, and
within those constraints the k-mix is assigned at random (i.e. shuffled). Alternatively, the k-mix
need not be shuffled in which case it is assigned to the network in continuous blocks.

The following series of prompts are presented for each k starting with k=1 (shown with
example settings),

enter % k=1 (100.0% left):22 (for 22% k=1)

enter % k=2 (78.0% left) back-b:25 (78.0% of the network remains)
enter % k=3 (53.0% left) back-b:33 (53.0% of the network remains)
...etc.

The prompts continue until none of the network remains, or until ¥ = kz;,,. Return assigns
zero of that particular k. An assignment that is too large for the network still remaining will be
truncated. If on completion some of the network remains, this will be set with the last k£ that was
assigned. If none of the k’s are assigned, the prompt reverts to section 9.3. At any stage from k=2
onwards it is possible to backtrack and revise with b.

9.7.2 Setting a power-law distribution of k

Enter p at the prompt in section 9.7 to set a power-law distribution of the frequencies of different
k. However, every cell will be assigned at least one input. The following top-right prompts are
presented in sequence,

set k upper bounds (def 13, limit 13): (if kym:=13)
enter power-law exponent 1 to 3 (def 2.0):

Enter the upper bounds kpq: < krim for the distribution, followed by the target power-law
exponent. An example of a power-law distribution is shown in figure 9.2. The output distribution
can also be set to approximate a power-law (section 17.9.5, figure 17.22).

If both the inputs, k, and the outputs, follow a power-law, the network is said to be “scale-
free”, and characteristic of many natural and artificial networks, from metabolic networks [4] to
the world-wide-web. The graph of a “scale-free” network is shown in figure 20.2.

86 CHAPTER 9. NEIGHBORHOOD, K, OR MIXED-K

Figure 9.2: An example of a
power-law distribution of the fre-
quencies of different k. In this
case n=40x40, the range of

I . B k=13, the power-law exponent is
k frequency % 63.2 159 71 4.0 286 : : ; F F F F F 2’ and the aVerage k:205
total= 1011 254 114 64 41 29 22 17 13 11 9 8 7

k=1 2 3 4 5 6 7 3 9 10 11 12 13
n=1600 av-k=2.06 reset-q, cont-ret:

9.7.3 Showing the distribution

When the k-distribution has been assigned, either by specifying the percentage of different &
in section 9.7.1, or by setting a power-law in section 9.7.2, data on the distribution, and the
following prompt, are presented in a top-right window (for example, for a 2d 40x40 network, and
a power-law),

k1=63.2%=1011 k2=15.6%=245 k3=7.15%=114 k4=4.0%=64 k5=2.6% =41
k6=1.8%=29 k7=1.4%=22 k8=1.1%=17 k9=0.8%=13 k10=0.7%=11
k11=0.6%=9 k12=0.5%=8 k13=0.4%="7

shuffle: no-n yes-(def):

This shows the percentage and number of different k’s in the network. The k’s are initially
assigned in continuous blocks starting from the network cell 0. Enter return to randomly shuffle
the assignment, or n not to shuffle and retain the blocks.

The distribution can be displayed as a histogram as in figures 9.1 and 9.2 generated in
section 9.11 (and later in section 17.9.13).

9.8 Setting the k-mix at random

If return was entered in section 9.3, the default, a random k-mix is selected. A further prompt
allows the k-mix be confined within upper and lower bounds before the random mix is assigned.
In this example, kz;,=13 (section 7.2),

set k bounds 1-13: lower (def 1): upper (def 9, limit 13): (for ezample)

The upper bound is referred to as k4. The different k’s will be assigned with equal probability.

9.9 Setting a k-mix with uniform £k

Its sometimes useful to set up a k-mix network with homogeneous-k, for example for a local 1d,
2d or 3d CA into which a DDN can be inserted (section 19.4), for example to provide a source of
noise in the local network.

87

A k-mix with homogeneous-k is easily created in section 9.7.1, by setting the percentage of the
required k at 100%, or in section 9.8 by setting equal values for the lower and upper bounds in
a “random” the k-mix. The homogeneous-k network is treated as a k-mix network, and as such
is also treated as a having nonlocal wiring and mixed rules even if the wiring is set as local 1d
(section 12.4.1), and there is just one rule (section 14.4.3). These issues relate to how memory is
allocated to different types of network.

9.10 Increasing k..

Options for changing & for individual cells (or blocks of cells) occur at later stages in DDLab
(sections 17.9.8, 18.7.1).

The default k4, is the upper bound set previously, for example in section 9.8. However k. a4z
can be set to a higher value, up to the upper kp; listed in section 7.2. The following top-right
prompt is presented,

set greater max-k (max 25, def 9): (if krim=25 and kmaz=9)

This enables the k£ values in the network to be subsequently increased up the new k,,q,. For
example, if 100% k=5 is set in section 9.7.1 (a k-mix with uniform k), and k.. is set to say 9,
cells in the uniform k network may later be reset to any value < 9.

9.11 Reviewing the k-mix

Finally, the k-mix is displayed in a top-right window, or a succession of windows for large networks.

For example, figure 9.3 shows a randomly assigned k-mix between 1 and 25 for a network size 200 (in

TFO-mode), for each cell 199 to 0. To distinguish each (decimal) number, colors alternate between

black and red. The percentage and number of different k’s in the network is also displayed.
Options are presented at the foot of the k-mix review window,

mix shown from cell index 244-0 (values shown are examples)
hist-h reset-r save-s jump-j cont-ret:

k-mix 1-25, maxk=25, net size=200, startindex=199
2522152313241932153168811416217 242418241 251618218271 521022495215
3151423162396241012233112214162112423182481123341314625151472323 .) .
2016252413211111822824135136212314214231716181511201421217323112 Figure 9.3: An example k-mix ran-
3189123825551624191521244221161723155161922719212521 5285102520510 domly assigned for k=1-25, n=200
2762512522510513101718221017245211910187941518242319252111182311

11218 (TBO-mode). To distinguish each
1=50% 2=6.0% 3=5.0% 4=3.5% 5-6.0% 6=3.0% 7=3.0% 8-3.5% 9=2.0% ;

10=4.0% 11=4.0% 12=2.0% 13=2.0% 14=3.0% 15-5.0% 16=4.0% 17=2.5% (decimal) number, colors alternate
18-5.5% 19=3.0% 20-1.5% 21-5.5% 23-3.5% 23-7.0% 24—6.0% 25-4.5% between black and red.

1=200 tot_wires=2629 av-k=13.15, mix shown fromm cell index 199-0
hist-h reset-r save-s jump-j cont-ret:

Enter h to show the k distribution histogram in a lower left window, as in figures 9.1 and 9.2.
Enter r to revert to section 9.3 and reset the k-mix. Enter s to save the k-mix in a .mix file
(section 35.3) which can be loaded as in section 9.4. Enter return to accept the k-mix. The other
options are explained below.

88 CHAPTER 9. NEIGHBORHOOD, K, OR MIXED-K

9.11.1 Reviewing the k-mix in large networks

Large networks may require several windows to display the k-mix. In this case the prompt above
(section 9.11) includes an option more-m to see successive windows (for example),

mix shown from cell index 7011-4221 (values shown are examples)
hist-h reset-r save-s more-m jump-j cont-ret:

9.11.2 Jumping to a new cell index

Alternatively, enter j in section 9.11.1 to jump to any cell index in the network, which becomes
the first index in the new window. The following prompt is displayed,

jump to index (9800-0): (this example for a 2d network, 99x 99)

9.11.3 Saving the k-mix file

Enter s in section 9.11 to save the k-mix. A filing prompt box will allow saving a .mix file — the
default filename is mymix.mix (section 35.3). The k-mix can also be saved in section 19.5, but can
only be loaded in section 9.4. However, the k-mix in mixed-k networks is implicit in the .w_s, .r_s
and .wrs files (section 19.2), so does not usually need to be saved separately.

9.12 Reviewing the k-mix within “network architecture”

The k-mix may also be reviewed in Reviewing network architecture as described (chapter 17), where
options allow changing k (including “neutral” k changes) up to k. set in section 9.10, which
may be greater than the maximum k found in the network. This can be done for single cells, for
predefined blocks, or for the whole network.

cell 29 cell 0
| | 0

Figure 9.4: The 1d wiring
graphic for a k-mix, showing
the wiring between succes-
sive time-steps, n=30. Each
cell’'s "outwires” are repre-
sented by the heights at
time-step ;.

E--EsEgEeE-EnE(-peeg-[=0oogne- _tl

Chapter 10

The local neighborhood, and
network geometry

This chapter defines the CA neighborhood, the pseudo-neighborhood for RBN or DDN, the network
geometry, and how these are indexed in DDLab.

10.1 The CA neighborhood

For CA, a cell updates according to the values of it local neighborhood, which usually includes
the cell itself and its nearest neighbors. The relative position of the neighborhood cells in relation
to the “target” cell is referred to as the “neighborhood template”, or just the “neighborhood”.
For CA the neighborhood is homogeneous throughout the network, and thus requires periodic
boundary conditions where each array edge wraps around to its opposite edge resulting in a ring of
cells in 1d, the surface of a torus in 2d, and a 3-torus in 3d. For 1d, 2d and 3d the neighborhoods
are defined in DDLab for k= 1 to 27 (k > 24 best in TFO-mode).

The following sections describe the predefined neighborhoods and how they are indexed. Note
that in 2d the neighborhoods can be square or hexagonal (sometimes either) to run on a square or
hexagonal lattice, as shown in figure 10.2. Its also possible to construct any arbitrary neighborhood
and assign it uniformly throughout the network (section 12.5.11).

10.1.1 The pseudo-neighborhood, RBN and DDN

For networks with nonlocal (random) wiring, RBN and DDN, DDLab provides methods
(chapter 12) to specify how each “target” cell is connected to other cells with respect to its
“pseudo-neighborhood”, identical to the neighborhood in 1d, 2d and 3d CA. The set of cells
that influence a given cell (its actual “neighborhood” to use the term loosely) may be scattered
arbitrarily throughout the network. Each scattered cell is wired to one position in the target
cell’s pseudo-neighborhood. This allows a CA rule to be applied equally to CA; RBN and DDN
(chapter 13).

89

90 CHAPTER 10. THE LOCAL NEIGHBORHOOD, AND NETWORK GEOMETRY

the target cell

[6 5]
[7]16[5]4[3[2]1]0] k=8
[(B[7[6[5[4[3[2[1]0] k=9
(0[S [7[6[5[4[3][2][1]0] k=10
[10[9[8[7[6[5][4][3][2][1]0] k=11
[I1]10 [0[8]7][6][5]4][3][2][1]0] k=12
1211 [10][0[8[7][6][5[4][3[2][1]0] k=13

odd-k
1to 13

even-k
0tc_> 12
skewed right DO0OOD] ONOLUONOOSD OOODODOOOOOEOED OODOODOOOOEEO

Figure 10.1: 1d neighborhood templates as defined in DDLab, shown from k=1 to 13. Top: showing
indexing. Bottom: graphically as in section 17.6. The same principle applies for k= 14 to 27. Note
that for even k the neighborhood is asymmetric, skewed to the right. For effective k=0 see section 9.2.

10.1.2 1d neighborhood

The 1d neighborhoods for k= 1 to 27 are defined and indexed according to figure 10.1. Cells in
the neighborhoods are indexed in reverse order, k-1,k-2,...,0. For odd k the target cell is centered,
for even k the neighborhood is asymmetric with an extra cell on the right.

10.1.3 2d neighborhood

The 2d neighborhoods templates for k= 2 to 27 are shown in figure 10.2 (k=1 is self evident). Each
k has a template based on either a square or hexagonal lattice, sometimes both apply, designed
for best symmetry. If both, those shown in a frame need to be selected (section 11.1 or 12.1).
Where a square neighborhood is missing in the definitions, a distorted hex neighborhood will
apply in a square layout, and vice-versa. The layout can be toggled between square and hex in
the 2d wiring graphic (section 17.7) and on-the-fly (section 32.9.2) but this does not change the
underlying templates as originally defined. To achieve maximum symmetry and for outer-totalistic
rules (section 14.2) the target cell itself is sometimes not included in the neighborhood template.
Cells in the neighborhood are indexed starting with 0 then from right to left in ascending rows, as
in the example for k=9 in the bottom-right corner of figure 10.2. Note that for a hexagonal lattice
to work properly, the height of the network, j, should be even.

With a square layout and template, k=5 is known as the von Neuman neighborhood , and k=9
is the Moore neighborhood — applied in the “game-of-Life” (section 16.10). With a hex layout
and template, k=6 applies to the “beehive rule” [17] and k=7 to the “spiral rule” [18].

91

El 2 3 6 7 10
O O O O Ooomd : 0o
square 5] Oo- O OmO O -OmO
= R D ‘Baee - bene
. 51 Fa- oo oo O% :. O%
0| | @0 Q-0 000 . .
o] o ReCaR ey Soc% | - 8%
k 11 12 13 14 15 16 17
O O O g8 g8 g8
oo Oood oo oog ooo oo
square omQ oo od oomod oo - oo [[R [oooE0On
0ooo mm[m ooo oa0 ge go
O O O o O =]
O 0 00 00
hex : OOOOOO : OOO‘OOO - OOOOOOO OOOO‘OOO
b odlbead e | V60
k 18 19 20 21 22 23
o0ono o0ono DED
ooooo ooooo ooooo
square oo - oo OOomcno 0oE0O
Oooomono Oooomono DE%%D
ooo ooo o
90 900
h JOICCIOR JOCICOR QOOCO QOO00
x| - Q0. Q0 Q00 00" O C000
0000 9000 OO OORIR
~ooo - 000 O O
k 24 25 26 27 9
e |a]uln]s 1 ooooo
0ooao0 0ooon oooon. Oooao 81[71[61
square 0o OO ooEDO OO0 OO0 OOOEOOO -
Oooobono O0oOo0od -OoOoOoono - OOoOoono
‘OOB0S DBOOS. §oo080. OO860 2]l[e]
a0 Q0 8
hex | | SO e SIOR
000%0%% 0%%‘0%% POPOR
00000 | | 00000 QIB0)

Figure 10.2: 2d neighborhood templates as defined in DDLab, for k=2 to 27, square, hex or both,

designed for best symmetry. The target cell may be excluded and is otherwise shown red.

Bottom-Right: templates are indexed starting with 0 then from right to left in ascending rows, as
in these examples for k=9 for square and hexagonal neighborhoods. The index numbering is toggled
on/off with indez-i (section 17.4).

92 CHAPTER 10. THE LOCAL NEIGHBORHOOD, AND NETWORK GEOMETRY

10.1.4 3d neighborhood

3d neighborhoods for k= 2 to 27 are defined in figure 10.3 for a cubic grid on the 3-torus. For even k the
target cell itself is not included in the neighborhood.

Figure 10.3: 3d neighborhood templates and indexing as defined in DDLab,
for k=2 to 27. k=1 is self evident. For even k the target cell itself is not
included in the neighborhood. The view is isometric as if looking up into a
cage. All the 3d neighborhoods are now contained within a 3x3x3 cube, and
have been extended to k=27 and somewhat modified since the 2011 edition.
For k<26 the placement of the neighborhood within the cube is chosen to
achieve maximum symmetry, though there would be alternative choices which
could be reprogrammed. The 3d neighborhood within the network is simul-
taneously displayed in 2d as in figure 10.4 (see also section 17.8). The index
numbering is toggled on/off with indez-i (section 17.4).

F] M mfE |[E|[[@
@l
o
] o e EEm
even B e BE @ 5@ @08 @E B[B
i @ EEE| | DEE EEE WEIE]
e
o m m @ E3]En(m
) | . i | o] 1l © | Oe | O | BOs) | Eoe
k=2 k=4 k=6 k=8 k=10 k=12 k=14 k=16 k=18 k=20 k=22 k=24 k=26
& o (i
o
& o]
odd | - E ||THD |DEE DEE DEE EEd EED
3 @ EEE| | DEE
o
o @ m BEED
o 2 e @ m| ® Al | O | O | EOo
k=3 k=5 k=7 k=9 k=11 k=13 k=15 k=17 k=19 k=21 k=23 k=25

Figure 10.4: 3d neighborhood templates are simultaniously displayed in 2d as well as 3d (section 17.8).
These 2d graphics for k= 2 to 27 show the 3 levels of each 3x3x3 cube, one below the other,
representing the neighborhood templates in figure 10.3. The index numbers start with 0 then from
right to left in ascending rows. The index numbering is toggled on/off with indez-i (section 17.4) .

10.2 Network geometry

The cells in a network, size n, are indexed and arranged in a regular 1d, 2d or 3d space or lattice,
with axial dimensions ¢ for 1d, ¢, j for 2d and ¢, 7, h for 3d, as shown in figures 10.5, 10.6 and 10.7 —
examples made with the network-graph functions in chapter 20. This network “geometry” has real
meaning for CA, or RBN/DDN where each cell’s random inputs are confined close to the target
cell itself. For networks with fully random wiring the geometry simply allows convenient indexing
and representation. The cells are indexed n-1,...,0, or according to their I,J,H coordinates.

CA usually have periodic boundary conditions, where opposite edges join, so CA (local) wiring
in 1d creates a ring of cells, in 2d a regular square or hexagonal lattice on the torus, in 3d a 3-
torus. By default, the neighborhood templates of CA, RBN and DDN operate within these periodic
boundaries, but this can be changed to Null boundaries (section 2.7) — for attractor basins in
section 26.1 — for space-time patterns in section 31.3 or on-the-fly in section 32.7.4. Space-time
patterns can also be set with fixed borders in section 32.16.6.

94 CHAPTER 10. THE LOCAL NEIGHBORHOOD, AND NETWORK GEOMETRY

10.2.1 1d network indexing

1d networks, size n, are indexed n-1,...,0, where ¢ = n, and are usually laid out horizontally
following figure 10.5 Left.

Figure 10.5: A 1d CA, n=14 k=3, indexed 13,..., 0, shown
as a 1d network-graph (chapter 20). Left: horizontal layout,
and Right: circle layout.

10.2.2 2d network indexing

2d networks, size n, are indexed n-1,...,0, with either square or hex layout as in figure 10.6. 7 is

the width (columns), j is the depth (rows). Note that the cell indexes shown, x, are 1d indexes.
For a 2d network, size ¢, j, to convert the coordinates of a cell, I, J, to a 1d index, z = ¢J + I.
Conversely, I =z mod i, J = L%J

9

~
S

S
-~

) —

(%)

_;1 ——>—

;‘ B —lii\‘i'—a".:ﬁ.\.- "““""‘

\\'A‘

N\

||5I\
i

il

23

\ -», \NI \

\ ‘\\' \\'lt‘: \\"4“ '
) « ».‘J; =

A\'IA\'/‘",".\ /i\lll\"\'l "

11 === 10 NN

N AV

row 0 —

Figure 10.6: A 2d CA, n=36, where i x j = 6 x 6, indexed 35,...,0, shown as a 2d network-graph
(chapter 20). Left: square layout (k=4). Right: hex layout (k= 6) In the network-graph prompt
(section 20.2.1) key 2d(tog)-2 toggles between square and hex layout.

95

10.2.3 3d network indexing

3d networks size n are indexed n-1,...,0, as in figure 10.7. ¢ is the width (columns), j is the depth
(rows), and h is the height (levels). Note that cell indexes shown, z, are 1d indexes, For a 3d
network, size i, 7, h, to convert the coordinates of a cell, I, J, H, to a 1d index, x = ijH +iJ + I.

Conversely, I = x mod i, J = L%J, H= L%J

Figure 10.7: A 3d CA, n=64, [i, j, h|=[4,4,4], k=6, indexed 63,...,0, shown as a 3d network-graph,
(chapter 20). The graph should be viewed as if looking up from below into a cage, were the bottom
layer of cells are numbered 0-15.

— level H=h-1

level J=0
~ row H=0

Figure 10.8: To clarify 3d network indexing, the network-graphs above show three examples where
the width (columns) 4, depth (rows) j, and height (levels) h, are made to equal 1 in turn, so from left
to right [4, j, h]=[1,4,4],[4,1,4],[4,4,1]. k=6, cells numbered 0-15.

Chapter 11

Setting the wiring, quick settings

The main wiring prompts are displayed in context dependent top-right windows. The first wiring
prompt gives options for quick wiring settings for CA in 1d, 2d (hexagonal or square) or 3d, random
wiring for just 1d, or loading a wiring file. Alternatively, special wiring allows more flexible wiring
requiring further wiring prompts, described in chapter 12.

11.1 The first wiring prompt

The first wiring prompt is as follows,

WIRING: special-s load-1 random-r
regular 3d-3, 2d-2(hex+x square+s), 1d-def:

11.2 Local 1d wiring

Enter return (the default) in section 11.1 above to set wiring as local 1d with periodic boundary
conditions' and skip remaining wiring options. The network may be a CA, or may have mixed k
as previously selected in chapter 9. The 1d network size would have been set in the main sequence
prompt section 8.2.

11.3 Special wiring

If s is selected in section 11.1 above, prompts are presented for various special wiring options,
including setting random wiring for 1d, 2d and 3d networks (with various biases), described in
chapter 12.

IPeriodic boundary conditions can be reset to null boundary conditions (NBC, section 2.7) at later stages
(sections 26.1, 31.3, 32.7.4.

96

97

11.4 Loading the wiring scheme

If 1 is selected in section 11.1, filing prompts (section 35.3) will allow a wiring scheme (.w_s) file
to be loaded, provided the file is compatible with the base network, in that file-n < base-n, and
file Kz < base kpqe (section 19.4.1).

11.5 Random 1d wiring

If r is selected in section 11.1, a wiring scheme will be assigned at random according to the
previously selected neighborhood %k or k-mix settings. The next prompt allows a graphic
representation to be displayed, where the wiring can be reviewed and altered (see chapter 17).

11.6 2d or 3d wiring

If 2 or 3 is selected in section 11.1, the wiring will be set as local 2d or 3d CA wiring according
to the default neighborhoods in sections 10.1.3 and 10.1.4. These options also apply for random
2d and 3d wiring set in section 12.3.1. In each case boundary conditions are periodic, where the
2d array can be imagined as drawn on the surface of a torus, and the 3d array on a 3-torus,
though this can be overridden with null boundary conditions (NBC, 2.7). The network can also
have a k-mix with CA wiring for each (different size) neighborhood. Entering 2x or 2s will force
the neighborhood, and the initial presentation of the lattice, to be hex or square (orthogonal),
overriding the defaults in section 10.1.3. Just the hex/square presentation can be toggled later in
the program.

As well as setting local wiring, further prompts below will set 2d or 3d network size, and k or
a k-mix. Previous n and k settings from the main sequence of prompts (sections 8.2 and 9.1) will
be superseded.

11.6.1 Setting 2d and 3d network size — SEED/TFO-mode

For SEED-mode or TFO-mode, the following options set the ixj (widthxdepth) dimensions of 2d
networks, and the ixjxh (widthxdepthxheight) dimensions of 3d networks,

basic 2d networks
2d: square edges, safe<=255, max=2896 incr with caution!
enter i (def 40): j (def 40): (for exLimits, maz=65535)

basic 3d networks
3d: cube edges, safe<=40, max=203 incr with caution!
enter i (def 9): j (def 9): h (def 9) (for ezLimits, maz 1625)

Enter the width i, depth j (and height h) — the prompts are presented in turn — subsequent
defaults may depend on initial sizes, keeping in mind the network size limits nr;, (section 8.3);
safe and max show the safe and maximum edges of a square or cube, but the edges can be any
length making up a rectangle or cuboid, as long as ¢xj or ixjxh is less than ny;,,=8388607, or
4294967295 if “exLimits” is set in a 64-bit CPU (section 6.2.4) — in this case the max square
edge=65535, and the max cube edge=1625.

98 CHAPTER 11. SETTING THE WIRING, QUICK SETTINGS

If the dimensions selected for a 2d or 3d network exceed nr;, a message such as the following
is displayed within the top-right window,

2896x3000 too big! max size=8388607 cont-ret: (for basic 2d)
or for 3d
203x203x300 too big! max size=8388607 cont-ret: (for basic 3d)

File encoding for 2d and 3d networks treats the axes or edge dimensions differently for a “small”
network n< 65534 and a “big” network n> 65535 (sections 19.3 and 21.9). For “small” n edges
must not exceed 255. For “big” n the edge limit is 65535, though this would only be relevant in
the extreme case where the other edges sizes were 1. Whether the network is “small” or “big”
depends on the edge sizes selected. For example, ixj of 255x256 would not be allowed with the
warning below, whereas 255x255 (“small” n) or 256x256 (“big” n) are acceptable. The following
warnings might be displayed,

255x256 & n<65534 file conflict! change i,j cont-ret: (for a “small” network)
1x65536 2d edge max 65535 exceeded! change i,j cont-ret: (for a “big” network)
or for 3d

1x1x256 & n<65534 file conflict! change i,j,h cont-ret: (for a “small” 8d network)

Pressing return restores the network size prompt.

11.6.2 Setting 2d and 3d network size — FIELD-mode

For FIELD-mode the prompts to set the size of 2d and 3d networks are similar to SEED/TFO-
mode (section 11.6.1) except that the network size limits (section 8.3) are very much smaller and
depend on the value-range v, as described in section 7.3.

The following options set the ixj (widthxdepth) dimensions of 2d networks, and the ixjxh
(widthxdepthxheight) dimensions of 3d networks,

2d networks
2d: safe square edges<=5, nLimit=31 inc with caution!
enter i (def 4): j (def 4): @w=2, basic)

3d networks
3d: safe cube edges<=3, nLimit=35 incr with caution!
enter i (def 3): j (def 3): h (def 3) (v=2, exLimits)

Enter the width i, depth j (and height h) — the prompts are presented in turn — subsequent
defaults may depend on initial sizes. safe... shows the safe edges of a square or cube, but the
edges can be any length making up a rectangle or cuboid as long as the network size ixj or ixjxh
is less than npm,. For v=2 np;,=31, or 35 if “exLimits” is set in a 64-bit CPU (section 6.2.4).
If the dimensions selected for a 2d or 3d network exceed np;, a message such as the following is
displayed within the top-right window,

5x7 too big! max size=31 cont-ret: (v=2, 2d, basic)
or
3x3x4 too big! max size=35 cont-ret: (v=2, 3d, exLimits)

Pressing return restores the network size prompt.

11.8. REVIEWING WIRING, AFTER QUICK SETTINGS 99

11.7 Set k, or k-mix

If 2d or 3d was selected in section 11.1, the next top-right prompt resets k, or the k-mix, as
described in chapter 9.

Neighborhood size k: kmix-m, or enter 1-27 (def 5): (for ezample)

The upper bound, kr;,,, depends on the context, described in section 7.2 and set out in table 7.1.
Enter a new value to reset k, or return to accept the default. Enter m for a k-mix and follow
further instructions in chapter 9.

11.8 Reviewing wiring, after quick settings

After quick wiring settings are complete, options allow the wiring to be reset, reviewed and
amended from a wiring graphic or wiring matrix (enter return to skip). These options are the
same as described in sections 12.7 and 17.

Chapter 12
Setting special wiring

Selecting special wiring (enter s in section 11.1) allows a greater range of methods for wiring up
the network (the wiring scheme) than quick settings in chapter 11. Special wiring is necessary to
set random wiring for 2d or 3d networks. The network can be assigned local or random wiring in
1d, 2d (square or hex), 3d, or hypercube wiring, and the wiring can be “hand wired” and biased
in a variety of ways.

Special wiring also allows the following functions, some of which may be restricted to predefined
parts of the network (see also chapter 17).

e Confining random wiring within a set zone, from which some wires may be released.
Suppressing periodic boundary conditions, selectively for the various axes in 2d and 3d.
Forcing or disallowing self-wiring.

Forcing distinct wiring i.e. no duplication,

Setting the same random wiring template for every cell in the network.

There are additional functions for 3d networks.

— Suppress links to particular layers of the network.
— Force direct links to specific layers.
— Apportion fractions of available random links between specified layers.

Once the special wiring is set, it can be amended by many flexible methods from the
“wiring graphic” described in chapter 17.

12.1 Setting up the network geometry

Entering s in section 11.1 gives the first special wiring option, which allows the network geometry
to be set as 1d, 2d (square or hex), 3d, and also as a hypercube for appropriate n and k.

hypercube-h, 3d-3, 2d-2 (hex+x square+s), 1d-def
(hypercube-h only if k = logan or logan + 1, for example k=3, n=8 or 9)

Sections below examine each option in detail.

100

101

12.2 Hypercube wiring

Enter h for a hypercube in section 12.1. In a fully connected n-dimensional hypercube, each state
receives input from its logon one-Hamming distance “neighbors”, and may also receive input from
itself. If n=8 and k& = logan = 3, the hypercube is a simple cube with network states at the
vertices and bi-directional links at the edges. The hypercube wiring option is only active if the
network size n is a power of 2, (2, 4, 8, 16,...), and k = logan, or k = logan + 1 where vertices
also receive one additional input from themselves. The following values of n and k are valid for
the hypercube option to appear,

n | 8] 16| 32| 64| 128| 256 ... andso on
k‘30r4‘40r5‘50r6‘60r7‘70r8‘80r9‘...andsoon

For example, a simple cube, n=8, k must equal 3 or 4. Figures 12.1 and 12.2 give examples in
various network-graph layouts (section 20.4).
12.2.1 degrading the hypercube

A further option allows degrading the hypercube “wiring”, i.e. pruning uni-directional connections,
according to some probability

set % prob (def 100):66 (for example)

For example, for a hypercube wheren=8 and k=4, if 66 is entered, wires are set with a proba-
bility of 66%. A further prompt is presented,

part hcube:%wire-prob=66 act=66.8 bi=6,/12=50.0%
nhood mix=44124322 (values shown are examples)
reset-r save-s cont-ret:

Figure 12.1: Hypercube wiring shown as a network-graph (section 20.4). Left: n=8 k=4 hyprecube,
which includes self-links. Center: a degraded version of the n=8 hypercube with some links missing.
Right: n=16 k=5 hyprecube. The 3d-3 network-graph option was used for the figures, and the graph
was rearranged by dragging nodes (section 20.5). The figures should be viewed as if looking up from
below. Output directed links are the same color as the source node. To regenerate these layouts
automatically, enter file-f in section 20.3.2 for the filing prompt (section 35.3) and load the *.grh
layout file, hyp8 or hyp16 (.grh is added automatically.

102 CHAPTER 12. SETTING SPECIAL WIRING

n=>64, k=6 n=128, k=7

Figure 12.2: Hypercubes for n > 32 are difficult to visualise in 3d. These examples show hypercubes
as a network-graph with circle layout (section 20.4).

This indicates the actual fraction of remaining wires and the number of and percentage of
bi-directional links. Enter r to reset the wiring probability, s to save the k-mix (see chapter 19),
and return to accept. The resulting k-mix is given for the network as in section 9.11.

12.3 1d, 2d and 3d special wiring

If return, 2 or 3 was entered in section 12.1, a 1d, 2d or 3d network will be selected to receive
either local or random wiring, or “hand wiring” in a wiring matrix “spread sheet”. A prompt as
follows will be presented,

hand wire-h, (appears in each case below)

local 1d-1, random-def: (if 1d was set in 12.1)

or

local 2d-2 (hex+x square+s), 1d-1, random-def: (if 2d was set in 12.1)

or

local 3d-3, 2d-2 (hex+x square+s), 1d-1, random-def: (if 3d was set in 12.1)

options ... what they mean

hand wire-h ... for wiring by hand (section12.6).

local-3,2,1 ... for local CA wiring (section 12.4). The wiring would usually be set to
match the network geometry set in section 12.1, but its also possible to
assign local 1d wiring to a 2d network, and local 1d or 2d wiring to a 3d
network.

return ... for random wiring with geometry set in section 12.1 — if this is 2d or
3d the size will be set (section 12.3.1). Further refinements are made in
section 12.5).

12.3.1 Random 2d and 3d

For 2d or 3d network geometry set in section 12.1, if random is selected in section 12.3, further
prompts are presented to set the network size, ixj (xh for 3d), as described in section 11.6, and

103

neighborhood k, or the k-mix, as described in chapter 9. Note that these settings override those
previously set for n and k in the main sequence prompts in chapters 8 and 9.

Once the network wiring has been set, the wiring of individual cells may be reviewed and altered
in a “wiring matrix” or ‘wiring graphic” (chapter 17).

12.4 Special wiring, local

Enter 1, 2, 2x, 2s or 3 in section 12.3 for local 1d, 2d or 3d (CA) wiring. 2x or 2s to forces
hexagonal or square wiring and overides the defaul, which depends on k (section 10.1.3). Note
that for local 1d wiring in a 1d network, the n, k parameters set previously in chapters 8 and 9
remain valid. For local 2d and 3d wiring new prompts will be presented to reset these parameters.

12.4.1 Local 1d treated as random

For a 1d network, if 1 for local 1d wiring was selected in section 12.3, a subsequent option allows
the local wiring to be treated as if it were “random” or nonlocal (always the case for 2d and 3d
networks), allowing the local wiring to be altered in various ways, and also for wire moves to be
allowed in “learning” (chapter 34). However, the “compression” of attractor basins (section 26.2)
may be applied as long as the network retains local 1d wiring. The following prompt is presented,

treat local 1d as random wiring-1, and compress-2:

12.4.2 Local 2d and 3d

If 2d or 3d local (CA) wiring was selected in section 12.3, further prompts are presented to set
the size and neighborhood as for random wiring in section 12.3.1. In fact local 2d and 3d wiring
is treated as if it were “random” or nonlocal, allowing it to be altered in any way. This is not the
case by default for local 1d wiring (section 12.4.1 above).

12.5 Special wiring, random

If random wiring (the default) is selected in section 12.3, (for 1d, 2d or 3d), and n, k, or the
k-mix, have been set, a series of context dependent prompts are presented in sequence to allow a
variety of biases to the random wiring (values shown are ezamples),

bias random wiring: confine to local zone (max=14 def=14): CA-c:

release some wires from zone (def 0, max 3): (depending on k)

suppress periodic boundary-s: it j: h: (i 4 for 2d, i: j: h: for 8d)

exclude all selfwiring-2, selfwire center wire-1:

distinct wiring (no duplication)-n:

suppress links to layers (0-8), rangel low: high: range2 low: high: (3d only)
force direct link to a layer, enter (0-8): (depending on h, 3d only)

force random links to specific layers-y: (3d only)

same wiring everywhere-e:

104 CHAPTER 12. SETTING SPECIAL WIRING

DDLab will do its best to reconcile any contradictory settings. A small top-center window
laccept defaults-d|is a reminder that at any time further prompts in this sequence can be skipped
by entering d. Enter q to backtrack. The options are explained below.

12.5.1 Applying wiring biases to parts of the network

At this early stage in DDLab’s prompts the biases apply to the whole network, but it is important
to note that the biases may be applied to just single cells or predefined parts of the network,
as well as to the whole network, when these same options are accessed from the wiring graphic
(section 17.3). In this case the biases only take effect when r (for random wiring) is selected in
section 17.4 (see also 17.9.5).

To design particular wiring schemes, especially if the wiring needs to be tailored in specific
ways between different parts of the network, its usually easier to set up a dummy wiring scheme
at this stage, them revise it in chapter 17.

12.5.2 Confining random wiring to a set zone

The wiring may be confined within a periodic zone of a given diameter relative to each target cell.
This diameter relates to the network geometry. Enter the local zone diameter at the prompt

confine to local zone:

in section 12.5. 1d, 2d and 3d examples are shown in figures 12.3, 12.4 and 12.4. which illustrate
how network wiring is represented, explained more fully in chapter 17.

12.5.3 Setting local wiring as random

Enter ¢ at the prompt CA-c: in section 12.5 to set local (CA) wiring as “random wiring”. CA
wiring in 1d, 2d or 3d will be set depending on the native dimension of the network. This allows
subsequent changes to be made to the CA wiring, for example, releasing some wires described
below.

-.--I--... .--_I-.-- -.--I--.-.-.--_I-. o gg=opg=e=n -..-_I-.-. -.--l---..SZ.---.
(a) random, zone=7 (b) random, zone=7 (c) random (d) CA wiring

Figure 12.3: Confining 1d k=5 random wiring within a local zone of a set diameter. n=15. (a) and
(b) show random wiring within a 7 cell local zone, where (b) illustrates periodic boundary conditions.
(c) shows fully random wiring, and (d) local, CA type, wiring for comparison. Wiring from the pseudo-
neighborhood is shown connected to to the previous time-step (see chapter 17)

105

Figure 12.5: Confining 3d k=9

Figure 12.4: Confining 2d random wiring within a 5 random Wiring within 3 cell local
cell local zone. n=15x15. (a) random wiring con- zone. n=9x9x9. Left: 2d showing
fined within a 5 cell zone. (c) fully random wiring. successive layers. Right: 3d isometric.

12.5.4 Release wires from zone

Some wire can be released from the local zone set in section 12.5.2 and from the CA wiring set in
section 12.5.3. Enter the number of wires to be released at the prompt ...

release some wires from zone (def 0, max 7): (values shown are ezamples)
. in section 12.5. The number of wires specified will be chosen and reassigned at random to any

position in the network, unless this is restricted by further biases.

12.5.5 Suppress periodic boundary conditions

For a 1d network, enter s at the prompt ...
suppress periodic boundary-s:

. in section 12.5 to suppress periodic boundary conditions.
For 2d and 3d networks further prompts appear,

ir, j: (and h: for 3d).

Periodic boundary conditions can be suppressed independently for each axis, i, j and h. To do
so, enter s in response to the prompts.

12.5.6 Self-wiring

Enter 2 or 1 at the prompt ...
exclude all selfwiring-2, selfwire center wire-1:

. in section 12.5 to exclude self-wiring, or to force target cells to wire to themselves. Self-wiring
means that the cell will provide an input to its own pseudo-neighborhood, at the central position
if available, or to a nearby position if not. chapter 10 describes the pseudo-neighborhoods.

106 CHAPTER 12. SETTING SPECIAL WIRING

12.5.7 Distinct wiring

Wiring may be made distinct to prevent two or more positions in the pseudo-neighborhood to be
wired to the same cell. Enter n at the prompt ...

distinct wiring (no duplication)-n:

. in section 12.5 for distinct wiring. DDLab will do its best to achieve distinct wiring, but this
may conflict with a small “wiring zone” set in section 12.5.2 and with other wiring bias settings.

12.5.8 Suppress links to 3d layers

Links to horizontal layers in a 3d network can be suppressed. Two ranges of layers can be des-
ignated. Prompts are presented in sequence. Enter the levels to be suppressed starting with the
lowest level. For example, the following entries would suppress links to layers 0,1,2,3 and 6,

suppress links to layers (0-8), rangel low:0 high:3 range2 low:6 high:6

12.5.9 Force a direct link to a 3d layer

Direct links can be “forced” to each cell in a designated 3d layer. A direct link means that cells
at position %, j link one wire to position 4, j in the designated layer. The wire originates from the
pseudo-neighborhood index 0 (chapter 10).

For example, for a 9 layer 3d network, enter the required layer index at the prompt ...

force direct link to a layer, enter (0-8):

. to which direct links will be forced. By default, if a layer is specified, all cells make a direct
link, but this can be restricted to a specific cell, range of cells, or to a specific layer or range of
layers from the wiring graphic (see chapter 17).

This option may be used to provide a constant input pattern to a 3d network, for example to
model inputs from a “retina”.

12.5.10 Force random links to specific 3d layers

Fractions of the available random links can be assigned to designated 3d layers. Previous biases to
confine wiring to a set zone will be respected for the horizontal plane, but the vertical constraints
will be overridden.

If y is entered at the prompt ...

force random links to specific layers-y:

. in section 12.5, the following series of options are presented in a top-right window, for example
in an 9 layer, k=7, 3d network,

k=7, enter n links to layer 8 (7 available):3 (3 entered, 4 remain)
k=7, enter n links to layer 7 (4 available):1 (1 entered, 3 remain)

k=7, enter n links to layer 0 (3 available):3 (none remain)

The prompts continue until layer 0, or until all links have been assigned and none remain.
To miss a layer enter return or 0. If links remain at the end, they will be assigned at random,
but still according to the biases specified in section 12.5.

107

12.5.11 Same random wiring everywhere

The same random wiring “template” can be applied to every cell in the network to create a
quasi-CA with periodic boundary conditions. To do this enter e at the prompt ...

same wiring everywhere-e:

. in section 12.5. Biases previously specified in section 12.5 and other options will be respected
as much as possible. This can be restricted to just part of the network from the wiring graphic
(chapter 17).

12.6 Wiring by hand

If h is selected in section 12.3, a blank wiring scheme is presented in the form of a matrix or
“spread sheet”, which may be filled in with the wiring positions for each cell’s pseudo-neighborhood
index. A completed wiring matrix can be amended in the same way (section 17.2.2).

Columns give the cell’s pseudo-neighborhood index, K (k-1,...,0), Rows give the cell network
position, N (n-1,...,0). The 0-0 grid, or the O-minimum n grid if the whole matrix does not
fit within one window, is in the lower right hand corner. Each grid records the position in the
network z, (n-1,...,0), to which the K’th wire of the N’th cell is connected.

Note that positions N and x are 1d indexes, even if the network is 2d or 3d. Sections 10.2.2
and 10.2.3 explain how to convert between 1d and 2d or 3d coordinates.

Move around the matrix with the left/right/up/down arrow keys. Enter the new position at
the flashing green cursor and complete the entry by moving to another grid with an arrow key or
return. On a blank grid, or on zero, just return gives a random position. An entry outside the
network limits will be ignored. Enter q to complete. Any undefined grids will be set to position
0. While the wiring matrix is being set, the following reminder is displayed in a top-right window,

4 3 2. 1L 0 10.% % 7. 6. 5. 4 3. L 1. 0.
1. F F 6 7 [s 12..
12, 5 @ s I8 1k..
im. 1 8 3z 11..
w. [t [§ 1z o 10..
o, L 5 |5 o o J..
. & o 11 1z §..
7. 6 |4 Ta |
6.. ..
5. B [
4. ..
3. 1. [
2. i..
1.. 1.. [
0. ..
(a) k=5, n=14 (b) mixed-k= 3 to 11, n=14

Figure 12.6: Setting wiring by hand on the blank wiring matrix, shown partly filled. Columns are
indexed k-1,...,0, rows n-1,...,0. (a) shows an example matrix for a k=5, n=14 network. (b) shows
an example matrix for a mixed-k network, k=3 to 10, n=14.

108 CHAPTER 12. SETTING SPECIAL WIRING

hand wire/revise: jump-j (values shown are exzamples)
enter wiring positions 0-144 (return on blank/0O=random)
move-arrows more/complete-m layout-1 font-f quit-q

Enter 1 or f to alter the presentation of data and the amount visible in the matrix window. fis
a 3-way toggle for the font size between normal, medium and small. 1 changes the matrix window
width. The following top-right prompt is presented,

change window width (922-231 now=462): (values shown are ezamples)

Enter the new width in pixels within the limits indicated.

Large networks may require several successive windows to display the matrix. Enter m to see
the next window. Moving beyond the top or bottom row in the current window, with the arrow
keys or return, also brings up the preceding or next window. Enter j to jump to a new cell index,
the following prompt is presented,

jump to index (1599-0): (for a 2d network, 40x40)

Enter the new cell index, which will become the first entry in the top row.

Enter q to accept the wiring (or return on the very last (bottom-right) entry) to conclude
matrix entries, and go to the prompt in section 12.7 below. Any blank entries are assigned to
position zero.

The wiring scheme can be reviewed and revised in the same wiring matrix format, or as a
wiring graphic in 1d, 2d or 3d, as described in chapter 17.

12.7 Reviewing wiring

After the special wiring has been set as described in this chapter, various options allow the wiring
to be reset, reviewed and amended from a wiring graphic or wiring matrix. A prompt similar to
the following is presented,

for a 1d network

1d network (n=150), review /revise, wiring only - rules not set

graph-g, matrix: revise-m view-M prx-Mp

graphic: 1d:timesteps-1 circle-c 2d-2:

for a 2d network

2d network (40x40), review /revise, wiring only - rules not set

graph-g, matrix: revise-m view-M prxt-Mp

graphic: 1d:timesteps-1 circle-c 2d-2:

for a 3d network

3d network (9x9x9), review /revise, wiring only - rules not set

graph-g, matrix: revise-m view-M prxt-Mp

graphic: 1d:timesteps-1 circle-c 2d+3d-3:

These options are described in chapter 17. They provide very flexible methods to review and
amend the wiring, and also the rules once set. It may be preferable to set up a suitable dummy
network initially, then tailor it with these options. The options also appear after quick wiring in
chapter 11, and after the rules have been set (chapters 13 to 16).

Chapter 13

Rule types

Rules in DDLab can be set according to a number of different types (possibly overlapping) —
full rule-table (rcode), k-totalistic' (kcode), t-totalistic (tcode), outer totalistic, and reaction-
diffusion, so before a rule is actually selected in chapter 16, options are presented to select the
type, and also whether a rulemix is required. These options are described below, and the chapter
goes on to explain the rule types in detail. Further prompts in chapters 14 and 16 describe the
rulemix options and the wide variety of rule sub-types within the chosen type.

13.1 Selecting the rule type

After the network wiring has been set or defaults accepted in chapters 11 and 12, the next prompt
in the main sequence selects the type of rule. The prompt differs between rules based on full
rule-tables (SEED-mode or FIELD-mode) which may be rcode, kcode or tcode, and just totalistic
rules (TFO-mode) based on only the shorter kcode and tcode rule-table.

13.1.1 Select full rule-tables, rcode

In SEED-mode or FIELD-modes, all rule types rely on full rule-tables — rcode. Totalistic
rules (kcode and tcode) and reaction-diffusion rules will be automatically transformed into rcode.
The following prompt is presented,

totalistic: tcode-t kcode-k (def-rcode):

options ... what they mean

def-rcode ... enter return for rcode, which allows the rcode method of reaction-
diffusion, section 13.8.2.

kcode-k ... for tcode, a k-totalistic rule.

tcode-t ... for tcode, a t-totalistic rule.

1Suggested by Antonio Lafusa [5].

109

110 CHAPTER 13. RULE TYPES

13.1.2 Select kcode or tcode in TFO-mode
In TFO-mode for kcode or tcode rule-tables, the following prompt is presented,

totalistic only: outertot-o/+o0, tcode-t, (def-kcode):
(outertot-o/+o0 does not apply for a k-miz, set in sections 9.1 or 11.7)

options ... what they mean
def-kcode ... enter return for kcode, a k-totalistic rule.
tcode-t ... for tcode, a t-totalistic rule.
outertot-o ... for outer-kcode (section 14.2 which allows the outer-kcode method of

reaction-diffusion (sections 13.8.1, 14.2.1).

-to ... enter t followed by o for an outer tcode (section 14.2).

Note that for v=2, tcode and kcode lookup-tables and the resulting dynamics are identical.

13.2 Rule types and combinations

The rest of this chapter explains the various types of rule, or systems of logic, that act on the
neighborhood, or pseudo-neighborhood, to determine a cell’s output, and the conventions in DDLab
for constructing and ordering rule-tables. The rules described first are Boolean functions as in older
versions of DDLab, where the value-range v=2 counsists of just [0,1]. Then the rules are generalized
for multi-value logic, where the value-range (the number of colors) may be anything from v=2 to 8.

In DDLab there are several types of rules, which are expressed as rule-tables (lookup-tables)
as follows:

e full rule-tables: (not in TFO-mode) referred to as “rcode” listing the outputs of all possible
neighborhood patterns (not in TFO-mode)

e k-totalistic rules: referred to as “kcode” — rule-tables listing the outputs for all possible
combinations of totals (or frequencies) of the values in the neighborhood. kcode can be
selected in TFO-mode, or in SEED-mode or FIELD-mode where the kcode is also expressed
as rcode.

e t-totalistic rules: referred to as “tcode” — rule-tables listing the outputs of all possible
totals, where the values in the neighborhood are simply added. tcode can be selected in
TFO-mode, or in SEED-mode or FIELD-mode where the tcode is also expressed as rcode.
For v=2, kcode and tcode are identical.

In addition DDLab offers combinations of rules as follows::

e rulemix: where each cell in the network can have a different rule, or where a restricted set
of rules is distributed throughout the network, described in detail in chapter 14. A network
with mixed-k must have a rulemix.

e outer-totalistic rules: (TFO-mode only, and not for mized-k) a number, v, totalistic rules
(tcode or kcode) can be employed to create outer-totalistic rules, where a different rule applies
according to the value of the center cell (section 13.7). For v=2 the game-of-Life can be set
in this way, though it can also be set as rcode in section 16.10.

111

e reaction-diffusion rules: or excitable-media [17]. Cells may be either resting, excited,
or refractory, and change according to thresholds and values (section 13.8). The resulting
dynamics produces waves, spirals and related patterns that can resemble the BZ reaction and
other types of excitable media. A reaction-diffusion rule can be set from rcode (section 13.8.2)
or from an outer-kcode (section 14.2.1). Note that outer-kcode allows a greater range of [v, k|
than a rcode, but the latter allows a rulemix that can include more than one reaction-diffusion
rule in the network.

13.2.1 Rule-table size implications

The lengths of rule-tables, S, depend on v and k, where rcode > kcode > tcode,

rcode ... S ="
kcode ... S=(v+k—1/(k! x (v—1)!)
tcode ... S=k(v—1)+1

This has implications on the kp;m, (section 7.2). In SEED-mode or FIELD-mode, kcodes
and tcodes will be implemented as the equivalent full rcode (the longest rule-table), whereas in
TFO-mode the shorter kcode and tcode allow a greater k., for a given value-range v (see also
section 6.1).

Various subcategories of rcode and kcode can also be selected in chapter 16 and at a later stages
in DDLab, including majority, Altemberg, chain, and isotropic. The same rule may apply to all
cells in the network as for CA, or the network may have a mix of different rules.

13.3 Binary full rule-table — rcode

A full rule-table (rcode) for binary systems (v=2) has S = 2 entries. Table 13.1 shows how the
size of the rule-table increases exponentially with k.

k \ 456 7 [8] 9| 10 | 11 | 12| 13

123
size of lookup-table 2F | 2 [4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | 4096 | 8192

Table 13.1: The size of rule-tables £ =1 to 13

The convention in DDLab is to list neighborhood configurations from left to right in reverse
Boolean value order” following Wolfram [31], so that the all 1’s neighborhood is on the left, as
set out below. Each neighborhood is assigned an output [0,1], and the resulting bitstring defines
one of the 22 possible rcodes. The most significant bit in the bitstring corresponds to the all
1’s neighborhood. The rules may also be expressed in decimal (if applicable — section 16.6) or
in hexadecimal. k > 5 rules are usually referred to by their hex rule numbers, k& < 3 rules are
usually referred to by their more familiar decimal rule numbers, especially binary k=3 so called

“Elementary Cellular Automata” — for example ECA 60 is shown below,
7 6 5 4 3 2 1 0 - Boolean value = rcode index
111 110 101 100 011 010 001 000 - k=3 neighborhood
0 0 1 1 1 1 0 0 - output string = rcode, 60 in decimal

2The rcode rule-table order can be inverted — section 18.3

112

CHAPTER 13. RULE TYPES

In DDLab the neighborhood configurations are rotated and displayed vertically for compactness
making a so called “neighborhood matrix”, showing also the k-index, as in these example for k=3,
and k=5 below. A bit-string can be assigned in the corresponding order to make the rcode.

Toooo.. 0 - rcode index

- 11110000
11001100
- 10101010

k index

O N
|

11000001 - rcode, decimal 193, or hex

11111111 11111111 00000000
11111111 00000000 11111111
11110000 11110000 11110000
11001100 11001100 11001100
10101010 10101010 10101010

11111100 01100010 10001000

k index

O N WP
(I I I I |

00000000
00000000
11110000
11001100
10101010

00110111 -

13.3.1 The binary neighborhood matrix

cl

rcode index

rcode
fc 62 88 37 in hex
4234315831 in dec

In the main sequence of prompts, a graphic of the binary neighborhood matrix is displayed (but
not for mixed-k or in TFO-mode). Figure 13.1 gives examples for k= 1 to 9. The matrix can be
rescaled and different parts shown (section 14.11).

Figure 13.1: The binary neighborhood matrix, k=1 to 9, as displayed in DDLab.

113

13.4 Binary totalistic rules

For binary (v=2) totalistic rules, a cell’s value depends only on the sum of 1s in its neighborhood
— tcode and kcode are identical (for v > 3 they are different — section 13.6).

A tcode rule-table (tcode-table) has k+1 bits representing the possible totals, set out in
reverse value order, from k to 0, where each total is assigned an output [0,1]. The resulting bit
string defines one of the 2¢*1 possible tcodes. If DDLab is not in TFO-mode, it automatically
transforms the tcode into rcode (section 13.3). Here is an example for k=5,

543210 - totals

110010 - output = tcode = kcode, 50 in dec, 32 in hex,
rcode = 11101000100000011000000100010110
or 3900801302 in dec, e8818116 in hex

Totalistic codes are also useful for setting threshold functions, for example, the k5 tcode-table
111000 is the majority rule.

13.5 Multi-value full rule-table — rcode

A full rule-table, rcode, for multi-value systems >2 (v= 2 to 8 in DDLab), has v”" entries.
Table 13.1 shows how rcode increases exponentially with v and k, and also the “safe” limits of k.
Larger but risky &z, (table 7.1) are possible if “exLimits” was activated in section 7.1.1.

k

ko |1] 2| 3 4 5 6 7 8 | 9
v=3 3] 9] 27| 81| 243 | 729 [2187 [6561 | 19683
v=4 [4[16 [64| 256 [1024 | 4096 | 16384

v=5 | 5[25 [125 | 625 | 3125 | 15629

v=6 | 626 | 216 | 1296 | 7776

v=T7| 7] 49 [343 | 2401 | 16807

v=8 | 8 [64 | 512 | 4096

Table 13.2: The size of full rule-tables for v=3 to 8, against k, showing “safe” values of k.

The convention in DDLab is to list neighborhood configurations from left to right in reverse
n-ary value order® so the all-max neighborhood is on the left. Each neighborhood is assigned an
output [0,1,...,0-1], and the resulting n-string defines one of the v?" possible rcodes. The rcodes
may also be expressed in decimal (if applicable — section 16.6) or in hexadecimal. An example
for a v3k3 rcode is shown below, where the central row shows all possible neighborhoods, the top
row their trinary values (the rcode index), and the bottom row the rcode itself,

26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
222 221 220 212 211 210 202 201 200 122 121 120 112 111 110 102 101 100 022 021 020 012 011 010 002 001 000
o o0 2 1 2 1 0 1 2 2 1 2 1 1 0 2 1 i 0 o0 o 2 o0 2 2 O 1

3The multi-value rcode rule-table can be inverted — section 18.3

114 CHAPTER 13. RULE TYPES

DDLab treats the n-string as a bitstring, assigning the minimum number of bits for each value;
1 bit if v=2, 2 bits if v= 3 or 4, and 3 bits if v= 5 to 8. The resulting bitstring can be expressed
in hexadecimal, in this case the rule is 026469949408al.

In DDLab the neighborhood configurations are rotated and displayed vertically for compact-
ness making a so called “neighborhood matrix”, showing also the k-index. The n-ary string can
be assigned in the corresponding order to make the rcode.

26 . e e e e 0 - rcode index

|
2 - 222222222111111111000000000
k index 1 - 222111000222111000222111000
0 - 210210210210210210210210210

SERRRRERNRRRRANNRANNENENNR
002121012212110211000202201 - output string = rcode, hex 026469949408al

13.5.1 The multi-value neighborhood matrix

In the main sequence of prompts, a graphic of the multi-value neighborhood matrix is displayed
(but not for mixed-k or in TFO-mode) — figure 13.2 gives examples. The matrix can be rescaled
and different parts shown (section 14.11).

2— EEENENEENEEEEEEEEE
.

ﬂ_|=l THTE Ill TETE I==.=l.l'l|'
26 17 8 0
2 """"""""
........ s
ﬂ HE "HE HEHE HEE 'I.. i | [N | [y | | |.. | Iaen | | .. |.. HE HE - EE |

I
63 47 31 15 L

6712 6663 6614

Figure 13.2: Examples of the multi-value neighborhood matrix, colored according to the value color
key (section 7.1). Top: v3k3, Center: v4k3, Bottom: v5k7 central part only.

13.6 Multi-value totalistic rules, tcode and kcode

For multi-value systems, if v > 3, totalistic rules separate into two types — k-totalistic rules
(kcode), and t-totalistic rules (tcode). For v=2, kcode and tcode are identical.

-
® UG WN

115

13.6.1 k-totalistic rules - kcode

The kcode rule-table (kcode-table) is a list of the outputs for all possible combinations of value-
frequencies in the neighborhood. Each combinations is represented by a string of length v (shown
below vertically from v-1 down, for v=3,) giving the frequencies of the values v-1 to 0, which must
add up to k, so the last row of frequencies is redundant and could be omitted.

2T (l) <--kcode index
> 2: 6554443333222221111110000000 < freczluency strings 6 0
v=3 values > 1: 0102103210432105432106543210 < of 2s, 1s, Os, from O to O
> 0: 0010120123012340123450123456 < shown vertically 0 6

CELLPEEEEE et
0022000220022001122200021210 <--kcode, outputs [0,1,2]

The ordering of the pattern strings themselves depend on their v-ary value, with the higher value
on the left. This can be effectively inverted to allow kcode expressed in the opposite convention to
run as intended (section 31.2.10).

In the example above for the v3k6 “Beehive rule” [17] (also shown as a matrix in section 13.6.2)
the kcode with outputs [0,1,2] are listed in reverse order of the kcode index. The kcode may also
be expressed in decimal (if applicable — section 16.6) or in hexadecimal. If DDLab is not in
TFO-mode, it automatically transforms the kcode into the full rule-table, rcode (section 13.5).

Kcode rules are isotropic because they depend only on the frequency of each value (or color) in
the neighborhood — the positions of values are irrelevant, so symmetric space-time patterns must
conserve their symmetry.

The size of a kcode-table, S = (v+ k — 1)!/(k! x (v — 1)!), is much shorter than a rcode-table.
The values of S for different v and “safe” kr;,, in TFO-mode are shown in table 13.3 — table 13.4
shows all “safe” values of S for increasing v and k. Larger but risky kr;, (table 7.1) are possible
if “exLimits” was activated in section 7.1.1.

v | krim | kcode size
2 27 28
3 27 406
4 26 3654
5 25 23751
6 17 26334
7 13 27132
8 11 31824

Table 13.3: Kcode lookup-table size for v and “safe” kripm.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

27

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378
4 10 20 35 56 84 120 165 220 286 364 455 560 680 816 969 1140 1330 1540 1771 2024 2300 2600 2925 3276 3654
515 35 70 126 210 330 495 715 1001 1365 1820 2380 3060 3876 4845 5985 7315 8855 10626 12650 14950 17550 20475 23751

6 21 56 126 252 462 792 1287 2002 3003 4368 6188 8568 11628 15504 20349 26334

84 210 462 924 1716 3003 5005 8008 12376 18564 27132

28
8 36 120 330 792 1716 3432 6435 11440 19448 31824

Table 13.4: The size of kcode-tables for v=2 to 8 showing “safe” values of k.

28
406

116 CHAPTER 13. RULE TYPES

13.6.2 kcode v=3 matrix

For ternary (v=3) systems, kcode can usefully be show as a 2d matrix [48], where the output state
of each neighborhood is given by the row-index ¢ (the number of neighbors with value=2) and
column-index j (the number of neighbors with value=1). The number of neighbors with value=0
is given by k — (i + j) so is not required. Two examples are given in table 13.5 for k=6 and k=7.

: J
J
01 2 3 4 5 6 7
01 2 3 4 5 6
ojo 1 2 1 2 2 2 2
00 1 2 1 2 0 O
110 2 2 1 2 2 2
110 2 2 2 1 1
210 0 2 1 2 2
210 0 2 2 0 .
i 3|10 2 2 1 2
t 310 2 2 0
410 0 2 1
410 0 2
5[0 0 2
512 0
610 610 0
710

Table 13.5: Matrix representations of v=3 k-totalistic rules. Left: v3k6 Beehive rule [47] and
Right: v3k7 Spiral rule [48, 49], both on a 2d network with hexagonal tiling [47, 48].

13.6.3 t-totalistic rules - tcode

Tcode depends only to the sum of all the values in the neighborhood, so is a subset of kcode
(section 13.6.1) because each total can include several kcode neighborhoods. The rules are isotropic
because any pattern rotation/reflection must give the same total.

The size of a tcode-table, S = k(v — 1) + 1, is much shorter than kcode (section 13.6.1), but
the tcode krim is nonetheless set at the same level as kcode in TFO-mode (“safe” or “risky” —
table 7.1). The values of S for different v and safe kp;,, are shown in table 13.6 below,

v | kpim | tcode size
2 27 28
3 27 55
4 26 79
5 25 101
6 17 86
7 13 79
8 11 78

Table 13.6: Tcode lookup-table size for v and “safe” krim.
To construct tcode, each total, set out in reverse value order, S-1 to 0, is assigned an output
[0,1,...,v-1], which is the tcode value-string. Here is an example for v7k5.
3(|) (l) - totals
6301462664052202461530202656513 - tcode, outputs [0,1,2,3,4,5,6]

The tcode may also be expressed in decimal (if applicable — section 16.6) or in hexadecimal,
as in section 13.5. If DDLab is not in TFO-mode, it automatically transforms the tcode into the
full rule-table, rcode (section 13.3).

117

13.7 Outer-totalistic rules
TFO-mode only, and not for mixzed-k

Outer-totalistic rules apply in TFO-mode. The rules (kcode or tcode) depend on the value of the
center cell, so a number of rules, v, need to be specified.

If o for kcode or to for tcode is entered at the prompt in section 13.1.2, the rules will subse-
quently be assigned in the same way as for a rulemix (chapter 14), but only to the first v cells
in the network (network index 0 to v — 1) representing the values of the target cell, which will
determine the rule to be applied. So this method just utilizes the rulemix functionality, it is not a
proper rulemix.

The method works with any k, but makes most sense if the central cell is not wired to itself —
is empty in the neighborhood (section 10).

For the classic binary game-of-Life (section 14.2.2), two rules are required, and can be set “by
hand” as shown below,

for v=0: 000001000 - birth: exactly 3 live neighbors (I B .
for v=1: 000001100 - survival: 2 or 3 live neighbors 0.8 « #=8 outer-neighborhood

However, there are automatic methods for setting the game-of-Life and other Life-like rules, in
both outer-kcode (section 14.2.2) and as a full rule-table, rcode (section 16.10).

13.8 Reaction-Diffusion dynamics

Reaction-Diffusion or excitable media dynamics [17], can be generated with a type of CA or DDN
with 3 cell qualities: resting, excited, and refractory (or substrate, activator, and inhibitor). There
is usually one resting type, one excited type, and one or more refractory types. In DDLab these
correspond to the values 0,1, and values> 2, which cycle between each other?.

A resting cell becomes excited if the number of excited cells in its neighborhood falls within
the threshold interval (t). An excited cell type changes to refractory. A refractory cell type
changes to the next refractory type (if there are more than one) and the final refractory type
changes back to resting, completing the following cycle,

resting(0): if within (t) — excited(1) — refractory(2 = 3 — --- — v — 1) — resting(0)

In DDLab, reaction-diffusion can be set as outer-kcode in TFO-mode, which allows greater
[v, k], or as a full rule-table — rcode.

The resulting dynamics, in 2d and 3d, can produce waves, spirals and related patterns that can
resemble the BZ reaction and other types of excitable media. As well as the threshold interval, the
dynamics is sensitive to the initial state and its density of non-resting types (non-zero values) —
usually low for best results. This density (A parameter) can be set in section 16.3.1. Interesting
results (as illustrated in figures 13.3 and 13.4) can be achieved not only for CA, but also for DDN
were the random wiring is confined to a tight local zone (section 12.5.2 and figures 12.4, 12.5).

4For binary networks (v=2) the refractory type would be missing, so this would not be reaction-diffusion in its
proper sense, though the option is still present in DDLab.

118 CHAPTER 13. RULE TYPES

| —
(BN TR i P p—]

Figure 13.3: Reaction-Diffusion dynamics, 2d. ﬁt: v8k8, threshold interval is 1 to 6, 122x122 square
lattice. Right: v8k11, threshold interval is 2 to 7, 255x255 square lattice, random connections within
a 24 diameter local zone.

Figure 13.4: Reaction-Diffusion dynamics, evolved 3d snapshots 44 x44 x44, v8k11, threshold interval
is 2 to 6, with a seed density of 33%. Each 3d snapshot has its 2d version, the top 5 levels, beside it.
Left: alocal CA 3d neighbourhood, Right: random connections within a 7 cell diameter local 3d zone.

13.8.1 Reaction-Diffusion from outer-kcode

Select outer-kcode (section 13.7) by entering o in section 13.1.2. Subsequent top-right prompts
allow the selection of reaction-diffusion dynamics (section 14.2.1).

The required rules are automatically assigned to the first v cells of the network (network index,
0 to v — 1) in a quasi-outer-kcode®. The way this works is as follows, where resting=0, excited=1,

5As noted in section 13.7, outer-totalistic rules are themselves a quasi-rulemix, using the rulemix functionality.

119

refractory>2: kcode(0) holds the threshold interval to change the cell from resting to excited
(0—1). kecodes(1, 2, 3,.., v-1) store the colors, so whatever the neighborhood, the cell cycles to the
next color, then back to 0, as described in section 13.8.

13.8.2 Reaction-Diffusion from a full rule-table — rcode

Select rcode which implements any logic, by entering return in section 13.1.1. Then enter RD-R at
the next main sequence prompt (section 16.1.1) for a reaction-diffusion rcode. After the threshold
is set in section 13.8.3 below, the rule will be set automatically to emulate reaction-diffusion
dynamics. Note that a reaction-diffusion rcode can be part of a rulemix.

13.8.3 Selecting the threshold interval

Once reaction-diffusion dynamics has been selected (in sections 13.8.1 or 13.8.2) a subsequent top-
right prompt sets the threshold interval. This example shows the threshold interval set between 1
and 6 in a k=8 network,

thresholds: lower (0-8):1 upper (1-8):6 (if v=8)

This would make a resting cell change into an excited cell if there were between 1 and 6 excited
cells in its outer neighborhood, otherwise it would remain at rest.

Chapter 14

Rulemix options

All cells in a network may have the same rule as in classical CA, or cells may have different rules.
This is referred to as a rulemix (or rule scheme), which may be a rcode-mix, kcode-mix or tcode-mix.
If the network has heterogeneous neighborhoods sizes (a k-mix, chapter 9 and section 11.7) then
there must be a rulemix (by default) — in this case section 14.1 below does not apply. For just
one rule enter return at the prompt in section 14.1 and continue with chapter 16.

This chapter describes the rulemix options, and also outer-totalistic rules in TFO-mode which
share the same methods. Outer-kcode provides alternative methods for reaction-diffusion and
Life-like dynamics'.

A rulemix can be assigned from ...

e the whole of rule-space (rule-spaces for a k-mix)

o a limited subset of rules® to restrict the range of rules in the rulemix. The number of rules
in the subset can be anywhere from 1 to n (network size), but with an upper limit of 200.
Rules from the subset can be assigned to the network at random, or in repetitive blocks —
thus implement so called “hybrid CA” or HCA.

Rules in a rulemix or a limited subset can be set automatically at random with a predefined
density-bias of non-zero outputs (A-parameter), and rules can be confined to various sub-categories.
Alternatively, rules can be set individually “by hand” allowing almost any combination, and the
rulemix can be loaded from a previously saved file.

This chapter also describes altering the presentation of the neighborhood matrix (section 14.11),
and listing Post-functions, which are included in the initial rulemix prompt.

14.1 Single rule or rulemix, and other options
not for a k-miz (unless all k’s equal, section 14.6.7), or outer-totalistc rules in TFO-mode

After selecting a rule type in section 13.1, the next top-right prompt selects a single rule or
a rulemix, and includes some other options. The top line of the prompt shows a reminder of
the current mode, FIELD, SEED or TFO (section 6.1) and an option to preset the density-bias
(A-parameter). The prompt also differs somewhat according to the rule type,

IReaction-diffusion or Life-like rules can also be set as full rule-tables (rcode), allowing inclusion in a rulemix.
2This subset option does not apply to a k-mix, or to outer-totalistc rules in TFO-mode.

120

121

For rcode, kcode and tcode based on full rule-tables selected in section 15.1.1
FIELD-mode, bias-density (def 50.00%)-s: (or SEED-mode, def 50.00% — for v=2)
RULES: single rcode (def), load rulemix-1, list Post-P, nhood-matrix-a
mix: no limit-n, or set limit up to 200: (or single tcode/kcode above)

In TFO-mode, based on short rule-tables selected in section 15.1.2

TFO-mode, bias-density (def 83.33%)-s: (or def 83.33% — for v=6)

KCODE: single kcode (def), load kcodemix-1 (or TCODE: single tcode..)

mix: no limit-n, or set limit up to 200:

Enter return to skip all these rulemix options (and this chapter), and continue for a single
rcode, kcode or tcode, in chapter 16. The rulemix options are summarized below.

14.1.1 Summary of rulemix and other options

A summary of the options in section 14.1 is as follows,

options ... what they mean
bias-density-s ... to change the density-bias — the fraction of non-zero values in the
rule-table (section 14.1.2.
load rulemix-1 ... to load rule a scheme (rulemix) — rcode-mix .r_s, kcode-mix .r_v, or

tcode-mix .r_t. (section 35.3, and chapter 19).
list Post-P ... (not in TFO-mode) to list Post functions (section 14.12).

nhood-matrix-a ... (not in TFO-mode) to amend the presentation of the neighborhood

matrix (section 14.11).

no limit-n ... to set an rcode-mix, kcode-mix or tcode-mix, taken from the whole of
rule-space (section 14.4.1).

up to 200 ... enter a number, 1 to 200 (or 1 to n if n < 200) to set the size of a
limited subset of rules (rcodes, kcodes or tcodes) from which the mix
will be assigned to the network (section 14.4.2). The maximum size of
the limited subset of rules (set limit) is 200, unless the network size
n < 200 — then the maximum set limit is n.

14.1.2 Density-bias (A\-parameter)

Enter s in section 14.1 to change the density-bias — the fraction of non-zero values in the rule-table
(the A-parameter) but expressed as a percentage. This is applied probabilistically, so each rule
(rcode, kecode or tcode) in a rulemix will not necessarily have exactly the given density-bias. The
following top-right prompt is presented,

density-bias: enter % (def 66.67%): (for v=3, the default is an equal probability of each value)

Enter the new percentage density-bias — the prompt in section 14.1 will reappear with the
revised setting. The density-bias will be applied when setting the following at random,

e single rules (section 16.3.1).
e a rulemix or subset of rules (sections 14.5, 14.4.2).
e a rulemix or subset of rules “by hand” (section 14.6).

Note that for single rules set at random, the density-bias can be reset, either exactly or prob-
abilistically at later stages in section 16.3.1.

122 CHAPTER 14. RULEMIX OPTIONS

14.2 Outer-totalistic kcode or tcode
TFO-mode only

If outer-totalistic (kcode or tcode) was selected in TFO-mode in section 13.1.2; a quasi-rulemix
with v rules is the automatic choice, and a top-right reminder similar to this is presented,

TFO-mode,
OuterKcode: number of kcodes to be set=value-range=3
cont-ret: (or OuterTcode/tcodes, values shown are examples)

The next prompt will be similar to setting a rule-subset (KcodeSet or TcodeSet) in
section 14.4.2, but where the subset size=v. The prompts are as follows,

for kcode (and v=8)
OnterKcode(8): select by hand-h, RD-R Life-L maj-m/u Alt-A rnd-(def):

for tcode (and v=4)
OuterTcode(4): select by hand-h, maj-m rnd-(def):

The rules will be allocated to the first v cells in the network (index 0 to v — 1) representing
the values of the target cell, which determines the rule. The rules are set either at random with
various biases, or by hand, as for a normal rulemix, but although the method utilizes the rulemix
functionality, this is not a proper rulemix (section 13.7).

14.2.1 Setting reaction-diffusion by outer-kcode

for reaction-diffusion from rcode see section 13.8.2

Enter R in the OuterKcode. .. prompt in section 14.2 above to initiate a reaction-diffusion rule
by outer-kcode (sections 13.8, 13.8.1 and figure 13.3). Then set the threshold interval as described
in section 13.8.3. An alternative method for reaction-diffusion is from the full rule-table — rcode,
which also allows reaction-diffusion rules to form part of a rulemix, (section 13.8.2).

14.2.2 The game-of-Life and other Life-like rules by outer-kcode
for Life from a full rule-table (rcode) see section 16.10

If k=8 on a 2d square lattice, giving this neighborhood ﬁgﬁ — John Conway’s game-of-Life [10] can
be set as an outer-kcode. Any other Life-like® rule from the “Life family” can also be set, as well
as Life-like rules with neighborhoods other than the Moore neighborhood, or with v >2. This can
also be done from a full rule-table (rcode) in section 16.10, but the outer-kcode method provides
a greater range of v and k.

To set the classic game-of-life (but with possibly v colors), enter L in section 14.2, the following
top-right prompt (for k=8) appears,

Life k=8 (def: survival 2,3, birth 3,) accept-ret amend-a:

Shttp://en.wikipedia.org/wiki/Life-1like_cellular_automaton

http://en.wikipedia.org/wiki/Life-like_cellular_automaton

123

.
L

et s

Figure 14.1: The game-of-Life (23/3) applied to a v=8 CA. The algorithm in DDLab generates 8
outer kcodes giving similar dynamics to classical binary Life, but including 7 colors 4+ background. In
this example 4 glider guns are located in each corner on a 122x122 lattice, shooting different colored
gliders towards the center. The seed file is Lguns_v8. eed.

Enter return to accept the default. If a is entered to amend, the following further prompts
are presented,

accept-ret, or enter number-+ret, max entries=9, max value=8:
enter survival (def=2.3,): followed by ...
enter birth (def=3,):

Enter the new values for survival, followed by the new values for birth. After each number
enter return for the next number. There may be up to k entries — their order, or repeats, are
not significant. return without a number concludes the entries. q reverts to the first Life prompt,
but with the defaults possible altered.

The Life option is available for v > 2, and any k as well as the k=8 neighborhood, for 1d and
3d as well as 2d, and for a rulemix by hand. For v >2, for a (23/3) Life setting, the algorithm in
DDLab generates an equivalent rule-table giving the same dynamics as classical binary Life, but
including v-1 colors plus the background, as in figure 14.1.

124 CHAPTER 14. RULEMIX OPTIONS

As well as using the prompts above, the game-of-Life as an outer totalistic rule can also be set
“by hand”. For example, select v=2, k=8, and a 2d square lattice. Then in section 13.1.2 select
outer-totalistic (kcode or tcode). Two outer totalistic rules need to be set (because v=2), the first
for a central cell of 0, the second for a central cell of 1. Select “by hand”, then select b for bits in
the single rule prompt, similar to prompt 14.6.2 or 16.1.2. Set each rule (kcode or tcode) in turn
as below,

—0- _hirth- : : O
for v=0: 000001000 - birth: exactly 3 live neighbours 50 < k=8 outer-neighborhood

for v=1: 000001100 - survival: 2 or 3 live neighbours O

14.3 Setting the neighborhood, k=0

If a k-mix was selected in section 9.1 or 11.7, DDLab identifies any self-wired k=1 cells, and
gives an option to set the rule (or kcode or tcode) at these cells to make them effectively k=0
(section 9.2). The following prompt is presented,

single self wirings=4, set rule for k=0 equiv -0:
(shows the number of k=1 self-wired rules found)

Enter 0 to accept. Note that if the effective wiring to a cell is k=0, it will appear disconnected
in the 1d wiring graphic (section 17.6), as illustrated in figure 14.2.

Figure 14.2: Effective neighbor-
hood k=0, as shown in the 1d
wiring graphic (section 17.6) with
no connections to the previous time-

I step.
SE===goapg=

14.4 Methods for setting the rulemix or rule-subset

A rulemix, rule-subset (or quasi-rulemix) will be set if,

n for no limit was selected in section 14.1 — this sets a rulemix

a number, 1 to n (upper limit 200) for a rule-subset was selected in section 14.1 — this sets
the subset size.

the network has mixed-k (set in chapter 9 or section 11.7) — this forces a rulemix.
outer-totalistic was selected in section 13.1.2, followed by the outer-totalistic reminder in
section 14.2 — this sets a quasi-rulemix of v rules.

125

There are two strategies for creating a simple rulemix.

e The direct strategy, the only possibility for a k-mix, otherwise enter n for no limit in
section 14.1 — allows any rule from rule-space(s) to be included, so if randomly assigned, a
repeat of the same rule is unlikely for a large rule-space.

e The indirect strategy (enter a number s: 1 to n, upper limit 200). This first creates a limited
subset of rules from which rules will be assigned at random to the network, or sequentially
in repeating blocks of size s, so the final rulemix can be restricted to just a few rules - or
even just one rule (section 14.4.3).

The options below, which differ only slightly between the direct and indirect strategies, allow
rules to be set automatically at random (section 14.5) with various constraints depending on the
type of rule, or individually (by hand) by the various methods described in chapter 16.

14.4.1 Setting a rulemix directly

If n for no limit was selected in section 14.1, or for a k-mix, the rulemix will be assigned directly
to the network with the following prompts, which depend on the type of rule.
For full rule-tables and rcode, the prompt is,

RcodeMix: select by hand-h, maj-m/u Alt-A chain-c iso-i Post-P
canalyzing-C/+C, rnd-(def):

In TFO-mode, or if kcode or tcode was selected for full rule-tables (rcode) in section 13.1.1,
the prompt is,

KcodeMix: select by hand-h maj-m/u Alt-A rnd-(def): (for kcode)
or

TcodeMix: select by hand-h rnd-(def): (for tcode)

14.4.2 Setting a rulemix indirectly - specify a rule-subset
does not apply to a k-miz

A number (1 to 200), or (1 to n if n < 200), selected in section 14.1, specifies the size s of the
subset of rules. Rules from this subset will be automatically assigned at random to the network,
or sequentially in repeating blocks of size s. The prompts are similar to section 14.4.1 but without
maj and canalyzing, and Alt for tcode.

For rcode the prompt is,

RcodeSubset(22): select by hand-h (for a subset size 22)
Alt-A chain-c iso-i Post-P rnd-(def):

In TFO-mode, or if kcode or tcode was selected for full rule-tables (rcode) in section 13.1.1,
the prompts are,

KcodeSubset(5): select by hand-h, Alt-A rnd-(def): (for kcode, for subset size 5)
or

TcodeSubset(33): select by hand-h rnd-(def): (for tcode, for subset size 33)

126 CHAPTER 14. RULEMIX OPTIONS

14.4.2.1 Setting a rulemix indirectly - apply the rule-subset

Once the rule-subset has been selected, a further prompt is presented,

2 Rcodes were set (for a subset of 2 rules, or Kcodes, Tcodes)
apply as repeating blocks-b, or randomly-(def):

Enter return to set rules from the subset at random. Enter b to set rules sequentially in
repeating blocks equal to the subset size s. In the example above, the two rules in the subset
will be set alternately in the network, which can sometimes lead to interesting results for so called
“hybrid CA” or HCA.

14.4.3 A rulemix with just one rule

To set up any network (CA, RBN or DDN) with a homogeneous rule that allows later additions
and revisions as if it had a rulemix (as in figure 14.3), select a rulemix with a limited subset of rules
consisting of just one rule, i.e. enter 1 at the prompt in section 14.1.1, and set the rule by hand
(section 14.6). This fools DDLab into assuming the network has a “rulemix” when in fact all the
rules are the same.

™

{4

o< <
¢0,,0-
¥
&
A 3
£ 4
&H
A & % PR » L
€ o F2 X% ‘ Q‘ ¥ ¢

Figure 14.3: A 2d CA set up with the spiral rule [48] 100x 100 perturbed by a central 20x20 homo-
geneous block of chain rules that have been inserted. To do this first set up as a rulemix consisting of
just one rule, then create a rule block (sections 17.7.5 and 17.9.10).

14.5 Rulemix - random

The following options in section 14.4 assign rules either entirely at random, or at random from
some subcategory of rules. The program continues with options to review network architecture
described in chapter 17.

options . ..

what they mean

rnd-(def) ...

maj-m/u ...

Alt-A ...

chain-c ...
iso-i ...

Post-P ...

canalyzing-C/4C ...

enter return to assign rules entirely at random from the whole of
rule-space, for rcode, kcode or tcode. The density-bias (A-parameter)
can be preset in section 14.1.2

enter m to assign majority (voting) rules (section 14.7).
Enter u (not for tcode) to assign majority rules but with the outputs
from uniform neighborhoods flipped or shifted (section 14.8).

(not for tcode) to assign rcode or kcodes at random from the subset
of “Altenberg” rules, (section 16.9)

the options below for rcode only

to assign rcode at random from the subset of “chain” rules,
(section 16.11).

to assign isotropic rcode at random, where rotated and reflected neigh-
borhoods (in 1d, 2d and 3d) have the same output.

to assign rcode at random from the subset of “Post functions”
(section 14.12). A prompt to restrict the Post value will first be
presented as in section 14.12.2.

enter C to see and amend rcode canalyzing inputs, or enter another
subcategory followed by C: mC, uC, AC, cC, iC, or PC. Canalyzing
inputs are described in chapter 15.

127

14.6 Rulemix by hand

A succession of rules can be set individually, by hand, to create a rulemix, rule-subset, or outer-
totalistic rules. Each rule is set just like a single rule in chapter 16 — all the relevant options apply
depending on the rule type.

A top-right prompt gives the current rule index (starting with 0), and allows jumping to any
other valid index, and changing the current default method of rule selection. The selected rule
and other details (and options) for the rule will appear as for a single rule in chapter 16. At any
stage, the remaining rules can be set at random with valid biases.

14.6.1 By hand reminder

If h is entered in 14.2 or 14.4, a top-right context dependent reminder appears, for example,

for a rule subset

by hand: subset of 22 rcodes (or kcode, tcode)

for a rulemix of the whole network

by hand: kcodemix of 150 kcodes (or rcodes, tcodes)

for outer-totalistic rules (v=2) — TFO-mode only

by hand: outertot of 2 kcodes (or tcodes)

for a kmiz (the whole network) — lower and upper values of k are indicated

by hand: rcodemix of 150 rcodes (kmix 3-6) (or kcodemiz, tcodemiz)

128 CHAPTER 14. RULEMIX OPTIONS

14.6.2 By hand single rule prompt

At the same time as the “by hand” reminder above (section 14.6.1), the main sequence single rule
prompt appears (heavily context dependent — see section 16.1) to accept or revise the default
method of rule selection (and other options), for example,

Select v2k5 rcode (S=32): empty-e fill-f maj-m Alt-A life-L chain-c rnd-r
ReDiff-R iso-i bits-b hex-h dec-d rep-p load-1 values-v prtx-x (def-r):

Enter return to accept the default rule selection method, or change it with any another valid
entry, and set the rule for the current rule index. The rule selection methods are described in
detail in chapter 16 and summarized in section 16.2.

14.6.3 By hand options

))

The rule at each “index” is set in turn, starting from index 0, where “index” relates to the context
selected — either the whole network, or the rule subset, or outer totalistic. A top-right prompt
keeps track of the index, the range of k for a k-mix, the current value of k, the rule-type, and the
current by hand selection method.

For a k-mix, if a rule has already been set for the current k, the prompt start as follows,

index=7 k(3-9) (v3k4 rcodemix), same as last-s, all remaining-a: (for example)

Options s and a to copy previous rules are described in (section 14.6.6). Without a previous
k rule there are no copy options — the k-mix prompt is as follows, for example,

index=7 k(3-9) (v3k4 rcodemix) (or kcodemiz, tcodemiz)
hand=r, change-(any valid entry) or index-q: (ifr is the current selection method)

For a homogeneous-k network, the prompt is as follows, for example,

index=12 (v3k4 rcodemix) (rnd all-a if hand=r, m, A, c, 1 only)
hand=A, change-(any valid entry) or index-q, rnd all-a:

Opinion a is descibed in (section 14.6.5). Enter return to set the rule with the current
selection method, possibly with intermediate steps. The methods are similar to setting a single
rule (chapter 16). Once set, each rule (in bits/values and hex) may appear below the single rule
prompt (section 14.6.2) and in the bottom “rule window” (section 16.19). Enter q to change the
current selection method or jump to a new index (section 14.6.4).

14.6.4 Change the selection method or rule index

To change the selection method, enter any valid option in sections 14.6.2 or 14.6.3.
If q is entered in prompt 14.6.3 the following top-right prompt appears, for example,

change: index(16)-i, start again-a, selection-s, cont-ret:

Enter a to restart, from index 0.
If i is entered above, the following top-right prompt appears, for example,

this index=16, enter new index 0-16:

129

Enter a number to change the rule index.

If selection-s is entered above, the following top-right prompt appears, where the lower line
gives a list of valid selection methods. The options included in the list depend on the rule type and
k, and correspond to the main sequence single rule options (sections 14.6.2 and 16.1), for example,

for rcode
index=16 (v5k4), change selection method (now r), abort-q
as main sequence choices - e/f/x/m/u/A/L/c/r/i/R/b/h/d/p/l/v:

the second line for kcode
as main sequence choices - e/f/x/m/u/A/r/b/h/d/p/1/v:

the second line for tcode

as main sequence choices - e/f/x/m/r/b/h/d/p/l/v:

Enter any one of the listed choices to change the selection method which becomes the new
default. The selection methods are described in detail in chapter 16 and summarized in section 16.2.

14.6.5 Complete the rulemix automatically

For a rulemix with homogeneous-k, if the current selection method is setting rules at random,
or at random with constraints (section 16.2), the following option is included in the prompt in
section 14.6.3,

. rnd all-a: (if hand=r, m, A, c, i, only)

Enter a to abandon setting rules by hand, and complete setting rules at random automatically
for the rest of the network according to the current method and constraints, for example according
to the density-bias (A-parameter) if hand=r (section 16.3.1).

14.6.6 Copy rules automatically for a k-mix

While setting rules by hand for a k-mix, a rule set previously with a given k can be copied. The
following option is included in the prompt in section 14.6.3,

. same as last-s, all remaining-a: (if a rule for the current k was set previously)

Enter s to copy to the current cell index, or a to also copy to all the remaining cells in the
network with the same & — these cell indexes will be skipped in the remaining rule assignment
procedure. Enter return to ignore these options and continue.

14.6.7 Mixed k where all k’s (and rules) are the same

To create a k-mix network where all k’s are the same (k=3 in this example), at the prompt for
setting the k-mix in section 9.3 ...

set k-mix: load-1 hand-h specify-s rnd-(def):

. select s to set the percentage of k’s required (section 9.7.1), then enter return until k=3,
then set 100%,

130 CHAPTER 14. RULEMIX OPTIONS

enter % k=3 (100.0% left) back-b:100

To make it possible in the future to increase k for some cells, k-max can be set at some higher
value (section 9.10) for example,

. set greater max k-max (def 3, limit 9):7

After further options, DDLab will recognize if all k’s are the same, and present the single rule
or rulemix prompt (section 14.1) — for a single homogeneous rule enter 1.

14.7 Rulemix - majority

If m is selected, in section 14.4.1, a “majority” (voting) rule will be set at each cell. For v=2 the
majority rule outputs 1 for a majority of 1s in the neighborhood, 0 for a majority of 0s. In the
case of even k, and a tie between 1s and 0s, the output is set according to the value of the central
neighborhood index, as defined in chapter 10.

For v >2 the majority rule outputs the majority value in the neighborhood. In the case of a
tie one of the most frequent values is chosen at random.

14.8 Rulemix - majority with shifted uniform outputs
not for tcode — see also section 16.8 for a single rule

If u is selected in section 14.4.1, “majority” (voting) rules are set as in section 14.7 above, but
the uniform (unanimous) neighborhoods have their outputs shifted by -1, except for 0 which
becomes v-1. For random wiring, this can result in some interesting bi-stable, tri-stable, v-stable,
dynamics, as in figure 14.4. For v=2 this is the same as flipping the “end bits” (all-Os and all-1s),
as before in binary DDLab (figure 16.9).

time —

Figure 14.4: Shifted majority kcode-mix with random wiring, v8k11, where uniform neighborhoods
have their outputs shifted to a different color. The 1d space-time pattern (n=150) shows zones of
color density that remain stable for an unpredictable number of time-steps before flipping to a different
quasi-stable regime. The image shown is rotated by 90° so the time flows from left to right.

131

14.9 Rulemix for large networks, or large k

Assigning the rulemix to large networks, especially for large k, may take some time. For n > 5000
or (n > 500 and k > 10), the assignment is monitored by a progress bar near the top-right hand
corner of the screen. When the assignment is complete, the program will continue with options to
review network architecture described in chapter 17.

14.10 The all Os output

A rulemix set at random may be biased to have the “all 0s” neighborhood output in every rule
reset to 0 — the default for rcode, or any rule may be allowed — the default for kcode and tcode.
The following prompt is presented,

for rcode-miz
rcodemix: allow any rule-a, or force all 0s->0-(def):

for kcode-mix or tcode-mix
kcodemix: force all 0s->0-0:

For rcode, enter return to force all 0s->0, or a to leave the rulemix as is. For kcode or tcode,
enter 0 to force all 0s->0, or return to leave rulemix as is.

In a locally wired network, forcing all 0s->0 ensures that a small zone of non-zero cells can
grow at no more than the network’s “speed of light”, otherwise non-zero cells can appear at the
first time-step throughout the network.

14.11 Amending the neighborhood matrix
for full rule-tables (rcode) only, not in TFO-mode

If a to amend the neighorhood matrix (k-matrix) presentation (section 13.5.1) is selected in
section 14.1 the following prompts are presented in sequence,

nhood-matrix: exit-q, % of index to show (def 100%):33
scale in pixels (def 2, max 30):8 (values shown are ezamples)

Enter the percentage to show just part of the matrix, which sets the maximum rule-table index
on the left. Then set the scale in pixels. When the revised neighorhood matrix is displayed as
in figure 14.5 below (or 13.2), the nhood-matrix:... prompt reappears for further amendment.
Enter q to exit and continue.

3 EEEEEEEEEEESEESEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
L L L P rrrrrrrrrerrer i Prr e PP PP Prr PP PPl bl
-------- N 1 o o o

0T HEEENN EHEEEEN EEEEEN EEEEEN EEEEEN EEEEEe

| | | | |
1331 1243 1335 1327 1219 1311

Figure 14.5: Part only of the multi-value neighborhood matrix, colored according to the value color
key (section 7.1), this example for v8k4, set at 33%, and scale=12.

132 CHAPTER 14. RULEMIX OPTIONS

14.12 List Post functions
for rcode only, not in TFO-mode

Post functions [29] are rules that belong to certain classes of Boolean functions that are closed
under composition, and which play a role in the emergence of order in Boolean networks, a “softer”
version of canalyzing functions. In DDLab, Post functions are generalized for multi-value, but as
their theoretical relevance has only been demonstrated for Boolean functions, any multi-value
results should be treated with caution.

Very briefly, if u is the Post value from [v—1,v—2,...,0] or just [1,0] in the Boolean case, and
the Post class is [2,3,4,...,4], where i stands for all or “infinity”, a rule-table (function) belongs
(non-exclusively) to A[u]2, A[u]3,... ,Afu]i, if any [2,3,...,all] neighborhoods where the rule-table
output=u have a common u component (DDLab only computes class 2, 3, and).

In the literature the neighborhood (string) is the “vector”, and the rule-table is the “function”.
By this definition, if a value u occurs just once in the rule-table or not at all, the function belongs
to Post class A[u]i. These classes are nested; Afuli € A[u]3 € A[u]2. For Boolean functions the
class Afuli must also be canalyzing. Note also that totalistic rules, kcode and tcode, are much
more likely to include Post functions than rules in general.

14.12.1 Initial Post-function prompt

Enter P in section 14.1 to find and list all, or just samples, of Post functions in the terminal
window (including data on canalyzing, and the P and Z parameters) and/or to save the list to a
.dat file. A prompt similar to this, depending on the context, is presented,

_tcode index

_tcode-table (totalistic)
/ / _rule-table

/ / / _Post value and class
/ / / / _Canalyzing
/ / / / / _P-parameter
/ / / / / / _Z-parameter
/ / / /17
15: 1111 11111111 A[0]i C=3 P=1 Z=0
14: 1110 11111110 A[0]i C=3 P=0.875 Z=0.25
13: 1101 11101001 A[0]2 C=0 P=0.625 Z=0.75
12: 1100 11101000 A[1]2 A[0]2 C=0 P=0.5 Z=0.5
8: 1000 10000000 A[1]i C=3 P=0.875 Z=0.25
4: 0100 01101000 A[1]2 C=0 P=0.625 Z=0.75
0: 0000 00000000 A[1]i C=3 P=1 Z=0
v2k3: Post count=7=43.750\% (2=3 3=0 i=4) all tcode-space=16 (Post only)

_or (full list)
_or tcode-sample=x

Table 14.1: Post function list and data output for tcode-space v2k3, no restriction, with explanatory
notes. Only rule-tables <128 are displayed. The last line is the data summary.

43539: 00011100011100000010000011000000 A[1]2 C=0 P=0.71875 Z=0.507812
41744: 10000100111010000100000010001000 A[1]2 C=0 P=0.71875 Z=0.4375
40536: 01110010111111000100000010000000 A[1]2 C=0 P=0.625 Z=0.5625
38222: 11011101000000000110111000000000 A[1]i C=1 P=0.65625 Z=0.570312
38161: 01011101110001101000100000000000 A[1]2 C=0 P=0.65625 Z=0.617188
28130: 00000100100000001100000011000100 A[1]i C=1 P=0.78125 Z=0.390625
23020: 00011000011100001100000010000000 A[1]2 C=0 P=0.75 Z=0.5

21167: 10010011000010000110010000000000 A[1]2 C=0 P=0.75 Z=0.5

12990: 11000100001001110000000000000000 A[1]i C=1 P=0.78125 Z=0.4375
11724: 00101010000000101000000010001000 A[1]i C=1 P=0.78125 Z=0.4375
5419: 00010010010000101000100010000000 A[1]2 C=0 P=0.78125 Z=0.4375

v2k5: Post count=11=0.022\% (2=7 3=0 i=4) rule-sample=50000 (Post only)

Table 14.2: Post function list and data output for a 50000 sample of v2k5 rcode-space, restricted to
Post value 1, the sample index is on the left. For explanatory notes see table 14.1.

133

1553: 221222121222212121102 A[0]3 C=0 Z=0.26749
1418: 200000000000200100220 A[1]i C=0 Z=0.152263
1145: 200000002022022000020 A[1]i C=0 Z=0.251029
924: 122112122212101111000 A[0]2 C=0 7z=0.419753
656: 022000022000022100020 A[1]i C=0 z=0.27572
473: 111122221221211222021 A[0]2 C=0 z=0.358025
422: 121210101101010101111 A[2]2 C=0 Z=0.366255
414: 020200000212022002000 A[1]3 C=0 Z=0.283951
222: 010212000111001000101 A[2]2 C=0 Z=0.366255
202: 222222020221022112022 A[1]2 C=0 z=0.407407
197: 022022202201202202200 A[1]2 C=0 Z=0.432099
v3k5: Post count=11=0.550\% (2=6 3=2 i=3) kcode-sample=2000 (Post only)

Table 14.3: Post function list (multi-value) and data output for a 2000 sample of v3k5 kcode-space,
unrestricted. Only the kcode-table is shown because the rule-table size>128. The sample index is on
the left. For explanatory notes see table 14.1.

Post functions: sample-s, rcode-space (2°8=256)-p, all-a: (for rcode v2k8
or kcode/tcodes-space, the option -p is removed if the table-size> 2%?

Enter p for whole of rule-space, only possible if its size< 232 (then the size is shown in the
prompt). Alternatively enter s for just a sample of rule-space. Add a in either case (i.e. pa or sa)
to show all the functions, not just the Post functions, useful for finding parameter data on rules
in general. q will exit the prompt, return has no effect.

14.12.2 Restrict Post-functions

If a for all functions was not selected in section 14.12.1, a top-right prompt to restrict the Post
value is presented,

restrict Post value (0-1): (for Boolean functions. (0-2), (0-8) etc for multi value)

Enter the Post value [v — 1,v — 2,...,0]. Enter return for no restriction.

14.12.3 Set Post-function sample size

If s to select a sample was selected in section 14.12.1, a top-right prompt to set the sample size is
presented,

sample (def 10000):

Enter the sample size or return to accept the default size.

14.12.4 Final Post-function prompt

The following top-right prompt, with exact wording depending on the context, is presented to print
the data to the terminal, save it to a .dat file with (default filename post_data.dat), or both,

rule sample (2000) (Post only): print xterm-(def), save-s, both-b:
possible alternatives: all rules/kcode/tcodes, rule/kcode/tcode sample, (Post only)/(full list)

To cut short a lengthy computation in progress enter q. When complete, the program returns
to section 14.12.1. Enter q to exit Post-functions, or start a new listing.

Chapter 15

Setting Canalyzation in a random
rcode-mix

not_in_ TFO-mode.

The dynamics on a random rcode-mix can be biased towards order by including varying proportions
of “canalyzing” inputs, with applications in modelling genetic regulatory networks [19, 39].

A canalyzing input may be defined as follows: if a particular value (0,1,...,0-1) on an input
to a cell (referred to as a “gene” in this context) determines the gene’s output irrespective of its
other inputs, that input is said to be canalyzing. A given gene may have from zero to k canalyzing
inputs, but the outputs of all of these must be the same. As k increases, the fraction of rule-space
with canalyzing rules (having at least one canalyzing input) deceases exponentially (section 24.9.5),
so the probability of setting such a rule at random deceases accordingly.

Traditionally, canalyzation applies to Boolean rules, but the same definition has been general-
ized for multi-value networks and is now applied in multi-value DDLab. However, the examples in
this chapter remain focused on Boolean rules.

The methods bias the randomly assigned rules by varying or tuning the fraction of canalyzing
rules, or inputs, in the network. The algorithms for tuning canalyzation in DDLab are designed to
minimize secondary biases in the distribution of canalyzing inputs. Rule-tables will be amended
at random for the required degree of canalyzation.

15.1 Selecting Canalyzing

If not in TFO-mode, canalyzing can be selected at various points in DDLab.

15.1.1 Selecting canalyzing from the rcode-mix

When setting the rcode-mix directly in section 14.4.1, at the top-right prompt,

RcodeMix: select by hand-h, maj-m Alt-A chain-c iso-i Post-P
canalyzing-C/+4C, rnd(def): (canalyzing-C/+C not for kcode or tcode)

Enter C to apply canalyzing to random rules, or mC, AC, cC, iC (but not PC), to apply
canalyzing to biased random rules. The (biased) rules will be set first, then modified by cumulative
random mutation to achieve the required canalyzation.

134

135

15.1.2 Selecting canalyzing from wiring graphic — transform rule

Once the rulemix has been set, canalyzing can be reached from the wiring graphic options
(section 17.4). At the wiring graphic option,

. rule: Save/rev/trans-S/v/t ...

. enter t for the transform rule options (section 18.1). A top-right prompt similar to the one
below will be presented,

transform rule: solid-o invert-v comp-c neg-n ref-r canal-C (all+a)
equiv>k (4-7), max k-m, eff k: all-K this-k, save-s:

Enter Ca to select canalyzing for the whole network, described in this chapter, or just C to
set canalyzing for a single rule described in section 18.6. The transform rule prompt also appears
automaticaly after a single rcode is set in the main prompt sequence, allowing canalyzing to be set
for that rule.

15.1.3 Selecting canalyzing from the Derrida plot

Canalyzing can be selected from the Derrida plot (chapter 22). The following top-right prompt
appears once the Derrida plot is complete (section 22.5),

Derrida plot complete
reset-r canalyzing-C:

Enter C to reset the canalyzing for a new Derrida plot.

15.2 The first canalyzing prompt

A series of top-right prompts allow the canalyzation to be set and reviewed. The first canalyzing
prompt is as follows,

set canalyzing genes-g inputs-(def):

Enter g to specify canalyzing genes, the fraction of network elements with at least one canalyz-
ing input. Enter return (the default) to specify the fraction of canalyzing inputs (wires), where
the total number of wires is n x k for homogeneous-k, or the sum of all k’s for a mixed-k network.

15.3 Canalyzing percentage or number

For a network with homogeneous-k, according to whether “genes” or “inputs” were selected in
section 15.2 above, the next prompt is as follows,

c-inputs: redo-q number-n %-(def): (or c-genes)
or
mixed k, c-inputs: redo-q number-n %-(def): (or c-genes, for mized-k networks)

136 CHAPTER 15. SETTING CANALYZATION IN A RANDOM RCODE-MIX

DIII-. I
L1 e e e == =
1] 4

B

fraction e/5 1 2 3 5 = — =
—_ | | | |
frequency % 11 30 21 10 17 saturation % 0 25 <50 <75 <100 100%
frequency % 4 39 38 16 1 1]
29 ptd
|
29*:“ - [] R R ANEER EERENE NEEEETE
u EEEE ETEEN EN EEEE EEEEN
u n EEEER
= H [I | [1 I]
]
] L L
] am
]
L]
L] om
] L1
] 1]
] u
Ll []
L] | I}
Ll]
Cl [1]
] u
L] [1}
]
] L1]
l [1]
] L1
[[1]
Ll
H
EEEEE EEE B H EEE EN u
EEENEEESENN SFEEE ENEE .—u
|
0
k=5, canalyzing frequency, k=10, canalyzing saturation,
canalyzing inputs set to 45%. canalyzing inputs set to 20%.

Figure 15.1: Canalyzing frequency/saturation for homogeneous-k networks, n=30x30, showing the
degree of canalyzation of each gene according to a color code, and a histogram of canalyzation in the
network — the colors in the network and histogram correspond. Above Left: canalyzing frequency
histogram. Above Right: canalyzing saturation histogram (because & > 10). The colors in the network
and histogram correspond.

Enter return (the default) to set a percentage of the total genes/inputs as canalyzing, or enter
n for a specific number. From this point on, the options for networks with homogeneous-k, and
mixed-k, are somewhat different.

15.4 Canalyzing - homogeneous-£

The next prompt gives the fraction and percentage of the current canalyzing genes and inputs,
and asks for the required canalyzing settings, for example,

c-inputs=0/4500=0.0% genes=0/900=0.0% (for a 2d network, k=5, 30x 30)
set new % c-inputs, redo-q accept-ret: (values depend on the earlier choices)
If, say, 45 (for 45%) is entered. The prompt will reappear with updated information,

c-inputs=2025/4500=45.0% genes=793/900=88.1%
set new % canalyzing inputs, redo-q accept-ret:

Enter a new canalyzing setting, or return to accept — the program will continue with options
to review network architecture described in chapter 17, or enter q to revert to the first canalyzing
prompt (section 15.2).

137

...

=S B

| | | |
<25 <50 <75 <100 100%

saturation % <25 <50 <75 <100 100% saturation % 0
frequency % 899 0.0 66 23 00 12 s 128 220 136 42 280
29
|
o L = HHHHHHH
] [[T] [H =
u u
u n n n
u u
n]]]
] u] | B
]] u
] | I
]]
n n] n
n |]
u n
u]]
n] |]]]
| | | |
]] [1]
| I | B |
] | I | [1]
| | L
]]]
EE =
]]
" E mEm m D |
T
0 0
Initial canalyzing inputs, 3.0%. Canalyzing inputs set to 45%.

Figure 15.2: Canalyzing saturation for two networks with the same (roughly even) k-mix 3-7, with
the canalyzing saturation histograms above, relating to section 15.5. n=30x30. Left: The network
showing the initial, expected, canalyzing. Right: The canalyzing inputs set to 45%. The colors in the
network and histogram correspond. S

At the same time as the prompt appears, a window in the lower right hand corner of the
screen gives a 2d graphical display of of the degree of canalyzation of each gene, irrespective of the
network’s native dimensions (figure 15.1).

Above this is a histogram of canalyzation in the network. For k < 9 the “canalyzing frequency”
histogram shows the frequency of each degree of canalyzation, 0 to k (figure 15.1 Above Left). For
k > 10 or for mixed-k (section 15.5) a different histogram, “canalyzing saturation” shows the
frequency of different percentages of canalyzation in six columns, for 0%, 100%, and intervals of
25% in between, i.e. 0%, < 25%, < 50%, < 75%, < 100%, 100% (figure 15.2 Above Right).

15.5 Canalyzing - mixed-£

For a network with mixed-k, following the prompts in sections 15.2 and 15.3, the next prompt
shows the percentage of different k’s (see also section 9.7.1), and offers an option to reset the
canalyzation for just a subset of the network having a particular k, or for the whole network,

%k: 3=19.9 4=19.7 5=19.1 6=21.0 7=20.3
enter k for just one nhood, all-(def) (genes/inputs depends on the earlier choice)

138 CHAPTER 15.

fraction c/7
frequency %

22 —roo oo a

oo
o
[m]

o
O oo

oo

[m]

The initial k=5 genes with no
canalyzing inputs, as expected.

SETTING CANALYZATION IN A RANDOM RCODE-MIX

]

[
~ 1
“ 1
"

[

u
u
u
mO

n
]] H EE
n mOm u
[] []
n

] [
[] " = m m 0

T

0

Canalyzing inputs to the k=5 genes
set to 45%.

Figure 15.3: Just one k in a mixed-k network. Canalyzing saturation for two networks with the same
(roughly even) k-mix, 3-7, as shown in section 15.5. n=30x30. Only the selected k=5 genes are
shown. An empty outline indicates no canalyzing inputs and gaps are genes where k # 5. Left: The
initial network showing k=5 genes with no canalyzing inputs, as expected. Right: Canalyzing inputs
of the k=5 genes set to 45%. The colors in the network and histogram correspond.

15.5.1 Canalyzing for the whole network - mixed-k

Enter return to set canalyzing for the whole mixed-k network. The next prompt gives the fraction
and percentage of the current canalyzing genes and inputs, and asks for the required canalyzing
settings. For example, the prompt may appear as follows, in this case for a 30 x 30 network, with

a k-mix of 3 to 7 (figure 15.2),

c-inputs=134/4530=3.0% genes=91/900=10.1% (2d network, 30 x 30)
set new % c-inputs, redo-q accept-ret: (values depend on the earlier choices)

The reason for the initial canalyzing degree (figure 15.3 Left) is that about 23.5% of inputs in
randomly assigned k=3 rules are likely to be canalyzing. For k=4 rules the figure is about 1.5%

(section 24.9.5).

If, say, 45 (for 45%) is entered. The prompt will reappear with updated information,

c-inputs=2034/4530=45.0% genes="794/900=88.2% (2d network, 30 x 30)
set new % c-inputs, redo-q accept-ret: (values depend on the earlier choices)

Enter a new canalyzing setting, or enter return to accept, the program will continue with
options to review network architecture described in chapter 17, or enter q to revert to the first

canalyzing prompt (section 15.2).

139

" I

Inn -

Q EEmmmm =
fractionc® 0 2 3 4 5 6 7 8 9 , e ey
freqency% 14 34 24 15 7 2 0 0 0 0 saturation % <25 <30 <75 <100 100%

258 fremency % 239 ,0,404 211 57 14 75

254 —

A homogeneous-k =9 network. A mixed-k network, £k=3-13.

Figure 15.4: Examples of two large networks, n=255x255, with large k. The canalyzing inputs were
set to 20%. Several tries with small increments were required to reach this setting.

At the same time as the prompt appears, a window in the lower right hand corner of the
screen gives a 2d graphical display of the degree of canalyzation of each gene, irrespective of the
network’s native dimensions (figure 15.3). Above this is a histogram of canalyzing saturation for the
mixed-k network showing the frequency of different percentages of canalyzation in six columns,
for 0%, 100%, and intervals of 25% in between, i.e. 0%, < 25%, < 50%, < 75%, < 100%, 100%
(figure 15.2 Above).

15.5.2 Canalyzing for a particular k£ in a mixed-k network

To set canalyzing for genes with one specific k£ only in a mixed-k network, ignoring the rest, enter
the required value of k at the prompt ...

enter k for just one nhood, all-(def):

in section 15.5. It must be a valid value that exists in the k-mix. For example, if k=5 is
selected (for the network shown in figure 15.3 Left) the following prompt will appear,

k=5 (19.1%) c-inputs=0/860=0.0% genes=0/172=0.0%)
set new % c-inputs, redo-q accept-ret:

This indicates that 19.1% of the network consists of k=5 genes, and that none of the inputs to
those genes are canalyzing, which is to be expected.

If, say, 45 (for 45%) is entered. The prompt below will reappear with updated information,
and the graphic will update — (figure 15.3 Right),

k=5 (19.1%) c-inputs=387/860=45.0% genes=146/172=84.9%)
set new % c-inputs, redo-q accept-ret:

140 CHAPTER 15. SETTING CANALYZATION IN A RANDOM RCODE-MIX

Enter a new canalyzing setting, or enter return to accept — the program will continue with
options to review network architecture described in chapter 17, or enter q to revert to the first
canalyzing prompt (15.2).

At the same time as the prompt appears, a window in the lower right hand corner of the screen
gives a 2d graphical display of the degree of canalyzation (figure 15.3) showing just the k=5 genes
selected. An empty outline indicates no canalyzing inputs and gaps are genes where k # 5.

Above this is the “canalyzing frequency” histogram for just the k=5 genes (figure 15.3 Above).
This format is employed rather than “canalyzing saturation” because in this example we are dealing
with just one k£ < 9.

15.6 Canalyzing for large networks, or large k

For large networks, or large k, as in figure 15.4, the algorithm for assigning canalyzing may take
some time. Also, the degree of canalyzation achieved may be less than requested. In this case more
tries should be made (in sections 15.4, 15.5.1, 15.5.2) to reach the required setting, increasing by
small increments.

A top-center window monitors the percentage of canalyzing inputs set so far. A progress bar
near the top-right hand corner of the screen also monitors the assignment of rules to the network,
as in section 14.9.

Chapter 16

Setting a singe rule

This chapter describes the alternative methods of setting a single rule: rcode, kcode or tcode. The
methods also apply to setting rules “by hand” for a rulemix in section 14.6.

16.1 The first single rule prompt

If one of the following selections was made at previous prompts,

return ... (the default) for a single rcode, kcode or tcode in section 14.1,
h ... for by hand-h for various kinds of rulemix: (see also section 14.6)

e setting a rulemix directly (section 14.4.1),
e setting a rule-subset (section 14.4.2),
e outer-totalistic kcode or reaction-diffusion (section 14.2).

then a main sequence prompt (sections 16.1.1 or 16.1.2) is displayed to accept or revise the default
method of rule selection (and other options). The prompt shows a reminder of the value-range v,
the neighborhood size k, the rule type (rcode, kcode or tcode), the size of the corresponding
rule-table S, and the list of options which are context dependent and may vary considerably.

16.1.1 Single rcode prompt examples

For a full rule-table, rcode (not TFO-mode or a k-mix) a graphic of the binary neighborhood
matrix is displayed (sections 13.3.1, 13.5.1), and the prompt is presented as follows, for example,

for rcode

Select v2k5 rcode (S=32): empty-e fill-f prtx-x ascii-v rnd-r

bits-b hex-h dec-d maj-m/u Alt-A life-L chain-c RD-R iso-i rep-p load-1 (def-r):
for kcode

Select v3k4 kcode (S=15): empty-e fill-f prtx-x ascii-v rnd-r

bits-b hex-h dec-d maj-m/u Alt-A rcode-R rep-p load-1 (def-r):

for tcode

Select v4k5 tcode(S=16): empty-e fill-f prtx-x ascii-v rnd-r

bits-b hex-h dec-d maj-m rule-R rep-p load-1 (def-r):

141

142 CHAPTER 16. SETTING A SINGE RULE

16.1.2 TFO-mode single rule prompt examples

for kcode
Select v3k4 kcode (S=15): empty-e fill-f k+-k prtx/swap-x ascii-v rnd-r
bits-b hex-h dec-d maj-m/u Alt-A rep-p load-1 (def-r):

for tcode
Select v4k5 tcode (S=16): empty-e fill-f prtx-x ascii-v rnd-r
bits-b hex-h dec-d maj-m rep-p load-1 (def-r):

16.2 Methods for setting a rule

The meaning of the prompts for setting a rule! in section 16.1 are summarized below. More details
are given in the rest of this chapter. These options also apply to a rule in a rulemix set “by hand”
in section 14.6, where the selected method stays as the default unless changed in section 14.6.4.
Some options do not apply to particular cases as noted. rnd-r is the initial default in the main
sequence of prompts, bits-b is the default if a rule has already been selected, or if revising a rule
at later stages (sections 30.5.1, 32.16.1).

options ... what they mean

empty-e ... to reset all rule-table entries to 0.
fill-f ... to fill the lookup-table with any valid value with the top-right prompt,

fill with value 0-4 (def 4): (if v=4)

This allows a clean slate for setting bits or values in section 16.4.
k+-k ... (only for kcode in TFO-mode) to create and save a kcode with an increased
neighborhood k+ by inserting a random string of the correct length within
the current kcode (section 16.17).
prtx-x ... show the rule in the terminal (section 16.18).
prtx/swap-x ... (for kcode only) as above, but also allows swapping output values to make
an equivalent kcode (section 16.18.5).

ascii-v ... to save or load the rule as an ASCII value string, a *.tbl file, described
in section 16.22. This is useful for interchanging the rule between DDLab
and alternative software.

note ... After the prompts above the program reverts to the first single rule prompt

i section 16.1. The prompts below set a rule and the program continues.

rnd-r ... to set the rule at random, for a given A\ parameter, or proportions of values
(section 16.3).

bits-b ... to set the rule as bits or values — “draw” the rule-table on a 1d or 2d

graphic array, using the mouse or keyboard, and many other options.
(section 16.4).

hex-h ... to set the rule in hexadecimal, in a mini “spread sheet” (section 16.5).

1Some of these methods are similar to setting a seed in section 21.2.

143

dec-d ... (if applicable) to set the rule in decimal (section 16.6).
maj-m/u ... Enter m to set a “majority” (voting) rule (section 16.7).

Enter u (not for tcode) to assign a majority rule but with the outputs
from uniform neighborhoods flipped or shifted (section 16.8).

Alt-A ... (not for tcode) to set an “Altenberg” rule, where the output of each neigh-
borhood is set probabilistically according to the frequency of the values
in that neighborhood (section 16.9).

Life-L ... (for rcode only, and if k > 5) to set to the “game-of-Life” or quasi “Life”
(section 16.10).

chain-c ... (for rcode only) to set a maximally chaotic rule, where Z.p, = 1 or

Zright = 1, but not both. For binary, in addition both Zj.¢; and Z,;gn:
are greater than 0.5 (section 16.11).

RD-R ... (for rcode only) to select a reaction-diffusion rule see section 13.8.2.

rcode-R ... (for tcode or kcode and full rule-table — not TFO-mode) to show a tcode
or kcode as a full rule-table (rcode) which can then be modified.

iso-i ... (for rcode only) to set the rule at random but as an isotropic rule, where
rotated and reflected neighborhoods (in 1d, 2d and 3d) have the same
output (secton 16.10.2).

rep-p ... to repeat the last rule (secton 16.13).

load-1... to load a rule. from a .rul, .vco, or .tco, file. (section 35.3). [v,k] in
the file must be the same as in the base.

Once a single rule have been set, except after rnd-r or in a rulemix “by hand” (section 14.6),
the bits-b option is activated automatically. Once accepted the rule is reconfirmed as a bit/value
pattern (in decimal if applicable) and in hex, and simultaneously displayed in the rule window
(section 16.19). At any stage enter q to backtrack and revise.

16.3 Setting the rule at random

A rule set at random is unbiased by default, but biases can be applied by two methods, firstly
the proportion of non-zero values (A-parameter), secondly a more explicit bias — the proportions
of different values in the rule-table, either as percentages, or as actual numbers of each value.
An uneven distribution of values in the rule-table, by either method, is more likely to result in
complex dynamics than an unbiased rule-table (figure 33.15).

Enter r (the initial default) in section 16.1, to generate a random rule, displayed as a rule-
table bit/value string graphic? — below the graphic, the rule in decimal (if applicable) and in
hexadecimal is also shown. Density-bias is simultaneously displayed in a lower top-right density
window (section 16.3.1). Initially there is an equal probability of each value, unless this was reset.

In addition to random biases, various changes and transformations® can be made (repeatedly)
until return is entered to accept the rule.

2The bits/values options in section 16.4 provide many extra presentation possibilities.
3These options are similar to setting a random initial state or seed in section 21.3.

144

CHAPTER 16. SETTING A SINGE RULE

The following subsequent reminder is shown,

tog-gaps-g, rotate-1/r another-n bias-s/v Z-u/d comp-m back-q accept-ret

(Z—u/d for rcode only)

These options are summarized below — with more detail in the sections indicated.

options . ..

what they mean

tog-gaps-g ...
exp/contr-e/c ...
rotate-1/r ...

another-n ...

bias-s/v ...

comp-m ...

back-q ...

accept-ret ...

to toggle gaps between successive blocks of 8 bits/values. This is the
default for binary rules (i.e. between chars) as in figure 16.11.

enter e to expand or ¢ to contract the current scale of the rule-table
bit/value graphic.

enter 1 or r to rotate the rule-table left or right by one output, with the
edge outputs wrapping around.

for another random rule with the same density-bias — A\ parameter.

enter s to change the density-bias — A\ parameter (section 16.3.1). Enter
v to set the value-bias, the proportions of different values in the rule-table,
either as percentages, or as actual numbers of each value if the rule-table
size S < 255 (section 16.3.2).

(for rcode only) enter u or d (or keep the key pressed) to progressively
force the Z-parameter up (towards chaos) or down (towards order), by
selectively mutating the rcode. This is done by flipping bits/values at
random positions, and only retaining the flips that produce the desired
change in Z. The algorithm for forcing Z down can get stuck — if so lower
the density-bias with density-s. There is a similar on-the-fly option while
running space-time patterns in section 32.5.5.

to toggle/transform the rule into its complement. For binary this changes
1s to 0s and vice versa. For v >2 each value a is changed to its complement
a. = (v —1) — a (section 16.20).

to backtrack to the first single rule prompt (section 16.1) — the latest
rule is remembered, and can be amended with bits-b or hex-h.

to accept the rule. Once accepted, the rule is also displayed in decimal
(if applicable), and in hex.

Some of these options are described in greater detail below.

16.3.1 Random rule density-bias (A parameter)

Enter s in section 16.3 to change the density-bias® — the fraction of non-zero values in the rule-table
]) but expressed as a percentage. The initial default is an equal probability
of each value, but this may have been reset in section 14.1.2. A lower top-right density window

(the A-parameter |

shows information about the density, in this example for rcode v5k6,

| density 4-1s(exact)=12500,/15625=80.000%, bias-80.000% \

4The methods for the seed density-bias in section 21.3.2 are similar.

145

where “density 4-1s” indicates the non-zero values, “(exact)” the current method of setting the
density as opposed to “(prob)”, 15625 is the size of the rcode-table, then the actual density, and
the bias requested.

There are two alternative methods to change the density-bias, exact or prob (exact is the
initial default). The following two stage top-right prompt is presented, for example,

for v=2, 22% entered, with prob as the default method
bias-density: enter % (def 50.000% prob):22 exact-e: (enter e to change to exact)

for v=_8, 33% entered, with exact as the default method
bias-density: enter % (def 87.500% exact):33 prob-p: (enter p to change to prob)

Enter the new density-bias as a percentage — the result updates the density window. For
binary this is the probability of setting 1s. For v > 3 it is the probability of setting non-zero
values — set without bias. The new density-bias becomes the new default. If the prob method is
active the density-bias requested is applied as a probability, whereas the exact method will apply
the requested bias as closely as possible. To change the default method between prob to exact,
enter e or p as indicated. The density-bias and method will be maintained for further random
rules generated with another-n in section 16.3 updating the density window, and when re-setting
random rules for space-time patterns with on-the-fly key r (section 32.5.1). This is also one of the
method to bias a random rule sample for classifying rule-space (section 33.2.1).

16.3.2 Rule value-bias 65 35

60 30 10

55 25 12 8
50 25 12 8
45 23 13 10
40 21 14 10
35 20 14 10
0 1 2 3

% of each value

value-range v

0~ O Ut~ W N

00 1 o ot
oo v w
o i w
~| w

Table 16.1: The default rule value-bias if not reset. The current rule value-bias can be randomly reset
when running space-time patterns with on-the-fly key R.

The frequency of values randomly distributed in a rule-table, the value-bias, can be set for any
distribution. If the frequency was not set previously by the methods below, a default frequency
will apply based on percentages of each value as in figure 16.1.

Enter v in section 16.3 to set the value-bias, either as whole number percentages, or as actual
numbers of each value if the rule-table size S < 255. The following series of prompts are presented
in a top-right window®,

e EmE T EmEE m AN R Ew S N EEm N mEE . Figure 16.1: Example of a v8k4
kcode according to the default
rule value-bias in table 16.1.

5The methods for the seed value-bias in section 21.3.3 are similar.

146 CHAPTER 16. SETTING A SINGE RULE

if S <255
bias random rule, %/value-p/v keep-k:

if S > 255

bias random rule, value-p keep-k:

if p was selected

0(100:45 1(55:4 2(51:4 3(47:4 4(43:9 5(34:9 6(25:18
if v was selected

0(120:56 1(64:7 2(57:7 3(50:7 4(43:12 5(31:12 6(19:15

Enter k to keep the last setting, otherwise enter p or v.— then for each value, from 0 to
v-2, enter the percentage or number — the value for v-1 is set automatically. The availability for
successive allocations of each value is shown with a bracket, for example at 3(50: (for v=3) enter a
number <50. If exactly 50 is entered the allocation will halt as complete. Entering a number >50
or return results in allocating 50 divided by the number of remaining values, so entering return
repeatedly gives an even distribution.

A lower top-right window shows the resulting value-bias distribution for the example above,
where “0-7” (for v=8) indicates the order of values,

if p was selected

[rule-bias: percent(100) 0-7: 7189944445 \

if v was selected

| rule-bias: numbers of values(120) 0-7: 56 777 12 12 15 4 \

If set, the value-bias will be maintained for further random rules generated with another-n
in section 16.3 updating the density window, and when re-setting random rules for space-time
patterns with on-the-fly key R (section 32.5.1). This is also one of the method to bias a random
rule sample for classifying rule-space (section 33.2.1).

16.3.3 Random rule parameters
not applicable in TFO-mode

For each alternative rule created in section 16.3, current rule parameters (as finally appear in
the rule window — section 16.19) are shown in an upper top-right rule parameters window.
This example is for a v2k5 rcode,

C=1/5="*3%** 21=0.1875 zr=0.1875
1d=0.09375 1d-r=0.1875 P=0.90625 Z=0.1875

abbreviations ... what they mean
C=1/5 ... the number of canalyzing inputs [19], in this case 1 out a possible 5 (k=5).
*¥3¥**k . if there are canalyzing inputs, this shows which are canalyzing, in this case
one input at index 3 (from a possible 0 to 4, see chapter 10).
zl ... Zleft-
7T ... Zright-

Id ... the X\ parameter [25].

Id-r ... the X ratio [34].
P ... the P parameter [19] — for binary rules (v=2) only.
Z ... the Z parameter [34, 41].

147

16.4 Setting the rule as bits or values

Figure 16.2: Setting bits start-
ing with all Os and drawing 1s,
with default gaps and white di-
visions. v2k9, S=512.

If b is selected in section 16.1, a bit or value graphic pattern representing the current rule-table
(initially just 0s) is displayed. This consists of a single row or multiple rows for longer rule-tables.
For v=2 the default has gaps between successive blocks of 8 bits (i.e. between chars) but this can
be toggled. The default scale of the pattern depends on the size of the rule-table, S, but can be
changed. The maximum rule-table index, S-1, is in the top-left hand corner, the zero index in the
lower right hand corner of the pattern. The current position on the pattern is indicated by a small
flashing cursor, initially top-left, and also in a top-right inset window. Bits/values are set with the
keyboard or drawn with the mouse on the rule graphic

The colors correspond to values (chapter 7) but Os are initially colored light green. If a rule
is already current, it can be reset to all-Os with empty-e or to any uniform value with fill-f in
sections 16.1.1 or 16.1.2 to provide a clean slate for setting other bits/values. Alternatively,
use the bit/value setting method for fine adjustments to rule-tables set by other methods.
Figures 16.2—16.3 illustrate alternative presentations which can be changed on-the-fly.

16.4.1 Rules: bits/values reminder window

Bits or values in the rule-table are drawn with the mouse and keyboard®. During the procedure,
a top-right window, and inset display, gives reminders of various options and current settings
(summarized below), this example for a v5k6 kcode where the rule-table size is 210,

the inset while drawing with the mouse — [left button: draw Is width= |
the inset with current settings N
keys: val/draw-(4-0) vert-v move-arrows kcode i=209 val=4 scale=5 rot=
mouse: move-click draw-drag width-w, PScript-P file-F
tog: gaps/Ocolor/dots/divs/divcolor-g/A/./i/! exp/contr-e/c xaxis-[/]
rot-1/r/+ /- flip-X comp-m >iso-I/* back/cont-q/ret (>iso-I/H/* for 2d v2k9 rcode)

options ... what they mean

keys: val/draw-(4-0) ... enter a valid number to select the value/color between 0 and the
v-1. Keep the key pressed to draw a horizontal line.

vert-v... keep v pressed to draw a vertical line downwards in the selected
value/color.

move-arrows ... all four arrow keys move the cursor around the rule-table graphic
(up/down arrows for multilpe rows).

6Similar methods apply for the seed in section 21.4.2.

148 CHAPTER 16. SETTING A SINGE RULE

(a) gaps, black divisions, Os
light green with dots.

(b) no gaps, white divisions,
0Os light green, no dots.

(¢) no gaps, no divisions,
0s white with dots.

M _raral . als BN O

Figure 16.3: Setting values — alternative presentations (a), (b) and (c) of a v8k3 rcode, S=512.
(d) shows (c) with its x-axis doubled with option | .

mouse: move-click ... left click on the rule pattern to reposition the small cursor and
activate drawing — sometimes the right button also needs to be clicked
(or right-left a few times) to activate.

draw-drag ... draw the selected value/color by dragging the cursor with the left mouse
button pressed — release the button to stop. The right mouse button
draws the complementary value/color (section 16.20) in the same way.

width-w ... enter w to change the width (initially 1) of the line to be drawn, where
the max width is the number of rows. The following top-right prompt is
presented (for example),

reset line width (now 1) max 4:
The width is shown in the drawing inset, and stays for the current draw-
ing session until revised.
PScript-P ... to save the rule-table bit/value pattern (or a patch) as a vector PostScript
image (section 16.4.4).

file-F ... to save the rule-table bit/value pattern (or a patch) as a 1d seed file
(section 16.4.4).

tog: gaps-g ... enter g to toggle gaps between sucessive blocks of 8 bits/values
(figure 16.3).

tog: Ocolor-A ... to toggle the zero value color between light green and white (figure 16.3).
tog: dot-. ... enter a dot to toggle a dot at the center of each zero cell (figure 16.3).

tog: divs/divcolor-i/! ... enter i to toggle division lines on/off between the rule-table en-
tries. Enter ! (exclamation mark) for a 3-way toggle of the division line
color — white, black, and light blue (figures 16.1 — 16.3).

exp/contrect-e/c2 ... enter e to expand, c to contract the scale by one pixel.

xaxis-[/] ... to change the presentation aspect ratio, enter [to halve the x-axis, | to
double the x-axis, the y-axis will change accordingly (figure 16.3)..

rotate-l1/r/+4/- ...

flip-X ...

comp-m ...

>iso-I/H/* ...

back/cont-q/ret .

enter 1 or r to rotate the rule-table left or right by the rotation interval
(initialy 1) with the edge outputs wrapping around. Enter 4 or - to
increace or decreace the rotation interval — shown in the current settings
inset (section 16.4.2).

to flip (reflect) the rule-table.

to toggle the rule to its complement. For binary this swaps 1s and 0s. For
v >2 the values are shifted; each output a changes to a,, by subtraction
from the maximum value v — 1, so a,, = (v — 1) — a, and the maximum
value changes to zero (section 16.20).

(for rcode only, 1d, 2d: k=2 to 10, 8d: k=6 or 7) to transform the
current rcode for isotropic dynamics, where rotated and reflected neigh-
borhoods (in 1d, 2d and 3d) have the same output. I transforms the
current rule to isotropic, * (the star symbol) also gives details in the ter-
minal. H only applies for 2d binary v2k9 3x3 rcode, and allows saving
or loading the isotropic rcode in the “Hensel notation” (section 16.10.3)
— compatible with “Golly” software used in the game-of-Life community
(http://www.conwaylife.com)”.

.. enter return to accept the rule and continue, q to backtrack.

16.4.2 Rule: bits/values current settings inset

kcode i=209 val=4 scale=5rot=1___ | < the inset with current settings, for v5k6 tcode

current settings ... what they mean

kcode i= ...

val=
scale=

rot=

the kcode index (or the rcode or tcode index) — the current cursor
position according to the rule index, where the bottom-right is 0, and
the top-left is S-1, where S is the size of the rule-table.

... the current drawing value/color.
... the current scale in pixels, which can be expanded and contracted.

... the current interval by which the rule-table can be rotated.

16.4.3 Rules: setting bits/values with the keyboard and mouse

149

The active position (to be updated) in the rule-table is highlighted by a small flashing cursor
initially in the top-left. Its position is displayed in the top-right inset window (section 16.4.2).
The cursor is repositioned with the mouse by clicking either the left or right button on the new
position®, or moved with the left/right /up/down arrow keys.

Setting or drawing values on the rule-table pattern is done with the keyboard or mouse
(figures 16.2,16.4). To set (and activate) a value at the cursor position, press a valid number

"See also section 21.11 for Saving/Loading a seed in the Golly file format.
8Mouse behavior differs slightly between Linux-like systems and DOS. In Linux the mouse pointer changes
direction within the bit/value rule-value pattern, pointing north-west instead of north-east, and within the pattern,
left or right mouse clicks reposition the flashing cursor. In DOS the mouse pointer is confined within the pattern
and clicking the left or right buttons sets values as well as repositioning the flashing cursor.

http://www.conwaylife.com

150 CHAPTER 16. SETTING A SINGE RULE

key (without return) — the cursor will then advance to the right by one unit. To draw a horizon-
tal line towards the right keep the key pressed; eventually the line will continue to the next row
or jump back to the top-left. To draw a vertical line downwards with the active value, press v.

Figure 16.4: Drawing bits or
values on the rcode pattern by
dragging the mouse pointer.

Top: drawing value 0 with line
width=1 on an all-1s bit pattern,
v2k13 rcode, S=8192.

Bottom: drawing values
0,1,23,45,6, with line width
1,2,3,4,5,6,7, on an all-7s value
pattern, v8k9 kcode, S=11440.

To draw the active value with the mouse, drag the cursor anywhere over the rule-table pattern
with the left button pressed — release to stop. To draw the complement of the active value
(section 16.20) drag with the right button pressed. While a mouse button is pressed, the inset
in the reminder window changes to show which button, the current active value, and the current
width of the line, for example,

left button: draw 3s width=2 | or [right button: draw 4s width=3 |

Initially the left button draws the value v-1 and the right draws 0, so for binary 1 and 0. A
button press outside the grid area gives changes the reminder window to joutside grid .

To activate drawing with the mouse it is sometimes necessary to click the left and right button
alternately. To accept the rule-table enter return. Once accepted, the rule is also displayed in
decimal (if applicable), in hex, and in the rule window (section 16.19).

16.4.4 Rules: save as 1d seed or PostScript

The rule-table pattern (or just a patch) can be saved as a vector PostScript image, or as a 1d seed
file. Saving as a 1d seed file allows a rule string to seed a basin of attraction, which itself is able
to classifing rule-space,as proposed by Burraston [6, 7].

Enter PScript—-P or file-F in section 16.4.1 — both options follow the same methods as the 1d
seed options in section 21.4.8. One of the following prompts appear in a top-right window,

for PostScript, PScript-P
PostScript KCODE: save all-a, save patch-p: (or RCODE, TCODE)

for a 1d seed file, file-F
RCODE as 1d SEED: save all-a, save patch-p: (or TCODE, KCODE)

Enter a for the whole rule-table. If p is entered, successive prompts are presented in a top-
right window to define a patch — the default is set by the last two mouse clicks on the rule-table.
The mouse click index shows up in the inset panel in section 16.4.1. This patch prompt example
is for v8k3 rcode,

1d: max i=511, revise coords-ret, accept patch 71-278-p: (patch = last 2 mouse clicks)
start i: end i: (... if ret was entered above)

Enter p to accept the default patch. Enter return to set the start/end values manually — the
defaults are the mouse click coordinates.

151

16.4.5 Rules: PostScript prompt

When creating a PostScript image of a rule-table, there are a variety of presentation possibilities
as illustrated in this chapter, and in section 21.4.10 for a seed where similar methods apply.

Enter a (or p for part of the rule-table) at the prompt in section 16.4.4 to save the rule-table
image as a vector PostScript (*.ps) file (default filename my_sPS.ps). Various top-right options
will be presented for the exact appearance of the image. This example is for v=8 RCODE,

create PostScript image for 1d, 64x8
symbols-s greyscale-g color-c exit-q (def-c): color-c/C for v=2)

These options are summarized below (then subsequent options continue),

options ... what they mean
symbols-s ... to show values as symbols (as in figures 21.10, 21.11 for a seed).
greyscale-g ... to show values in greyscale (as in figures 21.10 for a seed).
color-c ... (the default) to show values in color.
color-C ... (for binary v=_2 networks) by default 1s are colored — blue on a white

background and yellow on black background. Enter C to instead save 1s
in black or white respectively.

Once these options have been selected, the prompt to amend other settings is presented,
cellscale=5.00 dots(on)=0.70 divs(off), amend settings-a: (for evample)

Enter return to accept the defaults, or enter a for the following prompts presented in sequence,
change: cellscale: togdots-x: dotscale: divs(0,w,b,g):

Enter changes required or return to accept defaults, which follow the current bits/values
presentation. The options are summarized below,

options ... what they mean

cellscale ... enter a new cell width in pixels.
togdots-x ... to toggle zero dots on/off.

dotscale ... (if dots are on) enter a new width for zero dots in pixels, which can be a
decimal number.

divs(0,w,b,g) ... the initial default division (color) depends on the bits/values presentation,
and is shown in the prompt, for example divs(off) means that there are
no divisions and adjoining cells touch. To change, enter O for off, b for
black, w for white, and g for light blue/grey. The new choice becomes the
default.

Cells with value zero (Ocolor) are initially colored light green in the bits/values presentation
(section 16.4), which can be togged to white with Ocolor-A in section 16.4.1 — the PostScript file
will follow the current Ocolor.

Once these choices are complete, the *.ps file is saved from the filing prompt (section 35.3).
The default filename is my_sPS.ps, the same as for a 1d space-time pattern. Section 36.1 explains
how to view, edit, and crop the PostScript image.

152 CHAPTER 16. SETTING A SINGE RULE

16.5 Setting the rule in hex

If h is selected in section 16.1.1 or 16.1.2, the rule is defined in hexadecimal (hex), which is a
shorter way of denoting a rule than the rule-table itself. The method is the same as setting a
seed in hex in section 21.5. The hex expression of the current rule (initially just 0s) is displayed.
Each hex character (0 — 9 and a — f) shows the value of 4 bits, and the characters are displayed
in one byte pairs. During the hex setting procedure, a top-right reminder window displays the
following,

enter hex, arrows-move lhex count=454 inset shows the current hex position, from the top-left
rotate-1/r, accept-ret

The hex character to be updated is highlighted by a flashing cursor, initially in the top-left. Its
position is displayed in the top-right inset window. The flashing cursor is moved with the arrow
keys, left /right and up/down for more than one hex line. To overwrite, enter a hex character from
the keyboard, without return. This automatically moves the cursor one position to the right. Hex
characters entered which exceed the current value-range will be automatically corrected downwards
to the maximum value after the hex string has been accepted. Enter 1 or r to rotate the rule-table
by one bit or value as in sections 16.3 and 16.4.1, which will be immediately reflected in the hex
presentation. To accept the rule as expressed in hex, enter return, whereupon the rule will be
presented as bits/values (section 16.4), where it can be reconfirmed or amended.

M0 00 00 00 00 01 00 01 00 01 00 01 01 17 01 16
00 01 00 01 01 17 01 16 01 17 01 16 17 7e 16 68
00 01 00 01 01 17 01 16 01 17 01 16 17 7e 16 68
01 17 01 16 17 7e 16 68 17 7e 16 68 7e eB8 68 80

Figure 16.5: Setting rcode in hex, showing the “game-of-Life”, v2k9.

16.6 Setting the rule in decimal

applicable only for a limited range of v and rule-table size S

The decimal option is useful for binary rules with small neighborhoods, such as the v2k3
“elementary rules” with their well known decimal rule numbers [31, 34] or for v=2 tolalistic rules.
However the decimal option remains valid so long as the rule-table (rcode, kcode or vcode) is
within the limits” in table 16.2 which lists the maximum length of the bit/value string S and the
corresponding maximum decimal rule number, for each value-range v. If d is an available option
and is selected in section 16.1 or 16.1.2, the rule can be specified by its decimal equivalent. The
following prompt is displayed,

k=3 rule, enter 0-255 (def-rnd-dec): (for ezample)

Enter a decimal number, or return for a random number which will be displayed. If the
number entered is outside the permitted range, the program presents the message,

9The same limits apply when setting a seed in decimal (table 21.3 section 21.6).

153

k=3 rule, enter 0-255 (def-rnd-dec):333 - too big! back-ret: (for example)

Enter return to revert to the first single rule prompt (section 16.1). Once successfully selected,
the decimal rule is presented again as bits/values (section 16.4), where it can be reconfirmed or
amended.

v | max-S | max decimal

2 32 4294967295 Table 16.2: Rules in decimal — rule-table
3 20 3486784400 size limitations — the maximum bit/value
4 16 4294967295 string S for each value-range v, and the
) 13 1220703124 corresponding maximum decimal number.
6 12 2176782335 These are notional figures because the ac-
7 11 1977326742 tual limits also depend on the rule type and
8 10 1073741823 neighborhood k.

16.7 Setting a majority rule

If m is selected, in section 16.1, the “majority” (voting) rule will be set — an example was shown
in see figure 2.3. The algorithm differs between rcode, kcode and tcode, and also between v=2 and
v >2. For rcode or kcode the majority value in the neighborhood becomes the output.

In case of a tie,

e for rcode and v=2 the central cell wins.

e otherwise for kcode or v >2 one of the majority values is picked at random (see figure 16.7).

e A)

RERTETET

Figure 16.6:
Above: Majority rcode v2k9, shown as a bit
pattern of S=512 bits.

Left: Space-time snapshot from a random
initial state on a 120x 120 square lattice, where
the dynamics has stabilized on an attractor.

CHAPTER 16. SETTING A SINGE RULE

Figure 16.7:
Above: Majority kcode v8k6 shown as a value
pattern of S=1716 values.

Left: Space-time snapshot from a random
initial state on a 120x120 hexagonal lattice,
where the dynamics has stabilized on an
attractor.

Figure 16.8:
Above: Majority tcode v8k7 shown as a value
pattern of S=50 values.

Left: Space-time snapshot from a random
initial state on a 120x120 hexagonal lattice,
where the dynamics evolves into competing
patches.

For tcode, the tcode-table is divided into v approximately equal sectors, and the values are
allocated to the sectors in decending order from the left (see figure 16.8). Once selected, the
majority rule will be presented again as bits/values (section 16.4), where it can be reconfirmed or

amended.

Figures 16.6 — 16.8, and 4.14. show examples of the majority rule bit/value pattern, and
evolved snapshots of 2d spacetime patterns, for rcode, kcode and tcode.

155

16.8 Majority with shifted uniform outputs

not for tcode — see also section 14.8 for a rulemiz

If u is selected in section 16.1 a “majority” (voting) rule is set as in section 16.7 above, but the
uniform (unanimous) neighborhoods have their outputs shifted by -1, except for 0 which becomes
v-1. For v=2 this is the same as flipping the “end bits”, as before in binary DDLab, so that
unanimity gives the opposite vote, otherwise the majority wins — the tcode is 011001.

For random wiring, this can result in some interesting bi-stable, tri-stable, v-stable, dynamics,
for example in figure 16.9 for v=2, and for a rulemix of kcode majority rules, v=8, in figure 14.4.

time —

Figure 16.9: Flipped (shifted) majority rcode with random wiring, v2k5, where uniform neighbor-
hoods (all-Os and all-1s) have their outputs flipped to the opposite color. A 1d space-time pattern
(n=150) shows bi-stable pattern density, where the duration of the two density regimes is unpredictable.
The image shown is rotated by 90° so the time flows from left to right.

16.9 Setting Altenberg rules
not applicable to tcode

Figure 16.10:
Above: Altenberg kcode example v8k7, shown
as a value pattern of S=3432 values.

Left: Evolved space-time snapshot from a
random initial state on a 120x120 hexagonal
lattice.

156 CHAPTER 16. SETTING A SINGE RULE

Enter A to set an “Altenberg” rule (suggested by Lee Altenberg) where the output of each neigh-
borhood is set probabilistically according to the frequency of the values in that neighborhood.
This is a sort of probabilistic majority rule, and results in mobile ordered zones in the dynamics.
An example kcode and 2d snapshot is shown in figure 16.10, and a 1d space-time pattern in
figure 4.10.

16.10 The game-of-Life and other Life-like rules — rcode
for rcode and k > 5 (for Life in outer-kcode, TFO-mode, see section 14.2.2)

il ad A

Figure 16.11: Conway's game-of-Life (rule 23/3) shown as a 512 bit rcode in 8 rows. The diagonal
symmetry in each 8x8 block is a necessary (but insufficient) indication of isotropy so a useful visual
clue for the general case of isotropic rcode for a binary v2k9 2d CA with a Moore neighborhood
(sections 16.10.2 and 16.10.3).

For v2k9 on a square lattice, and the Moore neighborhood EEE — John Conway’s game-of-Life [10]
can be set — see figures 4.11 and 4.13 for examples of space-time patterns. Alternatively any other
Life-like rule from the ”Life family” can also be set, with different values of v and k.

The Life-like rules can also be set in outer-kcode in TFO-mode (section 14.2.2 and figure 14.1),
which allows a greater range of neighborhoods sizes, up to k=25 in 1d and 2d, but this section
describes the method for the full rule-table, rcode.

|_'|...._"_! |.'I.|.._'!-
h__I : h__I : h__I :
— — — Figure 16.12:
e e A e e Above: A rule in the Life family, Fredkin's
VA LA LT AL A replicator, specified by 1357/1357 in the con-
ventional notation. The v2k9 rcode, shown as
[. | 1 . | % T | % . | H _ H
a bit pattern of =512 bits.
Lo Lo
h T | 1. L T | L T | 1. M
d :1__-, Yy T :l_l_',i Left: Starting with one central “eye” as the
= = = = .
initial state, replicated patterns repeatedly
o e Y e Y pop out from disorder, this at time-step 193.
At H ._'l.gl_.dr_'_r 222x222 on a square lattice.
|_1...._"__| |_1...._"_.|

157

DDLab defines classical Life as (23/3) following the survival/birth format in Mirek’s Cellebra-
tion'". A cell is either alive (1) or dead/empty(0). The first part of (23/3) defines the survival
of a cell, requiring 2 or 3 live neighbors, the second part of (23/3) defines birth, requiring 3 live
neighbors, otherwise the cell is dead (by overcrowding or exposure). The 23/3 notation, when
entered in DDLab, is automatically translated into the full lookup-table, rcode (figure 16.11). Any
other Life-like rule can be specified in this notation, for example 1357/1357 for Fredkin’s replicator
in figure 16.12.

16.10.1 Setting Life-like rules — rcode
When L is entered in section 16.1 the following top-right prompt is presented,

Life k=9 (def: survival 2,3, birth 3,) accept-ret amend-a: for k=9

Enter return to accept the default. If a is entered to amend, the following further prompts
are presented,

accept-ret, or enter number+ret, max entries=9, max value=8:
enter survival (def=2.3,): followed by ...
enter birth (def=3,):

Enter the new values for survival, followed by the new values for birth. After each number
enter return for the next number. There may be up to k entries — their order, or repeats, are
not significant. return without a number concludes the entries. q reverts to the first Life prompt,
but with the defaults possibly altered.

The Life option is available for v > 2, and any k > 5 as well as the k=9 neighborhood, for 1d
and 3d as well as 2d, and for a rulemix by hand. For v >2, for a given Life setting, the algorithm
in DDLab generates an equivalent rcode giving the same dynamics as binary Life, but including
v colors. For example, v=3 and (23/3) gives the same game-of-Life dynamics but with two colors
plus the background, as in figure 16.13. To make changes to particular bits/values in Life-like
rule-tables, amend bits or values as in section 16.4.

R » Pigure 16.13:
H ol HH o EREEEE The game-of-Life (23/3) appled to
I%iﬁ F a v=3 CA. The algorithm in DDLab

generates an equivalent rcode giving
similar dynamics to classical binary
Life, but including 2 colors +
o | Ea EEEE background. In this example two
glider guns have been constructed,
éﬁ ‘ one shooting red gliders SE, the
other shooting black gliders SW.
h - The seed file is Lguns_v3. eed.
\ H

=

Ohttp://www.mirekw.com/ca/whatis_life.html. The survival/birth (23/3) order is sometimes reversed to
birth/survival (3/23) as in http://www.conwaylife.com.

http://www.mirekw.com/ca/whatis_life.html
http://www.conwaylife.com

158 CHAPTER 16. SETTING A SINGE RULE

16.10.2 Setting Isotropic rules
(for rcode only, 1d, 2d: k=2 to 10, 3d: k=6 or 7)

Rcode can betransformed for isotropic dynamics, which is arguably closer to natural physics. For
isotropic rules, rotated and reflected neighborhoods (in 1d, 2d or 3d) have the same output, so a
symmetric seed, for example a singleton, will maintain symmetry, as illustrated in figure 16.14).
Kcode (sections 13.4, 13.6.1) is by necessity isotropic, but isotropic rcode is more general, and
includes the game-of-Life and other Life-like automata[l4, 15, 16]. For 1d, 2d (k=2 to 10), and 3d
(k=6 or T), a random isometric rcode can be set (iso-i in section 16.1.1), or an existing rcode can
be transformed to isotropic from the bits/values reminder window (>iso-I/H/* in section 16.4.1).
H only applies for 2d binary v2k9 3x3 rcode, and allows saving or loading in the “Hensel notation”
for compatibility with “Golly” software (see section 16.10.3 below).

I transforms the current rule to isotropic, assigning the same output to each member of the
isotropic ”"group”, with the start of each group based on neighborhood decimal values, from low
to high. The star symbol * also gives details of each group in the terminal, as the example in
table 16.3. The bit/value presentation (section 16.4) will change accordingly, unless the current
rule is already isotropic!!.

2d k=5 count=1 output=0 group_size=1

00000=0

2d k=5 count=2 output=1 ccv=0(birth) group_size=4

00001=1

00010=2

01000=8

10000=16

ggolﬁ;acoum% OUEpUE=0 group_size=d Table 16.3: The output in the ter-
(1)38%%?8 minal for a 2d CA if the star sym-
1100?_24)) o bol * is entered in section 16.4.1
5010004 CUET# OutPuL0 group-size=d (>iso-I/H/*) to ransform the
2d k=5_count=5 output=0 group_size=4 current rule to an isotropic rule, and
00101=5 . " "
00110=6 also show details of each “group” of
01100=12 . . i .

10100=20 isotropic neighborhoods, its count,
2d k=5 count=6 output=1 ccv=1(survival) group_size=4 SiZe, OUtpUt, and for binary net-
00111=7

01101=13 works — whether an output of 1
10110=22 . .

11100=28 represents birth or survival.

2d k=5 count=7 output=0 group_size=2 i i i
01010-10 The isotropic-table or iso-table, a

10001=17
2d k=5 count=8 output=1 ccv=0(birth) group_size=4 list of outputs of each group in

0l011-11 descending order of the prototype
11001-25 neighborhood'’s decimal equivalent

2d k=5 count=9 output=1 ccv=1(survival) group_size=2 (from Ieft to rlg_ht) IS dlsPlayed at
01110=14 the bottom. This example is for a

10101=21
2d v2k5 CA, where the size of the

2d k=5 count=10 output=1 ccv=1(survival) group_size=4

01111~ iso-table is 12. For greater v, k the
11101=29 I -
11101-29 output details can be very exten

, ‘ sive.
2d k=5 count=11 output=1 ccv=0(birth) group_size=1
11011=27

2d k=5 count=12 output=0 group_size=1
11111=31

v=2 k=5 iso-table(12)=011110100010

11 For a binary v2k9 2d CA with a Moore neighborhood, the default presentation for the rule as bits is in 8 rows,
where a diagonal symmetry in each 8x8 block is a necessary (but insufficient) indication of isotropy (figure 16.11)
so a useful visual clue in this case, and for isotropic rules in section 16.10.3

159

vbk5 2d orthogonal neighborhood vbk6 2d hexagonal neighborhood

v5k6 3d neighborhood v5k7 3d neighborhood

Figure 16.14: Examples of space-time patterns and snapshots for 5-value 1d, 2d and 3d isotropic rules,
from a singleton seed, where symmetry is preserved. Isotopy, were rotated and reflected neighborhoods
have the same output, is arguably closer to natural physics.

160 CHAPTER 16. SETTING A SINGE RULE

16.10.3 Hensel notation for Golly
for 2d binary v2k9 (3x3) CA only

ooo
Binary 2d isotropic rules with a Moore neighborhood 888 (v2k9 3x3 rcode), also refered to as “non-

totalistic”, can be saved/loaded using the ‘Hensel notation”, which is compatible with “Golly”!?,
software used in the game-of-Life community (http://www.conwaylife.com).

The Hensel notation'® is an ascii string (based an extention of the Birth/Survival notation)
derived from a matix of the number of live cells in the outer neighborhood (columns) and a classifi-
cation of the appearance of pattern types (rows) denoted by the characters “c,e,k,a,in,q,j,r,t,w,z”.
DDLab’s implementation of Hensel’s matrix is shown in tables 16.4, 16.5 and 16.6.

0 1 2 3 4 5 6 7 8 Table 16.4:
ﬂi The Hensel matrix, as implinented
in DDLab, from which the ascii no-
¢ . H tation is derived. Each neighbor-
o 25 Ll hood pattern is the prototype of

an isotropic group, where columns
show the number of live cells
(excluding the center), and lower
case letters mark rows accord-

e e e e =
L= hLE

| e T | e

uab | g wSif=ellf B Sla] Bl

n E ing to an appearance classification.
E These prototypes are equivalent to
Yy , . .
Hensel's, but sometimes differ be-
q E cause in DDLab the lowest deci-
. ;:l mal equivalent is taken as the pro-
J . .
totype. These decimal equivalents
r E are shown in the Birth matrix in
ﬁ table 16.5, and result from the sum
t of live values in the neighborhood
w EI calculated thus:
256 | 128 | 64
2 if' 32 | 16 | 8
mum 1 2| 1

DDLab translates its own (isotropic) rcode encoding (section 16.16) into two such matrices,
one for birth and one for survival. With some further refinements, an ascii string is constructed
from these matrices defining the rule, which may form part of Golly’s *.rle file. For example, the
Golly *.rle script,

x = 92, y = 47, rule = B2cei3eq4qtbcybn/S12an3acejy4ijn5jy6-ek8
20$202$90b20$90b2040$46b202$46bobo !

12A 2d seed or pattern can also be saved/loaded in a file format compatible with Golly, see section 21.11
13This notation by Alan Hensel, appled in Golly and defined in
http://conwaylife.com/wiki/Isotropic_non-totalistic_Life-like_cellular_automaton
and http://golly.sourceforge.net/Help/Algorithms/Generations.html, is an ascii string based an extention
of the Birth/Survival notation, defined in http://conwaylife.com/wiki/Rulestring, and which inverts the sur-
vival/birth format for Life-like rules in DDLab (section 16.10).

http://www.conwaylife.com
http://conwaylife.com/wiki/Isotropic_non-totalistic_Life-like_cellular_automaton
http://golly.sourceforge.net/Help/Algorithms/Generations.html
http://conwaylife.com/wiki/Rulestring

161

Hensel_group_matrix Birth (loaded) Hensel_group_matrix Survival (loaded) Hensel Birth or Survival
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0123456738
0 - - - - - - - - 16 - - - - - - - - 0O----=----
- 1 5 69 325 171 175 239 - - 17 21 85 341 187 191 255 - - ccccccec -
- 2 10 42 170 327 335 367 - - 18 26 58 186 343 351 383 - -~—-eeeeeee -
- - 12 98 99 229 231 - - - - 28 114 115 245 247 - - --kkkkk--
- - 3 11 15 79 111 - - - - 19 27 31 95 127 - - -—aaaaa--
- - 40 7 45 47 365 - - - - 56 23 61 63 381 - - --iiiii--
- - 68 13 71 107 238 - - - - 84 29 87 123 254 - - - -nnnnn - -
- - - 97101173 - - - - - 113 117 189 - - - - -yyy - - -
- - 70 102 110 - - - - 86 118 126 - - ---4qqq---
- - - 14 106 103 - - - - - - 30 122 119 - - - ---33jji---
- - - 41 43 109 - - - - - - 57 59 1256 - - - ---rrr - - -
- - - 106 - - - - - - - - 121 - - - - R T
- - - - 78 - - - - - - - - %4 - - - - et
- - - - 108 - - - - - - - - 124 - - - - -z - - - -
- - - - - - - - a5 - - - - - - - - Bl1 mm==--—- 8

Table 16.5: Following Hensel's matrix as implinented in DDLab in table 16.4, the decimal value matrices
for birth and survival are shown (left and center). A rule with all outputs set to 1 would the give a
“full” matrix, the same for birth and survival (right).

Hensel Birth Hensel Survival

012345678 012345678

- =-CcC-=-Cc - - - - Cc-¢c--¢C - -

- -—ee - - - - - - e - e - - - - -

--------- --aa--a-- i

I T -—--i-i-- e

—————— n- - --n-n-n-- o |

----- y--- ---y-y---

---~"49-"~"-- T T - T T -~ -"
————————— ---3ii--- The isotropic Sayab rule shown as bits in 8 rows, the
LIl lC ST default presentation (section 16.4). Diagonal symme-

—————————————————— try in each 8x8 block is a necessary (but insufficient)
______________ indication of isotropy.

Hensel string

B2cei3eq4qtbcy6n/Sice2an3ceayj4inj5yj6caing

Table 16.6: For the Sayab rule[16], Hensel's matrices for birth and survival, and Hensel's notation
below, an ascii string constructed fron the matrices. These matrices, and isotropic group details, are
shown in the terminal if * (the star symbol) in entered in section 16.4.1. Right: DDlab’s rule bit
pattern. -

includes the rule’s Hensel string (top) and the initial state (below). The rule can be saved/loaded
in DDLab as a *.hen file (section 16.10.3.1). The initial state “run-length” string encoding can
be saved/loaded in DDLab as a *.gly file (section 21.11). The example is for the Sayab rule and
its glider-gun[15].

Table 16.5 shows the decimal value matrices for birth and survival (left and center) and a matrix
with all possible entries filled in, which would represent a rule with all outputs set to 1. In practice
the birth/survival matrices would be only partially filled in, as in this example (figure 16.6) for
the Sayab rule[16],

The Hensel notion string is made up of two parts, seperated by a forward slash, B (birth), (valid
total + walid letters),... | S(survival), (valid total + valid letters),. ... Reading off the matrices in
table 16.6 gives the string for the “Sayab” rule as shown. When saving, the string is generated in
full. When loading, the same sort-cuts as applicable for Golly are allowed (section 16.10.3.1).

162 CHAPTER 16. SETTING A SINGE RULE

2d k=9 count=1 output=0 group_size=1
000000000=0

2d k=9 count=2 output=0 group_size=4
000000001=1

000000100=4

001000000=64

100000000=256

2d k=9 count=3 output=0 group_size=4
000000010=2

000001000=8

000100000=32

010000000=128

Table 16.7: For the Sayab rule[16],

2d k=9 count=4 output=0 group_size=8

IS T isotropic group details and the iso-
99000100192 table showing group outputs from
2105600013, count 102 to 1 (count to 5 to
I 98 omitted). These details, and

....................... Hensel's matrices for birth and sur-

54T HES Conniogd onipiico group_sizes2 vival, are shown in the terminal if

101111101=381 * (the star symbol) in entered in

111010111=471 . 16.4.1
on I

2d k=9 count=100 output=1 ccv=1(survival) group_size=4 sectio

101111111=383

111011111=479

111110111=503

111111101=509

2d k=9 count=101 output=0 group_size=1
111101111=495

2d k=9 count=102 output=1 ccv=1(survival) group_size=1
111111111=511

v=2 k=9 iso-table(102)=100100000000010001001100011010000101000
010000001010000001011000100010100000101010010001110000001010000

16.10.3.1 Saving/Loading rcode in the Hensel notation
for 2d binary v2k9 (3x3) CA only

Enter H in section 16.4.1 (>iso-I/H/*) to transform the current rcode to an isotropic rule, and/or
save/load in the Hensel notation. The following top-right prompt is presented, and simultaneously
the iso-table and the Hensel notation will show in the terminal,

Golly iso-rule: transform-ret, Hensel notation save/load-s/1:

Enter return to just transform the rule. Enter s or 1 to also save or load the Hensel notation,
a *.hen file (the default filename is isoRule.hen, see Filing chapter 35). In both cases the bit
pattern (as in figure 16.11) will update. On loading, the new Hensel notation appears in the
terminal, together with the birth and survival partial matrices as in figures 16.5 and 16.6.

When saving, the Hensel string is generated in full, but loading allows the same sort-cuts as in
Golly, for example, just the totals with no following letters signifies all letters are valid, so B2/S23
loads the game-of-Life. A minus sign before letters signifies all letters are valid except these, so the
string B2cei3eq4qt5cy6n/S12an3acejy4ijnbjy6-ek8 is equaly valid for loading the Sayab rule.

To convert DDLab’s *.hen file to Golly’s *.rle file, the relevant preamble (including the seed
as in section 21.11) is added and the file renamed. To convert Golly’s *.rle to DDLab’s *.hen file,
the Hensel notation is isolated and the file renamed. Editing should be done in an “8-bit clean”
editor such as emacs, which does not corrupt certain characters.

163

16.11 Setting a chain-rule
reode (full rule-table) only

Enter c in section 16.1 to set a chain-rule. Chain-rules are maximally chaotic rules, where Zj.p; =1
or Zyight = 1, but not both. The global dynamics of chain-rules exhibit extremely low convergence
in subtrees. For larger systems, states usually have just one pre-image, so subtrees form a “chain”.
Garden-of-Eden density approaches order zero with increasing system size. Chain-rules comprise
approximately the square root of rule-space (figure 24.10), and the CA reverse algorithm is es-
pecially efficient for generating their subtrees. These characteristics make chain-rules suitable for
encryption [50], for example, by running “information” backwards to encrypt, forwards to decrypt
as in figure 16.15. The methods apply equally for v >2.

- o -—
I Y3l encryption
-19 steps
N
S :
oQ’Q 3
69\
>
>
& =
&
3

it

< information:
root of subtree

£ .-:EII | HS
ol et

running forward, time-step -3 to +4

Figure 16.15: Left: a subtree applied to encrypt information [50] at its root state (the “alien” seed),
set to stop after 19 backward time-steps, where the state reached is the encryption. To decrypt, apply
the same rule to run forwards by the same number of time-steps. Right: time-steps before and after
the alien suddenly pops out, then merges back into chaos. The root state is a 1d bit-pattern, here
displayed in 2d (n=1600, 40x40). The alien seed was drawn with the drawing function in DDLab
(section 21.4). The seed could also be an ascii file, or any other form of information. A v2k7 chain-rule
(rcode) was set at random, and the subtree was generated with the CA reverse algorithm. Note that
the subtree has not branched — branching is highly unlikely because of the large system size.

164 CHAPTER 16. SETTING A SINGE RULE

running forward, time-step -2 to 47

Figure 16.16: Left: A 1D pattern is displayed in 2D (n=7744, 88x88). The “portrait” was drawn
with the drawing function in DDLab. With a v=8, k=4 chain-rule constructed at random, and the
portrait as the root state, a subtree was generated with the CA reverse algorithm as in Fig. 16.15. The
subtree was set to stop after 4 backward time-steps. The state reached is the encryption. To decrypt,
run forwards by the same number of time-steps. Right: To decrypt, starting from the encrypted state
in Fig. 16.16 (n=7744, 88x88), the CA with the same v==8 chain-rule was run forward to recover the
original image. This figure shows time-steps -2 to +7 to illustrate how the image was scrambled both
before and after time step 0.

16.12 Setting reaction-diffusion — rcode
for reaction-diffusion by outer-kcode see section 14.2.1

Enter R in secton 16.1 above to initiate a reaction-diffusion rule with the full rule-table — rcode
(sections 13.8, 13.8.2 and figure 13.3). Then set the threshold interval as described in section
13.8.3. Section 14.2.1 describes an alternative method for reaction-diffusion from outer-kcode,
which allows greater [v, k].

165

16.13 Repeating the last rule

If p is selected in section 16 (for a single rule — not part of a rulemix), the last rule that was
set for the given [v, k] is repeated by automatically loading the “last rule” file with the same v, k
and rule type parameters (section 16.15). The file would have been automatically saved when the
last rcode, kcode or tcode was selected. Once selected, the repeated rule is presented again as
bits/values (section 16.4), where it can be reconfirmed or amended.

In a rulemix, where a sequence of rules is entered by hand (see section 14.6), the “last rule”
file is not relevant — selecting p repeats the previously entered rule from RAM. For a k-mix the
last rule with the current k is repeated.

16.14 Loading a single rule

If 1 is selected in section 16, a top-right filing prompt (section 35.3) is presented allowing a
single rule to be loaded from a file. The defaults are myrul vv.rul for rcode, myvco_vv.vco for
kcode, and mytco_vv.tco for tcode — for example myrul v2.rul, if the value-range, v=2. If
successfully loaded, the rule is presented again as a bit/value pattern (section 16.4) where it can be
reconfirmed or amended. Both the value-range v and neighborhood size k in the file must be the
same as in the base setup. If not, error messages are displayed in a top top-right window as follows,

current-v not equal to file-v
file-v(3) != base-v(2), can’t load, not loaded! cont-ret: (for ezample)

current-k not equal file-k
file-k(3) != base-k(5), can’t load, cont-ret: (for ezample)

However, a single rule file can be loaded at a give position in mixed rule network provided
file-k < base-k — enter v from the wiring graphic, section 17.4.

16.15 Awutomatic saving of last rule

After a single rule has been set, it will be automatically saved as the “last rule” of that rule type,
with a different filename for rcode, kcode or tcode, and [v,k]. The “last rule” filename has the
following format: 1_vaky.ext where the extension is .rul for rcode, .vco for kcode and .tco for
tcode, for example, 1_v4k5.rul.

16.16 Single rule file encoding

The binary file defining a single rule is encoded'* starting with 2 leading bytes as follows: Byte 0
= value-range v, byte 1 = neighborhood k. The rest of the rule-table size S (from 0 to S-1) is set
as bits in successive bytes.

41n the binary version of DDLab, the old style encoding started with the neighborhood k at byte 0. In the new
style encoding byte 0 is reserved for the value-range v, and subsequent bytes are displaced by one. Old style files
are nevertheless compatible for loading in the present version of DDLab.

See also the file encoding For the wiring/rulemix (section 19.3 and seeds (section 21.9).

166 CHAPTER 16.

S depends on the rule type, v and k as follows:

rcode ... S =
keode ... S=(v+k—1!/(kl(v—1)!)
tcode ... S=vxk

SETTING A SINGE RULE

The number of bits required for each rule-table output (vpts) is as follows:

v=2 ... 1 bit (vpits = 1) as in the old binary version of DDLab.

v=3or 4 ... 2bits (vpits = 2)
v=>5,6,7,8... 3 Dbits (vpits = 3)

A single rule encoding therefore requires 2 leading bytes plus the rule-table bytes R, where

R ’VSngitS—‘

bytes, the upper absolute value, minimum 1 byte.

16.17 Create a similar kcode with increased k

only for kcode in TFO-mode

example for v3k6 majority kcode example for analogous v3k7 kcode

Figure 16.17: The effect of inserting a random string within a v3k6 kcode majority rule to create an
analogous v3k7 kcode. The figures show space-time pattern snapshots from random initial states on
a 88x88 hexagonal lattice. Some aspects of the majority behavior are retained in k7. Note that there
are many possibilities for both examples — the actual kcodes are as shown in this section.

Enter k in section 16.1.2 to create and save a kcode with an increased neigborhood (k+) by inserting
a random string of the correct length centrally within the current kcode. This may preserve some
aspects of the original dynamics, as in figure 16.17. The following top-right prompt is presented,

create similar to k6 kcode and save, enter greater k(7-25): (if the current k=6)

The two rules are printed in the terminal as shown below — the inserted random string of

length 8 is indicated.

167

k-code examples in figure 16.17
v_tablecodemax$ [6]$=27
2222222220112001110001111000
v_tablecodemax_new=35 nhood_new=7
222222222011200200022001110001111000%}

__ the inserted random string of length 8

The new string is automatically saved as the last kcode (1_vzky.vco), for example 1_v3k7.vco,
which can be loaded with repeat-p after backtracking and re-selecting the new k. The program
reverts to the prompt in section 16.1.

16.18 Show the rule in the terminal

Select x in section 16.1 to show the rule data immediately in the terminal, and to present a
top-right prompt (section 16.18.3) for the rule data in more detail. For kcode, this includes a
further option to swap values (colors) to make an equivalent kcode (section 16.18.5). Note that
here there is no restriction on the size of the rule-table, for both hex and values strings.

16.18.1 Immediate rule data

Immediate rule data will appear in the terminal as in table 16.8 (including the cell index for a
rulemix),

rcode — for example

v3k3 rcodeSize=27

(hex) 02 2a 94 06 62 15 11

(rcode-table:2-0)

002022221100012120201110101

vireq=8+9+10=27 1d=0.63 1d-r=0.944 z1=0.555556 zr=0.444444

kcode — for example tcode — for example
v3k5 kcodeSize=21 v3k7 tcodeSize=15
(hex) 00 12 81 51 89 15 (hex) 22 06 42 26
(kcode-table:2-0) (tcode-table:2-0)
001022001110120210111 202001210020212
vireq=4+9+8=21 vireq=6+3+6=15

Table 16.8: Examples of the immediate rule data in the terminal (xterm) for rcode, kcode and tcode.

16.18.2 Immediate rule data for a rulemix by hand

If a rulemix is being set by hand in section 14.6 (including a rule-subset, or outer-totalistic), enter x
in section 14.6.3 to show the immediate rule data for the last rule defined. The cell index will be
added to the data as in the example below,

168 CHAPTER 16. SETTING A SINGE RULE

k-code rulemiz — for example
v3k3 kcodeSize=10 cindex=5
(hex) 02 64 28
(kcode-table:2-0)

0212100220

vireq=4+2+4=10

16.18.3 Rule data in more detail — vertical layout

Simultaneously with the immediate rule data, a prompt is presented for more detail, showing in
particular how the neighborhoods and the neighborhood index relates to the rule-table outputs in
a vertical layout. For kcode there are additional options for a horizontal layout, and for a matrix
layout if the value-range v=3.

for rcode or tcode — for example
print rcode-table(S=19) to xterm (vert)-v: (or tcode-table)

for kcode — matriz-m if v=3 only — for example
swap values-s, print kcode-table(S-21) to xterm (vert/horiz/matrix)-v/h/m:

Enter v to show the rule-table details with a vertical layout — the same rules as in table 16.8.

rcode v3k3 kcode v3k5 tcode v3kT

26: 222 -> 14 -> 2
25: 221 -> 13 ->
24: 220 -> %% ‘i
23: 212 -> -
22: 211 -> 10 >
21: 210 ->
20: 202 ->
19: 201 ->
18: 200 ->
17: 122 ->
16: 121 ->
15: 120 ->
14: 112 ->
13: 111 ->
12: 110 ->
11: 102 ->
10: 101 ->
100 ->
022 ->
021 ->
020 ->
012 ->
011 ->
010 ->
002 ->
001 >
: 000 ->
AV
AN outputs

\ neighborhoods

index

CONONPWNFO

O RN W UTO 00O

U

VvV Vv
NEFNONOORNF,OONO

\ \
\ outputs
totals=index

OO ORNOFRNWORNWEROFRNWRU
U
Vv
HONNOORRFOFRNONROREE

[y
[N

OBRPRWWWNNNNRRRRROO0O0000

Z~ORPONFOWNFOPWNRFROOIPBWNRO

U
v
oo
~

\ \ outputs

\ neighborhoods
index

O RN W oY~ 00 ©
_FORORPHONONHNEOOORENNNNONOO
i
[é2]

Table 16.9: Examples of the vertical layout for rcode, kcode and tcode, with explanatory notes, for the
same rules as table 16.8.

16.18.4 Additional rule data options for kcode

For kcode only, there are two additional layout options at prompt 16.18.3: horizontal layout
(section 13.6.1) — enter h, and matrix layout which applies only if v=3 — enter m. The matrix
layout is clarified in section 13.6.2. The results in the terminal are shown in table 16.10,

169

kcode horizontal layout v3kd kcode matriz layout v3k5
2:544333222211111000000 1012
1:010210321043210543210 --neighborhoods 101
0:001012012301234012345 8 0

1
2
1
2
001022001110120210111 --outputs 0

OFRrNFR,OF

Table 16.10: Examples of (left) horizontal, and (right) matrix, layout for the same kcode as table 16.9.

16.18.5 Swapping kcode values

Enter s in section 16.18.3 to swap pairs of values (colors) creating an equivalent kcode with equiva-
lent dynamics, so both attractor basins and space-time patterns would be equivalent, which requires
reordering the kcode as well as swapping values. The following top-right prompts are presented,

example for v=38
swap 2 values: enter first (0-2):1 (1 was entered, followed by)
first=1, enter second (0-2):2 (2 was entered)

The prompt then reverts back to section 16.18.3 — swap more pairs or enter return to
continue. In this v3k5 example, the original kcode is 001022001110120210111 from sections
16.18.1 — 16.18.4. The swapped kcode is shown in table 16.11 in some of the same layouts as can
be seen in the terminal. Figure 16.19 shows an example of the equivalent space-time patterns.

v3k5 kcodeSize=21 2:544333222211111000000 202120
(hex) 01 a0 02 86 62 62 1:010210321043210543210 21210
(kcode-table:2-0) 0:001012012301234012345 2200
122000002201212021202 (RERRRERRRRRRRRRRRRRR 000
vireq=9+4+8=21 122000002201212021202 22

1

Table 16.11: Swapped values 1 and 2 from the v3k5 kcode in sections 16.18.1 — 16.18.4. The swapped
kcode is shown in layouts from the terminal.

16.19 The rule window

When a rule is set or updated, or selected in the network-graphic (chapter 17), it is displayed in a
lower rule window. The rcode, tcode or kcode are also displayed if applicable, and TFO-mode is
indicated if current. Rule-tables are shown as bit/value patterns and in hex (as much as will fit),
and in decimal (if applicable). The window also gives v, k, rule types, network size, and for rcode
— details of the A\, P, and Z parameters, canalyzing inputs, and Post function data (if applicable).
This window is updated as rules are transformed or mutated. Examples of rule windows and their
data are shown in figure 16.18, and decoded in section 16.19.1. As much of the hex rule-table as
will fit will be shown'®.

5 Data in the rule window can be printed to the terminal (section 16.18) with no restriction on rule-table size.

170 CHAPTER 16. SETTING A SINGE RULE

full Tule-table

w2k3 reode(dec) 110 (hex)6e
1d size=14 1d=0.625 Id-r=0.75 P=0.625 z1=0.75 zr=0.625 Z=0.75 C=0/3

full rule-table setting kcode, so both rcode and kcode are shown

WaKS reodefhex)e7 b 4517 bice 31044571 47 52 17 cdSecabice 3 ledee |lee |13 1oeJed8d | 148 114531 4F 5e 31 cc Je 48 47 e T ce e 4Bee 8917
keodeihex)= 7 cd 7304 fa 47 1elf 9d24 7Th9h28 44
meEm R E R mmmmsn mm mmmns e enwn o)4 gjma=]1 50 1d=0.687 1d-r=0.915 z1=0.348 zr=0.348 Z=0.347636 C=0/5

kcode in TFO-mode and 2d

vBkS keode (TFO)
knnde[hex}: SRE2EF BReT [4de9F laaf 799dd2e3223c 1502 R [7aR0@ R Aheh42d005 308037 28543 0atcc235 3acc 49
(B Ea Ty R Py N | renﬂ-rﬂdm LAdeTMa LS drl Sl S e e AT A Ce BT - | =Fm- LAl Al e Lo RS Td AL ST
2d size=222%222

Figure 16.18: Rule window examples, images grabbed from the screen.

16.19.1 Decoding the rule window
The abbreviated headings in the first example of the rule window (figure 16.18) are explained below,

wmmmems (the rcode — look-up table shown as a bit pattern)

v2k3 rcode(dec)186 (hex)ba (values shown are ezamples)
1d size=14 1d=0.625 1d-r=0.75 P=0.625 z1=0.75 zr=0.25 Z=0.75 C=1/3 **0 Post=A|0]i

key to data in the rule window

v2k3 ... the value-range v and neighborhood size k.
rcode ... the rule type, kcode or tcode is also shown if applicable.
1d size=14 ... the network dimension and size for 1d, 2d or 3d would be shown thus

(for example) 2d size=40x40 or 3d size=20x20x20.

for a full rule-table (rcode) only
Id ... the X parameter [25].
Id-r ... the X ratio [34].
P ... the P parameter.

zl ... Zleft~
zr ... Zright-
Z ... the Z parameter.
C=1/3 ... the number of canalyzing inputs, in this case 1 out a possible 3 (k=3).

**0 ... shows exactly which of the k inputs are canalyzing (if none this is not
shown) — here there is 1 canalyzing input, at neighborhood index 0.

Post=A]0]i ... Post-function data, shown only if the rule qualifies (section 14.12).

171

16.20 Complementary values

Figure 16.19: Space-time snapshots of 2d CA, with two equivalent v3k6 kcodes, with swapped values
1 and 2 (red and black). The initial state was a single central cell on a 40x40 square lattice. The
snapshot was taken at time-step 54.

Options to complement values apply to both rules and seeds, for example comp-m in sections 16.3,
16.4, 18.5.1, 21.4 and 21.4.3.

Transforming a value into its complement is simple for binary (v=2) — change 1s to 0s and
vice versa. For any value-range v the “complement” of a value in DDLab is defined as follows:
each value a is changed to its complement a. by subtracting a from the maximum value v — 1, so
a. = (v — 1) — a. This satisfies binary, and for any v the maximum value is the complement of
zero. For odd v this means that the “central” value does not change.

The values are therefore swapped as follows,

16.21 Transforming the single rule
not in TFO-mode

For full rule-tables (rcode) only, including kcode and tcode expressed as rcode, single rules that
have been set can be transformed in various ways. The rule’s equivalence class and rule cluster [34]
can also be shown in the terminal. Here is an example of the top-right prompt, though it will
vary according to context, presented once a single rule has been selected,

transform rcode: solid-o invert-v comp-m neg-n ref-r, canal-C:
equiv greater k(3): (4-13), eff k-k (for ezample)
save/prtx: rcode/kcode-s/S/x/X EquivClass-E RuleCluster-R:

172 CHAPTER 16. SETTING A SINGE RULE

The various methods for transforming rules are described in chapter 18, and the prompt
may also be accessed from the wiring graphic (chapter 17), space-time pattern interrupt options
(section 32.16.1) and attractor basin complete options (section 30.5).

16.22 Saving/Loading a rule as an ASCII string

Enter ascii-v at the rule prompt in sections 16.1.1 or 16.1.2 to save or load the rule-table as an

ascii value string, a *.tbl file, (see Filing chapter 35). This is different from a binary rule file

(section 21.9), and is useful for interchanging rules between DDLab and alternative software.
The following top-right prompt is presented, for example,

ASCII rcode-table (v=4 k=3 S=64) load/save-1/s: (or kcode, or tcode)

When loading, if file-v is not equal to base-v, the following top-right notice is displayed,
file-v(8) != base-v(5), abort-q, load anyway-ret: (for ezample)

and if file-size is not equal to base-size, the following top-right notice is displayed,
file-size(512) != base-size(81), abort-q, load anyway-ret: (for example)

In either case, enter q to abort loading, or return to continue loading. Although the loading
prompt warns of a conflict between the file and base (value-range v, or table-size S) with an option
to abort, any ASCII file within DDLab’s naming constraints (section 35.1) with *.tbl extension
can nevertheless be loaded, so file-k can differ from base-k and there is no distinction between
rcode, kcode and tcode. As much or as little of a *.tbl file as will fit can be loaded, starting at
rule-table index zero. Any file-v greater than maxbase-v will be reduced to maxbase-v.

16.22.1 ASCII rule encoding

ASCII encoding for a rule *.tbl file (the same as for a seed*.tbl file)'% is as follows: the first
byte gives the value-range v, then a byte for each value at index 0 to S-1. For example, the ASCII
file, and the rule-table itself, for the majority rcode, v=4, k=3, S=64, are shown below

the ASCII file — 1+64 bytes
40000011002230333011311112121012301220121222203230023111333233333
the rcode-table itself — 64 bytes, shown numerically and graphically
3333323331113200323022221210221032101212111131103330322001100000
[BEN BN N B BN BN BEN B BAEh BAE B EESSEEEEN

16The ASCII rule and seed encoding (*.tbl and *.see are the same, so the a seed can be loaded into a rule and
vice-vera, provided the file-name extension is changed accordingly.

Chapter 17

Reviewing network architecture

This chapter describes ways of reviewing the network architecture by the following methods,

wiring matrix ... shows the wiring (and rules if set) in a table or spread-
sheet format, where the wiring can be changed.

1d, 2d or 3d wiring graphic ... the most powerful method for tailoring the wiring and
rules, and also seeing the details of the network.

Alternatively the network can be reviewed as a graph, described in chapter 20. The graph
option does not allow changes to the underlying network, but the graph can be unravelled by
dragging nodes and components, and rotated, rescaled, and many other manipulations performed.
Default presentations include: circle, spiral, 1d, 2d and 3d.

The methods described in this chapter, the wiring matrix and wiring graphic, allow wiring and
rules, set in chapters 10 — 16, to be examined, changed, and tailored to requirements, including
biased random settings to predefined parts of the network. These are very flexible methods, and
for RBN/DDN its usually easier to set up a suitable dummy network initially, then tailor it here.

For any wiring graphic, new functions make use of the mouse pointer (section 17.5) — a mouse
click will reposition the active cell — the last two clicks will define the default corners of a block,
making it easier to explore and amend network wiring.

The 1d graphic has two alternatives. Wiring can be shown between successive time-steps, or
between cells arranged in a circle. Both 1d methods apply whatever the native dimensions of the
network. The 2d graphic can be applied to both 1d and 2d networks. For a 3d network, the wiring
graphic shows a simultaneous display in both 2d and a 3d isometric (2d+3d), where the 2d view
shows horizontal slices through the 3d network — “levels” stacked above each other, and provides
the surface for the mouse pointer.

17.1 The network architecture prompt

see also “Reviewing wiring” section 12.7

Once the wiring (chapters 11 or 12) has been set, and subsequently the rule or rules (chapters 14 or
16), and possibly transformed (chapter 18), a top-right network architecture prompt is presented.
The exact wording and options offered depend on previous settings. The prompt can also be

173

174 CHAPTER 17. REVIEWING NETWORK ARCHITECTURE

activated at later stages in DDLab, while drawing space-time patterns (section 32.16) or attractor
basins (sections 30.4, 30.5, 30.5.1).
The prompt (examples in section 12.7) starts as follows, showing default network sizes,

1d network (n=150), ... (for a 1d network)
2d network (40x40), ... (for a 2d network)
3d network (9x9x9), ... (for a 3d network)

The first line of the prompt continues,
. wiring only - rules not set (if rules have not been set)
. review/revise/learn, wiring and rules (if rules were set)

The prompt continues as follows,

graph-g, matrix: revise-m view-M prtx-Mp

graphic: 1d+timesteps-1 circle-c 2d-2: (for a 1d or 2d network)
or

graphic: 1d+timesteps-1 circle-c 2d+3d-3: (for a 3d network)

For example, for a 1d network with rcode set, the prompt appears as follows,

1d network (n=150), review/revise/learn, wiring and rcode
graph-g, matrix: revise-m view-M prtx-Mp
graphic: 1d:timesteps-1 circle-c 2d-2:

options ... what they mean

graph-g ... for the network-graph (chapter 20), where network nodes and
connections can be rearranged and unravelled.

matrix: ... the “wiring matriz” section 17.2
revise-m ... for the network architecture in a spread-sheet type format, the wiring
matrix, where the wiring can be changed.
view-M ... to view the wiring matrix and save matrix image as a vector PostScript
file 17.2.1.
prtx-Mp ... to view as above, but also to print the wiring matrix in the terminal.

graphic: ... the “‘wiring graphic” section 17.3

1d:timesteps-1 ... enter 1 for a 1d wiring graphic where wiring is shown between succes-
sive time-steps, section 17.6, applies also to 2d and 3d.

circle-c ... enter ¢ for a 1d wiring graphic arranged in a circle, section 17.6,
applies also to 2d and 3d.

2d-2 ... enter 2 for a 2d wiring graphic, section 17.7, applies also to 1d.

2d+3d-3 ... enter 3 for the wiring graphic in 3d, and simultaneously in 2d in
successive horizontal slices, section 17.8.

175

17.2 The wiring matrix

Enter m or M in section 17.1 to show the network architecture in a spread-sheet type format,
the wiring matrix; M to see the matrix or save its image as a vector PostScript file; m to change
the wiring. The rules in a rulemix (if set) are also shown, as much as will fit; the wiring matrix
window, and fonts, can be re-sized. Examples are shown in figure 17.1. Rules cannot be changed
in the wiring matrix; this can be done in the wiring graphic (section 17.3).

As described in section 12.6, columns give the cell’s pseudo-neighborhood index, K (k-1,...,0).
Rows give the cell network position, N (n-1,...,0). The 0-0 grid (or the 0-minimum n grid if the
whole matrix does not fit within one window) is in the lower right hand corner. Each grid records
the position in the network x, (n-1,...,0), to which the K’th wire of the N’th cell is connected.

Note that positions N and x are 1d indexes, even if the network is 2d or 3d — sections 10.2.2
and 10.2.3 explain how to convert = to 2d or 3d coordinates, and vice versa. A column to the left
of the cell index shows the out-degree and out-degree histogram of each cell.

6. 5 4.3 2. 1 0
u7 22 1.0 9 8 7 6 . -
= 61 09 8 7 6 s The wiring matrix
u7 7:0 9 8 7 6 5 4 of a 1d CA, v2k7,
n7 69 8 7 6 5 4 3
u7 558 7 6 5 4 3 2 n=14.
n7 4$7 6 5 4 3 2 1
u7 36 5 43 2 10
'K 25 4 3 21 0 9
n7 1:4 3 210 9 8
n7 23 210 9 8 7
12. 11. 10. 9. 8. 7. 6. 5 4. 3. 2. 1. 0. rcode(hex)
ms 13: 12 125 12 11 8 3 7 13 2 63 1a 1d 5b b9 8f cb 31 83 ¢7 5f 95 ba d6 56 f3 3a d . .
my 12 0 2 11 126 7 3e080d121e5fafde The wiring matrix for
LI 11: 8 5 5 3 132 8 2 5 5 17 8473 14 88 b6 05 9e £7 94 be ¢7 98 0a 3a dc ef cd c¢ — H —
s 10: 8 13 12 4 4 2 ed ef d7 0e 57 47 70 30 a ’U—2 k mix (k_z to
Is 9 2.9 4 3 6 aed10966 13) with random wiring,
u7 8: 4 7 0 114 4 5 3 6 7 2 bf 74 80 63 46 65 99 {9 £5 6a 58 €3 f4 14 83 23 be fc) .
m 7: 45 100 9 9687904 showing the rcode in hex
n7 6: 5 0 7 a8
L1 5 6 2 1 13 3 2 13 ee3dedcf28e360b 2cdc5fe8 9 9ae8 f6 for each ceII, as much as
o 10 4: 1 6 120 100 6 7 10 7 10 12 7e ec 7d 46 1e 76 8a d2 64 6¢ 93 ¢8 89 3e 69 36 c2 3 . .
ug 3 8 122 9 1 5 3 1 137 b2d506584d021f59 1893 54 ed b7 4f 4c 1b 1d 4 will fit.
o 2: 0 6 0 4 9 2 8 111 10 6b 5b 9c cc ce 7a ¢1 93 €0 ¢7 6b 4e 25 9d 7¢ 09 78 2
u7 1:5 1 123 4 5 134 1 11 3 13 11 84 be 3¢ ca 3f 82 ad ec €2 47 bl e5 de 9d 4a ae cc f4
ms 0: 8 9 Oe
Figure 17.1: Wiring matrix examples. k-1,...,0 indexes columns, n-1,...,0 indexes rows. The column

on the left shows the “out-degree” of each cell, the number of wires leaving it, also shown as a
histogram. For a rulemix only (if set), rules are shown in hex, as much as will fit, in the right column.
For k < 3, decimal rules are added. If the matrix was set with m in section 17.1, the wiring can be
set by hand as in a spread-sheet (section 12.6) and a rule in the active cell also appears in the rule
window (section 16.19). If the matrix was set with M in section 17.1, the matrix cannot be amended,
but there is an option to create a vector PostScript file, as in these figures.

176 CHAPTER 17. REVIEWING NETWORK ARCHITECTURE

17.2.1 Viewing the wiring matrix and creating vector PostScript

If M was selected in section 17.1, the wiring matrix is just displayed (enter m in section 17.2.2 to
also amend) together with the following top-right prompt,

if the matriz fits one window
PScipt-P layout-l font-f jump-(j=13-0) quit-q:

for a large matriz requiring a succession of windows, this example for a 2d network, 40x40

more-ret PScipt-P layout-1 font-f jump-(j=1599-0) quit-q:

options ... what they means

more-ret ... for alarge network that requires more than one window, enter return
for the next section of the list, otherwise enter return to continue.

PScipt-P ... enter P to save the matrix as seen in the matrix window to a vector
PostScript file. The default filename is my mxPS.ps (see chapter 36).

layout-1 ... enter 1 to change the matrix window width. The following top-right
prompt is presented, for example,

change window width (922-231 now=462):

Enter the new width in pixels within the limits indicated.

font-f ... enter fto change the font size, a 3-way toggle between normal, medium
and small.
jump-j(1599-0) ... enter a number within the limits indicated to jump directly to a given

cell index, which will become the first entry in the top row.

quit-q ... enter q to revert to the network architecture prompt in section 17.1.
For DOS there is a further option: enter p to print the current matrix window, with printer

limitations as noted in section 5.6.3.

17.2.2 Amending the matrix

see also “Wiring by hand” section 12.6

Enter m in section 17.1, or h in section 12.3, to display the wiring as a matrix or “spread sheet”,
which allows filling in the wiring positions for each cell’s pseudo-neighborhood index. If m, the
wiring will have already been set in chapters 11 and 12, so all positions will be filled but can be
amended. If h, the matrix will start as a blank grid, to be set “by hand” (section 12.6) as in
figure 12.6. In both cases, the following top-right reminder is presented,

hand wire/revise:jump-j (for a 2d network, 40x40)
enter wiring positions 0-1599 (return on blank/0=random
move-arrows more/complete-m layout-1 font-f quit-q

These options are also described in section 12.6 “Wiring by hand”, but this section assumes a
wiring matrix that has already been set — selected with m in section 17.1. Move around the matrix
with the left/right/up/down arrow keys. Enter the new position at the flashing green cursor and
complete the entry by moving to another grid with an arrow key or return. On zero, just return
gives a random position. A rectangle is drawn around any position covered. An entry outside the
network limits will be ignored.

177

Large networks may require several successive windows to display the matrix. Enter m to see
the next window. Moving beyond the top or bottom row in the current window with the arrow
keys or return also brings up the preceding or next window. return on the very last (bottom
right) entry makes the program continue. Enter j to jump to a new cell index, the following
prompt is presented,

jump to index (1599-0): (for a 2d network, 40x40)

Enter the new cell index, which will become the first entry in the top row. Options 1 or f
to alter the presentation of data and the amount visible in the matrix window are described in
section 17.2.1 above. Enter q to accept the wiring and revert to the prompt in section 17.1.

17.3 The wiring graphic

The wiring graphic is a diagram where the wiring and rules can be viewed, amended and reset
by flexible methods described in the rest of this chapter, including use of the mouse pointer/click
(section 17.5) to reposition the active cell, and define the default corners of a block. Enter 1, c, 2
or 3 (for 1d time-steps, 1d circle, 2d or 3d) in section 17.1.

options ... what they mean
1d:timesteps-1 ... for a 1d wiring graphic shown between successive time-steps.
circle-c ... for a 2d wiring graphic shown between cells arranged in a circle.

2d-2 ... for a 2d wiring graphic, which may also be selected for a 1d network.
2d+3d-3 ... for a 3d wiring graphic which only applies to a 3d network.

Note the native dimensions of the network can differ from the dimensions chosen for the wiring
graphic. All 1d methods apply whatever the native dimensions of the network. The 2d graphic
can be applied to both 1d and 2d networks. However the 3d graphic only applies to a 3d network.
The display and amendments apply to the “active cell” or to a predefined block of cells.

cell 29 cell 0
|I oSNNS OoCNNOpOoCOOOOREOEE I|I to
oEgocsopesgogoaguioesga=saggay== t1
cell=14 wiring=13 2 28 18 6 outwires=4 links:bi=16 self=4=2.7 %

Figure 17.2: The 1d wiring graphic showing the wiring between successive time-steps, k=5, n=30.
Each cell's “outwires” are represented by the heights at time-step ¢;.. For data decode see section 17.9

178 CHAPTER 17. REVIEWING NETWORK ARCHITECTURE

17.4 The wiring graphic reminder

A wiring graphic reminder of the options available appears in a top-right window at the same time
as the wiring graphic. The options vary between the 1d, 2d, and 3d wiring graphic but there are
also many similarities. Various context dependent options are presented for analyzing the network,
and amending the wiring or rule/s for a single cell, a group of cells — a ”block”, or for the network
as a whole!. The first line of the reminder shows the network dimensions and size. If rule/s have
not been set, the first line reads wiring only instead of wiring/rules and some options will be
missing.

As a consequence of possibly large network sizes in 2d and 3d, the default when defining a
block is to show just its edges, to speed up the graphics presentation for large blocks, but this can
be toggled to show the block in full as before with edges-G (sections 17.7.5 and 17.8.5). If a block
is active, the prompts show tog:block-g (instead of tog:all-g) and the block’s start-end (for 1d)
or opposite corner coordinates (for 2d or 3d) are shown instead of the coordinates of the active
cell, for example rewire 2d block 3,3-8,8: instead of rewire 2d cell 26,24:.

Examples of the 1d, 2d, and 3d wiring graphic reminders are shown below. Options in
green appear/apply for rcode and mixed-k only, and in red only after rules are set, with some
dependence on rcode and rule-mix.

1d time-step and circle wiring graphic — for 1d (can work for 2d or 3d)

1d (n=150) wiring/rules: move-arrows jump-j/mouse-click

one cell: right/left arrows, 15 cells: up/down arrows, PScript-P

block-b tog:all-g pseudo-p, in/out-i/o avZ-z hilght /Lrn-1/L

rewire 1d cell 74: untangle-u hand-h rnd-r/w/R special-s local:1d-1
change k=8(max 13)-k kill-K del-d rule: Save/rev/trans-S/v/t Derrida-D
file/data-f hist:In(k) /Out/Both-1/0/B, reset-q cont-ret

2d wiring graphic — for 2d (can work for 1d)

2d (40x40) wiring/rules: move-arrows, jump-j/mouse-click

exp/contr-e/c up/down-u/d tog:gaps-T gridcolor-! fill-W hex-x, PScript-P
block-b tog:all-g cell-links(1)-n pseudo-p index-i avZ-z hilght/Lrn-1/L
rewire 2d cell 26,24: hand-h rnd-r/w/R special-s local:1d-1 2d-2

change k=8(max 13)-k kill-K rule: Save/rev/trans-S/v/t Derrida-D
file/data-f hist:In(k)/Out/Both-I/0O/B reset-q cont-ret

8d wiring graphic — with an active block

3d (20x20x20) wiring/rules: move-arrows, levels up/down-[/] jump-j/mouse-click
exp/contr-e/c/E/C up/down-u/d tog:gaps-T fill-W grid3d-x, PScript-P

block-b tog:block-g edges-G block-links(4)-n pseudo-p index-i avZ-z hilght /Lrn-1/L
rewire 3d block 2,2,2-7,7,7: hand-h rnd-r/w/R special-s local:1d-1 2d-2 3d-3
change k=6(max 13)-k kill-K rule: Save/rev/trans-S/v/t Derrida-D
file/data-f hist:In(k) /Out/Both-I/0/B, reset-q cont-ret

INote that while interrupting incomplete attractor basins, though the wiring graphic can be accessed, any
options for changing wiring or rule/s are deactivated and do not appear in the prompt.

179

17.4.1 Wiring graphic options summary

The wiring graphic options options activate as soon as the key is pressed (without return) —
some have secondary prompts. Below is just a brief summary roughly following the order in which
the options are listed in the reminders. More details are given in further sections in this chapter.

presentation options ... what they mean

move- mouse-click ... use the mouse pointer and click to reposition the active cell — the
last two clicks define the default corners of a block (section 17.5).
For 1d, 2d and 3d — sections 17.6.2, 17.7.2 and 17.8.2.

move-arrows jump-j ... use the arrow keys to move around the network and reposition
the active cell. (or one level in 3d) or enter j to jump to a
particular cell index. For 1d, 2d and 3d — sections 17.6.2, 17.7.2
and 17.8.2.

one cells: right/left arows ... (1d graphic and circle only) to move left or right. (section 17.6.2).
15 cells: up/down-u/d ... (1d graphic and circle only) to junp 1/10th left or right
(section 17.6.2).

up/down-u/d ... (2d and 3d graphic only) to shift the 2d version of the 3d wiring
graphic to see the relevant part (section 17.8.9). Also works for
the 2d wiring graphic (17.7.8).

levels up/down-[/] ... (3d graphic only) use the square braces, “[” for up, “]” for down,
to move between levels (section 17.8.2).
exp/contr-e/c ... (2d and 3d graphic only) to expand or contract a 2d wiring
graphic (section 17.7.7), or the 2d version of the 3d wiring graphic
(section 17.8.8).
exp/contr-E/C ... (3d graphic only) to expand or contract the 3d isometric
(section 17.8.8).
*PScript-P ... toredraw and create a vector PostScript file of the current wiring
graphic (section 17.9.14).
block-b ... define a block of cells in 1d, 2d or 3d, for resetting the wiring or
rules (sections 17.6.3, 17.7.5, 17.8.5).

tog: other grid toggle options ..

gaps-T ... (2d, and 2d view of 3d, graphic only) to toggle gaps between
cells. Eliminating gaps results in simple grid lines which may be
preferable, especialy for a solid block of cells.

gridcolor-! ... (2d, and 2d view of 3d, graphic only) to toggle the outline color
of cells in a block, between grey and black.

fill-W ... (2d, and 2d view of 3d, graphic only) to toggle the color of cells
in a block, between red and white.

hex-x ... (2d graphic only) to toggle between square and hex layout.

grid3d-x ... (3d graphic only) to toggle grid lines on the 3d isometric
(section 17.8.7).

all-g ... (block inactive) toggle showing the active cell on its own, or

180

block-g ...
edges-G ...

cell-links(1)-n ...

block-links(4)-n ...

pseudo-p ...

index-i ...

miscellaneous options . ..

in/out-i/o ...

*avZ-z ...

*hilght/learn-1/L ...

rewire: options ...

CHAPTER 17. REVIEWING NETWORK ARCHITECTURE

the whole network (with caution for large networks). Combine
with n to see wiring.

(block active) toggle the block and its conections, to make visible
or invisible (but still active). Combine with n to see wiring.

(2d and 3d graphic only) toggle between block edges (the default)
and a full block. Combine with n to see wiring.

(2d and 3d graphic only — block inactive) a 5-way toggle for
alternative presentations of wiring relative to either the active
cell (or the whole network if set with all-g above). For the active

cell these options may be used with pseudo-p below. (sections
17.7.3, 17.8.3).

(2d and 3d graphic only — block active) a 5-way toggle for alter-
native presentations of wiring for the block, either just its edges
or the full block set with edges-G. (sections 17.7.3, 17.8.3).

(for the active cell) toggle to showing or omit the pseudo-
neighborhood.

(2d and 3d graphic only) Toggle the index numbers in the
pseudo-neighborhood. The numbers shown up if the scale is
large enough.

(1d and circle graphic only) show the indirect inputs and out-
puts of past time-steps, the “degrees of separation” between cells
(sections 17.6.6, 17.6.7).

(rcode-miz and/or k-miz) to calculate the average and weighted
average Z and A parameters (section 17.9.2).

(rcode only) enter L to implement the learning, forgetting, high-
lighting functions. Enter 1 for only highlighting nodes in attractor
basins (chapter 34). When interrupting space-time patterns the
option is learn-L — highlighting does not apply.

shows the coordinates of the cell, or block if active.

untangle-u ...

*hand-h ...

*rnd-r ...

*rnd-w ...

*rnd-R ...

(1d and circle graphic only) “untangle” the wiring of the cell,
block, or the whole network, and reset the rules for equivalent
dynamics (section 17.6.8).

rewire the active cell by hand (section 17.9.4).

to randomly rewire the active cell or block, respecting any biases
set in special-s below. Note that for 2d and 3d, the maximum
reach is no longer limited by the shortest axis (section 17.9.5).

as for rnd-r above, but if a block is active randomly rewire cells
outside the active block (section 17.9.5).

For homogeneous-k, rnd-R gives unbiased random wiring, either
to a single cell or block as for rnd-r above. For mixed-k, rnd-R
will bias the wiring according to the k distribution in the k-mix,
allowing a power-law distribution of outputs as well as inputs

181

described in section 9.7.2 (section 17.9.5).

special-s ... set “special” wiring biases, which can then be applied to the
active cell, or block (inside or outside) with rnd-r or rnd-w
above (section 17.9.6).

*local:1d-1 2d-2 3d-3 ... set local CA wiring for the cell or block (section 17.9.7).
*change k=8(max 13)-k ... (rcode and k-miz set) change k up or down for the cell or block,
up to krim (section 7.2).

*kill-K ... (rule-miz set) kill or neutralize a cell by cutting all its links, both
inputs and outputs, except for one input to itself. The rule is also
reset for effective k=0 (section 17.9.9).

del-d ... (1d networks, 1d or circle graphic only, k-miz, rcode set, in
main prompt sequence, active cell>0, not in TFO-mode) delete
a cell from the network, and shorten the network by one
(section 17.6.9).

rule:Save/rev/trans-S/v/t options ...

*Save-S ... save the rule for a cell,
*rev-v ... revise or load the rule for a cell, and copy to a block
(section 17.9.10).
*trans-t ... transform the rule or rules, set canalyzing inputs (section 17.9.11).

more miscellaneous options . ..

*Derrida plot-D ... draw the Derrida plot for the network, described in chapter 22.
*file/data-f ... filing, save and load the network architecture.

*hist:In(k)/Out/Both-I/O/B ... show a histogram of the frequency distribution of inputs
(i.e. k), outputs, or both (i.e all connections) in the network.

*reset-q ... backtrack to redisplay the network (section 17.1).

Options marked with an asterisk such as *rnd-r apply jointly for 1d, 2d and 3d networks —
most of these options are described further in section 17.9. Other options apply more specifically,
or uniquely, to a particular dimension — these options are described further in sections 17.6 for 1d,
17.7 for 2d, and 17.8 for 3d. Options in green appear/apply for rcode and mixed-k only, and in
red only after rules are set, with some dependence on rcode and rule-mix.

17.5 Wiring graphic, mouse pointer/click

New functions in the wiring graphic allow a mouse pointer/click to reposition the active cell, and
the last two clicks to define the default corners of a block. The active cell can still be moved
around with the arrow keys, or “jumped”, as before, but the mouse click method provides an
additional intuitive way to explore and amend network wiring. The pointer/click applies to all
wiring graphics, 1d time-steps or 1d circle layout (section 17.6), 1d as 2d or 2d square or hex
(section 17.7), and 3d where the pointer moves on the 2d version of the 3d network (section 17.8).

In Linux-like systems the usual North East pointer will change direction to North West if
within the active zone of the wiring graphic — for DOS the pointer will be confined within the

182 CHAPTER 17. REVIEWING NETWORK ARCHITECTURE

active zone. While inside the active zone, a small top center window gives a continual readout of
the network coordinates, for example for a 1d, 2d or 3d graphic,

i=1268 - |ij=34,17 | 1,j,h=6,5,10

17.6 Wiring graphic, 1d

Enter 1 or ¢ in section 17.1 for a 1d graphic, which shows how a particular cell (the “active cell”),
or a predefined 1d block of cells, is wired in a 1d, 2d or 3d network.

If 1 is entered, the wiring is shown between two time-steps, from time-step ¢y to t1, as in
figure 17.2 and elsewhere. Network cells at ty are shown in a row above cells at ¢;, and the
out-degree of each cell is indicated by the height of the cell’s representation at to (the cell wiring
out-degree histogram).

If ¢ is entered, the wiring is shown between cells, represented as nodes or radial lines, arranged
in a circle, as in 17.3 and elsewhere. The zero index is due east and increases clockwise. The cell
index is shown within each disk for networks smaller than about n=40. For networks greater than
about n=162, cells are shown as short radial lines. Each cell’s “outwires” are represented by the
length of radial lines outside each cell (the cell wiring out-degree histogram).

In both presentations, an option allows the pseudo-neighborhood to be omitted, showing just
direct links. The active cell is moved around the network with mouse pointer clicks or arrow keys,
and its possible to “jump” to a new location. The rule for the active cell appears in the rule
window described in section 16.19.

Sections 17.6.1—17.6.9 below explain some of the options specifically for 1d in more detail that
were summarized in section 17.4.1.

W,

/////y//’m,,
! "W S

Figure 17.3: Examples of the 1d circle wiring graphic. Left: the same network as in figure 17.2, k=5,
n=30. Right: k=13, n=500. The “active” cell is repositioned by mouse pointer clicks or moved by
the arrow keys. Each cell's “outwires’ are represented by the length of the red radial lines outside the
circle. The cell index is shown for networks smaller than about n=40. For networks greater than about
n=162, the nodes themselves are not shown, but just the radial lines.

183

cell 149 cell 0

B |

Figure 17.4: The 1d wiring
graphic, showing wiring to a
block of 11 cells, k=5, n=150.
Above: As time-steps. Left: As
a circle. The block was defined
from cell 60-80 and has random
wiring set with key r. The “ac-
tive cell” (109) is still visible, and
can be moved with a mouse click
or arrow keys usual.

cell=117 wiring=41 37 6 50 127 outwires=5 links:bi=11 self=7=0.9 %

17.6.1 Data — 1d wiring graphic

Various data about the active cell’s wiring are shown below the 1d graphic. For example, in figure
17.2, a k=5 network, with mixed rules and nonlocal wiring, the data is as follows,

cell=14 wiring=13 2 28 18 6 outwires=4 links:bi=16 self=4=2.7 %

See section 17.9.1 to decode this data. The rule and rule data for the active cell are also shown
(if the rule/s have been set) in the rule window described in section 16.19.

184 CHAPTER 17. REVIEWING NETWORK ARCHITECTURE

Figure 17.5: The 1d wiring
graphic, showing the wiring
of the whole network, k=3,
n=100. If a block is not set, g
toggles the full wiring on and off.
In these examples, the pseudo-
neighborhood was toggled off
with p to show just the (black)
direct links to the active cell.
Above: As time-steps. Left: As
a circle. -

cell=59 wiring=86 42 95 outwires=3 links:bi=4 self=3=1.0%

17.6.2 Moving or jumping between cells, 1d

To move the active cell, position the pointer and click any mouse button, or use the arrow keys.
The left and right arrow keys move by one cell, the up and down arrow keys move by by n/10
cells for n > 20 or by 2 cells otherwise. Alternatively, enter j to jump to a specific cell index. The
following prompt is displayed,

jump to index (1295-0): (for ezample)

17.6.3 Defining a block, 1d
Enter b in section 17.4 to define a block of cells. The following top-right prompt is presented,

1d block-1, all-a, no block and single cell-def:
(then, if 1 is selected ...)
1d block (0-150), first(def 60): second (def 80):

185

cell 15 cell 0 cell 15 cell 0 cell 15 cell 0 cell 15 cell 0
| t0 | | to | | to

[IEIEEEE el EEEED 7t1 gegeess=“gpesn=g t1 gegees@=Sopean== t gege=c=g=cagasg=e tl
0%%0g 299,
o °

o o

o’ ' o’

a. random wiring b. random wiring c. CA wiring d. CA wiring
pseudo-n'hood direct pseudo-n’hood direct

Figure 17.6: Examples of the 1d wiring graphic, k=5, n=20. (a) and (c) include the pseudo-
neighborhood, (b) and (d) show just direct wiring, toggle between with p. (a) and (b) have random
wiring, (c) and (d) have their wiring changed to 1d CA by entering 1. The same wiring inputs to cell
7 are shown: Top Row: as time-steps, Bottom Row: as a circle.

Enter 1 to define the block, a to define the whole network as a block. If 1 is entered, a
subsequent prompt is presented for the first and second cell indexes delimiting the block. The
defaults correspond to the indexes of the last two mouse clicks. Enter return to accept a default,
or enter any required index.

The wiring of all the cells in the block will be shown in the graphic as direct links, colored light
red. The active cell will still be visible and can be moved as usual. For a 1d network shown in 2d,
the prompt is as described in section 17.7.5

An active block is indicated in the wiring graphic reminder (section 17.4) for example,

rewire 1d block 60-80: ...

To deactivate the block enter b in section 17.4, then return. If the block is active and visible the
following rewire options ...

. untangle-u ... rnd-r/w/R special-s local:1d-1
change k=8 (max 13)-k ... (for ezample — rcode-miz set)

. will apply to just the block, not to the active cell if it is outside the block.
The following rule options apply to the active cell, but if the block is active and visible the
new rule can then be copied to the block (section 17.9.10).

. rule:Save/rev/trans-S/v/t

186 CHAPTER 17. REVIEWING NETWORK ARCHITECTURE

17.6.4 Toggling the block, 1d

Enter g in section 17.4 to toggle the active block, making it either visible or invisible, without
deactivating it. Note that options in section 17.6.3 affect a block only if it is both active and
visible. If no block is active, toggling with g just shows the wiring in the whole network.

17.6.5 Include the pseudo-neighborhood, or direct wiring only, 1d

The default wiring representation for the active cell includes the pseudo-neighborhood. Alterna-
tively just the direct connections may be shown, always the case for a block. Enter p to toggle
between the two (figure 17.6).

17.6.6 Recursive inputs to a cell, 1d

Enter i in section 17.3 to show all recursive inputs to a cell, whether direct or indirect, showing
the “input degrees of separation” between cells. This will include inputs to inputs, and so on,
relative to past time-steps, showing the potential upstream influence on the cell from past network
dynamics. This is shown in the direct wiring format (section 17.6.5).

Initially, just the wiring from the previous time-step appears, with the following prompt
displayed in the top-left hand corner of the wiring window,

step 1, inputs=2/100, step-s all-def: (for a k=2, n=100 network)

Enter return to generate all inputs in one go. Enter s to show the inputs in steps, by entering
return, or enter q to quit early. In both cases, inputs that relate to different past time-steps are
shown in different colors (cycling through about 7 colors). A small insert in the top-right hand
corner of the wiring window graphically indicates the fraction of cells connected by inputs so far.

Intermediate prompts show the number of inputs so far, for example,

step 4, inputs 27/100=27% cont-ret: (values shown are ezamples)

Once all possible input cells have been found, the following prompt appears in the top-left hand
corner of the wiring window,

step 12, inputs 80/100=80% complete (values shown are ezamples)

Enter return to reactivate the main wiring reminder (section 17.4) and revert to the normal
wiring graphic functions.

17.6.7 Recursive outputs from a cell, 1d

Enter o in section 17.4 to show all recursive outputs from a cell, whether direct or indirect,
showing the “output degrees of separation” between cells, the converse of of recursive inputs in
section 17.6.6. This will include outputs from outputs, and so on, relative to future time-steps,
showing the potential influence from the cell on future network dynamics downstream.

Initially just the immediate wiring outputs (if any) will be shown from ¢y to ¢;. The number
of these outputs may be less than that shown as “outwires” in the 1d wiring window data
(section 17.6.1) because there may be duplicate output wires which are only counted once. The
following prompt is displayed in the top-left hand corner of the wiring window,

step 1, outputs=2/100, step-s all-def: (for a k=2, n=100 network)

187

step 4, inputs=27/100-27.0% cont-ret:N @

cell 99 cell 0
I I

cell=52 wiring=7 40 outwires=2 links:hi-=3 self=1-0.5%

[step 12, inputs—80/100-80.0% complete

(i’

cell 99

cell=52 wiring=7 40 outwires=2 links:hi=3 self=1-0.5%

step 4, Inputs=27/100-27.0% cont-ret:n

"P000450008°"

‘ cell=52 wiring=7 40 outwires=2 links :hi=3 self=1=0.5% cell=52 wiring=7 40 ontwires=2 links:bi=3 self=1-0.5%

Figure 17.7: Recursive inputs (direct and indirect) to a given cell for a k=2, n=100 RBN.
Above: As time-steps. Below: As a circle. Firstly, inputs are shown after 4 backward steps with 27
cells reached. Secondly, the complete inputs are shown after 12 backward steps with 80 cells reached.
A small 2d insert in the top-right hand corner of the wiring window graphically indicates the fraction
of cells connected so far.

Enter return to generate all outputs in one go. Enter s to show the outputs in steps, by
entering return, or enter q to quit early. In both cases, outputs that relate to different future
time-steps are shown in different colors (cycling through about 7 colors). A small insert in the

top-right hand corner of the wiring window graphically indicates the fraction of cells connected by
outputs so far.

Intermediate prompts show the number of outputs so far, for example,

step 4, outputs=27/100=27% cont-ret: (values shown are ezamples)

188 CHAPTER 17. REVIEWING NETWORK ARCHITECTURE

step 4, ontputs=27/100-27.0% cont-ret:m Eﬂ

cell 99 cell 0
| |

Bg geg n o 1

cell=52 wiring=7 40 outwires=2 links:hi=3 self-1=0.5%

step 8, outputs=100/100-100.0% complete .

cell 92 cell 0

Ta

cell=52 wiring=7 40 outwires=2 links:hi=3 self-1-0.5%

[step 4, outputs=27100-27.0% cont-ret: | Eﬂ step 8, outputs-100/100-100.0% completes

e

cell-52 wiring=7 40 outwires=2 links:hi-3 self-1-0.5% cell=52 wiring=7 40 outwires=2 links:hi-3 self-1-0.5%

Figure 17.8: Recursive outputs (direct and indirect) from a given cell for a k=2, n=100 RBN.
Above: As time-steps. Below: As a circle. Firstly, outputs are shown after 4 forward steps with 27 cells
reached. Secondly, the complete outputs are shown after 8 forward steps with all 100 cells reached. A
small 2d insert in the top-right hand corner of the wiring window graphically indicates the fraction of
cells connected so far.

Once all possible output cells have been found, the following prompt appears in the top-left
hand corner of the wiring window,

step 8, outputs=100/100=100% complete (values shown are evamples)

Enter return to reactivate the wiring graphic reminder (section 17.4) and revert to the normal
wiring graphic functions.

189

random wiring, wires cross untangled random wiring

Figure 17.9: Untangling the wiring: wire connection points to the 1d pseudo-neighborhood for the
active cell are rearranged so that the wires do not cross, and the rcode (if set as part of a rulemix) is
automatically transformed to give equivalent behavior. In TFO-mode there is no need to transform the
rule. In this example k=12, n=>50.

17.6.8 Untangling the wiring

Enter u in section 17.4 to “untangle” the wiring for the active cell, for the defined block if visible,
or for all cells in the network, so that wire connection points to the pseudo-neighborhood (when
shown in 1d) do not cross each other (figure 17.9) — the wiring positions in the network itself are
unchanged. This option applies in the 1d wiring graphic (for 2d and 3d networks as well as 1d)
but the effect is best seen in 1d time-steps rather than the alternative circle presentation.

The following top-right prompt is presented,

untangle 1d wiring: all-a, single cell-(def): (for the active cell)
or if a block is active and visible
untangle 1d wiring: block 11-22, all-a, single cell-(def): (for ezample)

If an rcode-mix was set, rules are transformed for equivalent dynamics?. For a single rcode

network (section 14.1) the wiring will be untangled, but the rcode will remain unchanged — to get
around this, set the rcode-mix where all the rules are the same (section 14.4.3).

Note that in TFO-mode there is no need to transform rules when untangling because changing
the connection points of wires to the pseudo-neighborhood has no effect on dynamics.

17.6.9 Deleting a cell

(1d networks, 1d or circle graphic, k-miz, rcode set, in main prompt sequence, not in TFO-mode)

Enter d in section 17.4 to delete the active cell from the network and shorten the network by one
cell, which automaticaly rewires the network and updates the 1d or circle graphic. The active cell
must not be at index zero.

This option is only available in the main prompt sequence, not while interrupting space-time
patterns or attractor basins. Backtrack to the main prompt sequence if necessary. In addition, the
base network itself must be 1d and have mixed-k, with rcodes set (so not in TFO-mode). When a
cell is deleted, all its links, both inputs and outputs between the cell and other cells, will be cut,
and cell indexes greater than the deleted cell will be reduced by one.

2If the order of the k inputs in the pseudo-neighborhood is changed, the rcode is transformed to achieve identical
behavior. Thus there are k! equivalent pseudo-neighborhood orders and corresponding rcode.

190 CHAPTER 17. REVIEWING NETWORK ARCHITECTURE

17.7 Wiring graphic, 2d

Enter 2 in section 17.1, for the 2d graphic. This shows how a particular cell (the “active cell”),
or a predefined 2d block of cells, is wired in the 2d network (or in a 1d network presented in 2d).
The 2d graphic can be expanded and contracted, and shifted up and down if necessary to see the
relevant part. The active cell is moved around the network with a mouse pointer/click or with
the arrow keys, and its possible to “jump” to a new specified location. The rule for the active cell
appears in the rule window described in section 16.19.

For 1d networks shown in 2d, the most reasonable ¢, 7 dimensions are automatically computed,
with 4 > j (for n prime i =n,j = 1).

The display can be toggled between ‘direct wiring” and wiring to the pseudo-neighborhood
(section 17.7.4) as in figure 17.10. By default, “direct wiring” is displayed if the wiring is nonlocal,
and the pseudo-neighborhood for local CA wiring. Enter p to toggle between the two. A 5-
way toggle (enter n) alters the presentation of connections, and the cells connected, also useful
in visualizing blocks. The active cell is colored red, its pseudo-neighborhood yellow, the “actual
neighborhood” cells are colored green (figure 17.10).

Sections 17.7.1 — 17.7.8 below explain some of the options specifically for 2d in more detail
that were summarized in section 17.15).

(a) pseudo-square 0 (b) pseudo-hex 0 (c) direct-hex 0

Figure 17.10: The 2d wiring graphic, n=20x20 RBN, k=13, with a central active cell. Toggle
with pseudo-p between wiring to the pseudo-neighborhood — the default for local wiring, and direct
wiring — the default for random wiring, as (b)<>(c) above. Toggle with toghez-x between square
and hexagonal layout and corresponding (default) neighbourhoods (section 10.1.3 and figure 10.2), as
(a)«>(b) above. The “active” cell is repositioned by mouse pointer clicks or moved with arrow keys.

17.7.1 Data — 2d wiring graphic

As for the 1d wiring graphic, various data about the active cell’s wiring are shown at the foot of
the 2d wiring graphic. For example, for figure 17.10 the data is as follows,

|
2d cell=10,10=210 wiring=16,0 14,9 9,12 15,12 17,7 3,6 1,7 15,19 0,13 outwires=7 links:bi=37 self=10=0.3%

191

See section 17.9.1 to decode this data. The current cell, and cell input positions, are shown as
I, J coordinates. The rule and rule data are shown in the rule window (section 16.19).

17.7.2 Moving or jumping between cells, 2d

To move the active cell, position the pointer and click any moouse button, or use the arrow
keys. Alternatively, enter j to jump to a specific cell. The 2d cell position is specified by its I, .J
coordinates. The following prompts are presented,

jump to coord I,J
enter 1(19-0): enter J(19-0): (for a 2d network size 20 x 20)

17.7.3 Alternative wiring presentation, 2d

A 5-way toggle allows alternative presentations of the active cell, or an active block. FEnter
cell-links-n to toggle between the five alternatives, as shown in figure 17.11. For the active cell,
the 5-way toggle works both with direct wiring and with the pseudo-neighborhood (pseudo-p) in
section 17.8.4.

For a 2d block, the alternatives are shown in figure 17.13.

E- O -3

-omo -
.o -
@l -
1. cell+inputs+links 2. cell+links 3. cell+inputs 4. cell only 5. links only

Figure 17.11: Toggling between 5 alternative ways of showing a cell, its inputs and connections, in 2d
with cell-links-n, starting with the initial block presentation 1 (cell+inputs+links).

Top Row: shows direct wiring. Bottom Row: shows the pseudo-neighborhood toggled on (with
pseudo-p, section 17.7.4). n=7x7 random (nonlocal) wiring, k=5.

17.7.4 Include the pseudo-neighborhood, or direct wiring only, 2d

By default, “direct wiring” is displayed if the wiring is nonlocal, and the pseudo-neighborhood is
displayed for local CA wiring. Enter p to toggle between the two as in figure 17.10, and between
the top and bottom rows of figure 17.11.

192 CHAPTER 17. REVIEWING NETWORK ARCHITECTURE

Figure 17.12: The 2d wiring graphic showing a
block in full, i.e. a solid block as in the 1st edition
of Exploring Discrete Dynamics. The new default
presentation is to showing just the block edges as
in figure 17.13, but this can be toggled to show
the solid block with G (section 17.7.6). The active
cell is shown here with direct wiring — without its
pseudo-neighborhood (section 17.7.4).

4. block only 0

17.7.5 Defining a block, 2d
Enter b to define a 2d block of cells. The following top-right prompt is presented?,

2d block-2, all-a, no block and single cell-def: (then, if 2 is selected ...)
2d block (max 19,19) (for a 20 x 20)

first corner (def 2,2) I: J:

second corner (def 5,5) I: J:

Enter 2 to define a block, a to define the whole network as a block. If 2 is entered, a subsequent
prompt is presented for the first and second set of coordinates delimiting the block. The defaults
correspond to the last two mouse clicks. Enter return to accept a default, or enter any required
value.

As a consequence of larger network sizes allowing larger blocks, for 2d (and 3d) the new default
presentation is to show just the block edges to speed up the graphics presentation (figures 17.13,
17.14), but this can be toggled to show the block in full (figure 17.12) as before, with edges-G
(section 17.7.6).

As long as a block is active and visible (toggle with g), the 5-way toggle block-links(z)-n
(section 17.7.3) applies to the block. The active cell will still be visible and can be moved, and its
pseudo-neighborhood toggled with p, as usual.

An active block is indicated in the wiring graphic reminder (section 17.4),

rewire 2d block 2,2-5,5: ...

To deactivate the block enter b in section 17.4, then return. If the block is active and visible the
following rewire options ...

. rnd-r/w/R special-s local:1d-1 2d-2
change k=9(max 13)-k ... (for ezample — rcode-miz set)

. will apply to just the block, not to the active cell if it is outside the block.
The following rule options apply to the active cell, but if the block is active and visible the
new rule can then be copied to the block (section 17.9.10).

. rule:Save/rev/trans-S/v/t

3For a 2d network shown in 1d, the prompt is as shown in section 17.6.3

193

Left: The 2d wiring graphic, just after a block was
set — defined by the lower right (2,2) and upper
left (5,5) coordinates, and showing just the block
edges — the default presentation. While visible,
the presentation of the block is subject to the 5-way
toggle with with block-links-n. The active cell be-
haves as usual apart from not responding to n, but
if the block is made invisible by toggling with g,
the 5-way toggle applies to the active cell (as in
figure 17.11) instead of the block.

N
i{ﬁ-\\\\\\ f

5. links only 1. block+inputs+links 2. block+links 3. block+inputs

Figure 17.13: Toggling between 5 alternative presentations of a 2d block with block-links(xz)-n, starting
with the initial block presentation-4 (block only). n=20%x20 RBN, k=9. The active cell is still visible
and can be moved, and its pseudo-neighborhood toggled with p, as usual.

17.7.6 Toggling the block, 2d

If a block is active (section 17.7.5), enter block-g to toggle the block, making it either visible or
invisible, without deactivating it. Enter edges-G to toggle between showing just the block edges
(the default — figure 17.13) and a full or solid block (figure 17.12).

17.7.7 Expand/Contract the scale, 2d

The initial scale of the 2d wiring graphic is set automatically. Enter e to expand, c¢ to contract
this default scale. The contraction step is usually one pixel, but continues (by x 0.9) until the
total image height is reduced to about 10 pixels. This allows for large 2d networks to be examined
as in figure 17.14, but the background grid will disappear with contraction less than 3 pixels.

17.7.8 Shifting the 2d graphic up and down

If only part of the graphic fits within the display area, it can be shifted up and down to see the
relevant part. This may be necessary for larger 2d networks, especially if they have been expanded
in section 17.7.7. Enter u or d to move the graphic up or down by 1/5 of its vertical dimension.

194 CHAPTER 17. REVIEWING NETWORK ARCHITECTURE

999
999 _!

\ / - Figure 17.14: 2d wiring graphic,
1000x1000, showing a randomly con-
—~ nected central cell, £=21.
A “block+inputs” is active, its lower cor-
ner located at 50,50 and upper at 700,700,
with just the block edges showing. Be-
cause the scale is less than 3 pixels, the
background grid of dots does not appear.
A randomly wired cell is shown at 500,500.

17.8 Wiring graphic, 3d

Enter 3 in section 17.1, for the 2d+3d graphic, where the network is shown simultaneously in 2d,
and a 3d isometric projection? seen from below, as if looking up into a cage (figure 17.15). As in
2d, this shows how the active cell, or a predefined 3d block of cells, is wired in the 3d network.
The 2d view and the 3d isometric can be independently expanded and contracted.

The 2d view shows successive horizontal slices (levels), stacked above each other, with the levels
indicated. For larger networks the 2d view can be shifted up and down to see the relevant part.
Otherwise the 2d view behaves very much as the 2d graphic described in section 17.7.

The 2d view acts as a sort of canvas for manipulating active cell position and simultaneously
update on the 3d isometric. This is done with a mouse pointer/click, or with the arrow and square
bracket keys — [,] — for moving up and down between levels. There is also a “jump” option
to a new specified location. The rule for the active cell appears in the rule window described in
section 16.19.

As in the 2d wiring graphic, the display can be toggled between ‘direct wiring” and wiring to
the pseudo-neighborhood. By default direct wiring is displayed if the wiring is nonlocal, and to the
pseudo-neighborhood for local CA type wiring. Enter p to toggle between the two. A 5-way toggle
(enter n alters the presentation of connections, and the cells connected, also useful in visualizing
blocks. The active cell is colored red, its pseudo-neighborhood yellow, the “actual neighborhood”
cells are colored green (figure 17.16).

Sections 17.8.1 — 17.8.9 below explain some of the options specifically for 3d in more detail
that were summarized in section 17.4.1.

17.8.1 Data — 3d wiring graphic

As for the 1d and 2d wiring graphics, various data about the current cell’s wiring are shown at the
foot of the 3d wiring graphic (figure 17.15). See section 17.9.1 to decode this data. The current
cell position, and the actual neighborhood positions, are shown as 4, j, h coordinates. The rule and
rule data are shown in the rule window (section 16.19).

4Perhaps more accurately — a 45° oblique projection seen from within.

195

r 1

3d (20x9x9) wiring/rules: move-arrows, levels up/dovwn-[/] jurnp-jArnouse-click
exp/eontr-e/e/E/C up/down-w/d grid3d-T hide- W PScript-P
block-b tog:hlock-g edges-G block-links{4)-n psendo-p index-i avZ-z hilght/lrn
19 rewire 3d block 1,1,1-11,6,8: hand-h rnd-r/w/R special s local:1d-1 2d-2 3d-3
8_ b . it k=T (max 7)-k kill- K rule: Save/rev/trans-S4+/t Derrida-D
T : file/data-f hist:In(k)/Out/Both-1/0/B reset-g cont-ret

ER

| 3d cell=15,4.5=995 wiring=16,, |- 16,2,1- 19,22 15,6/6-13,4.8- 16,7,7- 19 5, 2-0ulwires= links:hi=34854 self=1619=14.3% |

T PR S Py oy L P ‘
3d size=20x9x2 1d=0.461 1d-r=0.922 P=0.532 21-0.576 zr=0.53 Z=0.576172 C=0/7

|DDLab ©1993-20f6 SEED advanceret back/interruptq sereen:print/save/load-@/>/< ‘

Figure 17.15: An example of the 3d wiring graphic (4,7, h=20x9x9, RBN, k=7) as it appears on
the DDLab screen. The active cell includes its pseudo—neighborhood, and a block (1,1,1 to 11,6,8)
has be activated and its edges are visible. Rules have been set — the active cell's rule appears in the
bottom panel. Left: the 2d view of the 3d network showing successive levels 0 to 9 stacked above each
other (expand/contract with e/c). Right: the network as a 3d isometric (expand/contract with E/C).
Foot: the wiring data. Top Right: the wiring graphic reminder.

17.8.2 Moving or jumping between cells, 3d

To reposition the active cell, click any mouse button with the mouse pointer on the 2d view.
Alternatively use the arrow keys and square bracket keys — [, | — for moving up and down
between levels. There is also a “jump” option, enter j to jump to a specific cell specified according
to the 7, j, h coordinates.

The following prompts are presented,

jump to index I,J,H (this example for a 3d network size 20 x 9 X 9)
enter 1(19-0): enter J(8-0): enter H(8-0):

Any change in the active cell on the 2d view will simultaneously update on the 3d isometric.

196 CHAPTER 17. REVIEWING NETWORK ARCHITECTURE

:
5

NN

A S A
1 i 4 1]
. S ey e <
[] N]
1. cell4+inputs+links 2. cell+links 3. cell+inputs 4. cell only 5. links only

Figure 17.16: Toggling between 5 alternative ways of showing a cell and its connections in 3d
with n. Top Row: with direct wiring. Bottom Row: with the pseudo-neighborhood toggled on (with p.
n=7x7x7 RBN, k=7. These changes are seen simultaneously in the 2d view and the 3d isometric
(figure 17.15).

17.8.3 Alternative wiring presentation, 3d

A 5-way toggle allows alternative presentations of the active cell, or an active block. Enter n to
toggle between the five alternatives (figure 17.16) which appear simultaneously in the 2d view and
the 3d isometric (figure 17.15). For the active cell, the 5-way toggle works both with direct wiring
and with the pseudo-neighborhood (toggle with p section 17.8.4). The alternatives for a 3d block
are shown in figure 17.18.

17.8.4 Include the pseudo-neighborhood, or direct wiring only, 3d

As in 2d, by default, “direct wiring” is displayed if the wiring is nonlocal, and the pseudo-
neighborhood for local CA wiring. Enter pseudo-p to toggle between the two, as between the
top and bottom rows of figure 17.16.

17.8.5 Defining a block, 3d
Enter b to define a 3d block of cells. The following top-right prompt is presented?,

3d range-3, all-a, no block and single cell-def: (then, if 3 is selected ...)
3d block (max 20,7,20) (for a 40 x 40)

first corner (def 2,2,2) I: J: H:

high corner (def 5,5,5) I: J: H:

Enter 3 to define a block, a to define the whole network as a block. If 3 is entered, a subsequent
prompt is presented for the first and second set of coordinates delimiting the block. The defaults
correspond to the last two mouse clicks. Enter return to accept a default, or enter any required
value.

5For a 3d network shown in 1d, the prompt is as shown in section 17.6.3

197

YX

(T ——— ﬁé Figure 17.17: The 3d wiring graphic showing a block in
full, i.e. a solid block as in the 1st edition of Exploring
> Discrete Dynamics. The new default is to showing just
\ the block edges as in figure 17.18, but this can be tog-
gled to show the solid block with G (section 17.8.6).
The active cell is shown here with direct wiring —
without its pseudo-neighborhood (section 17.8.4).

o

4. (solid) block only

As a consequence of larger network sizes allowing larger blocks, for 3d (and 2d) the new default
presentation is to show just the block edges to speed up the graphics presentation (figures 17.15,
17.18, 17.19), but this can be toggled to show the block in full (figure 17.17) as before, with edges-G
(section 17.8.6).

As long as a block is active and visible (toggle with g), the 5-way toggle block-links(z)-n
(section 17.8.3) applies to the block. The active cell will still be visible and can be moved, and its
pseudo-neighborhood toggled with p, as usual.

An active block is indicated in the wiring graphic reminder (section 17.4),

rewire 3d block 2,2,2-5,5,5: ...

To deactivate the block enter b in section 17.4, then return. If the block is active and visible the
following rewire options ...

... hand-h rnd-r/w/R special-s local:1d-1 2d-2 3d-3
change k=7(max 13)-k ... (for ezample — rcode-miz set)

. will apply to just the block, not to the active cell if it is outside the block.
The following rule options apply to the active cell, but if the block is active and visible the
new rule can then be copied to the block (section 17.9.10).

. rule:Save/rev/trans-S/v/t

17.8.6 Toggling the block, 3d

If a block is active (section 17.8.5), enter block-g to toggle the block, making it either visible or
invisible, without deactivating it. Enter edges-G to toggle between showing just the block edges
(the default — figure 17.18) and a full or solid block (figure 17.17).

17.8.7 Toggle 3d background grid

Enter ¢grid3d-T to toggle the background grid on the isometric view, which is only visible when
the scale is 3 or more pixels (expand/contract with E/C).

198 CHAPTER 17. REVIEWING NETWORK ARCHITECTURE

o Left: The 3d wiring graphic, just after a block was set —

7@ defined by the lower right (2,2,2) and upper left (5,5,5)

. ‘ﬁg coordinates, and showing just the block edges — the de-

\ fault presentation. While visible, the presentation of the

@ block is subject to the 5-way toggle with block-links-n.

The active cell behaves as usual, apart from not re-

sponding to n, but if the block is made invisible by

toggling with g, the 5-way toggle applies to the active
cell (as in figure 17.16) instead of the block.

i

mi|

@

.

H; ““

I I
[[
5. links only 1. block+inputs+links 2. block+links 3. block+inputs

Figure 17.18: Toggling between 5 alternative presentations of a 3d block(withblock-linksn, starting
with the initial block presentation-4 (block only). n=20x7x20 RBN, k=7. The active cell is still be
visible and can be moved, and its pseudo-neighborhood toggled with p, as usual. These changes are
seen simultaneously in the 2d view and the 3d isometric (figure 17.15).

17.8.8 Expand/Contract the scale, 3d

The initial scales of the 2d+3d graphic are set set automatically, but can be independently
expanded and contracted. Enter e to expand, c to contract the 2d view. Enter E to expand,
C to contract the 3d view. The contraction step is initialy one pixel, but continues (by x 0.9)
until the total image height is reduced to about 10 pixels. This allows for large 2d networks to be
examined as in figure 17.19, but the background grid will disappear with contraction less than 3
pixels.

17.8.9 Shifting the 3d graphic up and down

If only part of the 2d view of the 3d wiring graphic fits within the display area, it can be shifted
up and down to see the relevant part. This is necessary for larger 3d networks, especially if they
have been expanded in section 17.8.8.

Enter u or d to move the graphic up or down by about one level. Enter s to restore the default
start position.

199

! 49

48

=

|47

4

|46

Figure 17.19: 3d network graphic 100x100x100, showing a randomly connected central cell, k=27
(3x3x3). A "block+inputs” is active, its lower corner at 2,2,2 and upper at 47,47,47, with just the
block edges showing. Because the both the scale is less than 3 pixels, the background grids does not
appear. A randomly wired cell is shown at 50,50. Left: the 2d view shifted down with d (section 17.8.9)
to expose levels 46 to 49 revealing the top of the block. Right: the network as a 3d isometric.

17.9 Further options for the 1d, 2d and 3d wiring graphics

The following options which were marked with an asterisk in section 17.4.1 apply jointly to 1d, 2d
and 3d networks, and are described in the rest of this chapter, sections 17.9.1 to 17.9.14 below,

17.9.1 Decoding wiring graphic data — 1d, 2d and 3d

Various data about the active cell’s wiring are shown at the foot of the 1d, 2d and 3d wiring
graphic. For example,

|
for 1d l cell=13 maxk=9 k=5 wiring=10 8 12 7 9 outwires=>5 links:total=86 av-k=4.30 bi=7 self=5=5.8% ‘

|
for 2d ’2d cell=10,10=210 wiring=16,0 14,9 9,12 15,12 17,7 3,6 1,7 15,19 0,13 outwires=7 links:bi=37 self=10=0.3 %

for 3d H 3d cell=10,4,4=810 wiring=9,8,1-10,3,0-6,1,7-11,7,1-14,4,5-8,1,2-6,6,7-outwires=7 links:bi=60 self=20=0.2%

200 CHAPTER 17. REVIEWING NETWORK ARCHITECTURE

decode of wiring data

cell= ... the active cell coordinates (1d, 2d or 3d) and the 1d cell index.
maxk ... for mixed-k networks, shows the max-k setting.
k ... for mixed-k networks, shows k for the active cell.
wiring ... the inputs — network indexes (for 1d) or coordinates (for 2d or 3d) of cells
wired into the pseudo-neighborhood, ordered &k —1...0.
outwires ... the number of output wires, how many wires from the network are
“plugged into” the active cell.
self ... the number of self-links, or inputs that are also outputs, from the active cell.
bi-links ... the number of cell pairs that have both inputs and outputs to each other.

The active cell’s rule, together with other details, (updated as the active cell is changed) are
displayed in the lower rule window at the foot the DDLab screen (section 16.19).

17.9.2 Computing the (weighted) average A and Z parameters

rcode-miz and/or k-miz

This option applies once rcode-mix has been set in chapter 14 — rcode-mix is set by default for a
k-mix. Enter z in section 17.4 to calculate and display the average, and weighted average, A, and
Z parameters of the rules making up the rulemix. The data is displayed in a top-right window,
for example, for a 1d network n = 150, k-mix 3 to 7, and randomly assigned rules,

av:ld-r=0.839063 Z=0.63653
wt.av:ld-r=0.826438 Z=0.626692 cont-ret:

For random wiring and/or mixed-k networks, the weighted averages take account of the influ-
ence that each cell has on the network according to its proportion of the network’s out-wires, rep-
resented graphically by the height of cells at ¢y in a 1d wiring graphic, for example in figure 17.4.1.
In networks with local wiring and no rulemix the weighted average equals the average.

17.9.3 Options for learning pre-images
rcode only — not in TFO-mode.

Enter L in section 17.4 to start the “Learning, forgetting, and highlighting” functions (chapter 34).
Learning/forgetting involves attaching/detaching sets of states as pre-images of a target state. For
attractor basins, enter 1 to just highlighting selected states.

Learning/forgetting usually requires both nonlocal wiring and a rulemix. Algorithms automat-
ically adapt the network’s wiring and/or rules to achieve the required transitions between states.
The results and side affects of learning can be seen most clearly in a basin of attraction field,
but the methods (allowing larger networks) also apply to a single basin, a subtree, or simply to a
space-time pattern running forward. For further details refer to chapter 34.

17.9.4 Hand rewiring

Enter h in section 17.4 to rewire individual wires for just the active cell by hand, which is rewired
in a way similar to that described in sections 12.6 and 17.2.2, but for the active cell only. A top-
right window displays the pseudo-neighborhood wiring connections as a 1d “spread sheet” with &
entries (figure 17.20), including the following reminder, for example,

201

hand rewire: use retirn or arrows to move
enter wiring positions 0-149, g to complete
11 10 2 &8 7 o 5 4 3 2 1 0

|EB? 129 13 26 95 41 48 15 27 92 71

Figure 17.20: Hand wiring a single cell from the 1d wiring graphic, n=150, k=13

hand rewire: use return or arrows to move
enter wiring position 0-149, q to complete (this example for a 1d network, size 150)

Note that the wiring position x is a 1d index, even if the network is 2d or 3d. To convert
between the index and coordinates see sections 10.2.2 and 10.2.3.

17.9.5 Random rewiring

Enter r in section 17.4 to randomly reset the wiring of the active cell, or of the block if defined
and visible. Enter w to randomly resets the wiring of the cells outside an active block, if the active
block is visible. Both r and w will respect the biases on random wiring (which include local CA
wiring) set in section 17.9.6 (see also section 12.5). Note that for non-square 2d networks and non-
cubic 3d networks, the random wiring, possibly within a local zone set in section 12.5.2, random
wiring is no longer limited to the shortest axis. Unbiased random wiring (for homogeneous-k) can
also be set with R.

Iz,

1
I
iy

2d 66x22, k=21 3d 66x10x22, k=27 (3x3x3)

Figure 17.21: For homogeneous-k, enter rnd-R. for totally unbiased random wiring, ignoring any biases
set in section 17.9.6. The examples show wiring to the psuedo-neigorhood.

For a k-mix network, if R is entered, the wiring will be randomly reset, but biased by the
k distribution. That is, the probability of plugging wires into a cell with k inputs will be given by
P =k/T, where T is the total number of links in the network. so that cells with most inputs also
end up with the most outputs and vice versa. If a power-law distribution of the k-mix was set for
the network in section 9.7.2, entering R will rewire to give an approximate power-law distribution
of outputs (figure 17.22), creating a “scale free” network , said to be characteristic of many natural
and artificial networks, from metabolic networks to the world-wide-web [4]. The graph of such a
network is shown in figure 20.2.

17.9.6 Biased random rewiring

If special-s is selected in section 17.4 a series of options are presented in a top-right window that
allow a variety of restrictions or biases to the random wiring before it is set in section 17.9.5 above.
These biases apply to the active cell, or to the block (inside or outside) if defined and visible.

202 CHAPTER 17. REVIEWING NETWORK ARCHITECTURE

The special wiring options are fully described in section 12.5 (Special wiring, random) — they
differ to some degree between the 1d, 2d or 3d wiring graphics.

17.9.7 Local 1d, 2d or 3d wiring

If 1, 2 or 3 is selected in section 17.4 the wiring of the active cell, or block if defined and visible,
will be reset to local 1d, 2d or 3d CA-like wiring to the local neighborhood, with periodic boundary
conditions. For 3d networks, 1d, 2d or 3d local CA wiring applies. For 2d networks, 1d, 2d local
wiring CA applies. For 1d networks, only 1d local CA wiring applies. Note that CA wiring can
also be set as “random wiring” in section 17.9.6 above, allowing various biases to the CA wiring
as described in section 12.5.

17.9.8 Changing the neighborhood size, k

rcode-mix set only — not in TFO-mode

Given a rcode-mix (section 14.1), and irrespective of k-mix, enter k in section 17.4 to change the
neighborhood size k of the active cell, or of the block if active and visible. The following additional
prompt appears,

reset nhood size k (1-13): (if kLim=13)

The maximum k allowed is k., (table 7.1), which may be greater than the actual max-k in the
network (section 9.10). The new wiring will preserve as much as possible of the old neighborhood
wiring. If k is increased, the wiring at the extra pseudo-neighborhood indexes is set as local 1d,
2d or 3d (depending on the network dimensions) with periodic boundary conditions.

For a homogeneous-k network, an individual cell or block may only have its k setting reduced.
The network will from then on be treated as a k-mix with max-k equal to the original value of k.

Changing k effects the highest pseudo-neighborhood indexes, which are either removed or
added. The original rcode (or part if k was reduced) is preserved. Any excess rule-table entries
are set to 0.

Note that k& may also be increased from the transformation options (sections 17.9.11, 18.7.1)
giving a neutral transformation with equivalent dynamics.

17.9.9 Kill a cell

rcode-mix set only — not in TFO-mode

Enter K in section 17.4 to kill or neutralize the active cell®, or the block if active and visible, by
cutting all links, both inputs and outputs. The cell retains one input to itself, k=1, and the rcode
is set so the cell’s value stays constant, with effective k=0 (section 9.2). For v=2 the decimal
rcode is 2. The cell then has no influence on the network, which can be applied to model “gene
knockout”. Alternatively, the cell can serve as a constant unchanging input to other cells if they
rewire into it.

6For 1d networks, a cell can also be deleted entirely (section 17.6.9).

203

17.9.10 Revising and copying the rule

if rules are set

Enter v in section 17.4 to revise the rule of the active cell. Once the rule is revised, it can be
copied to a block. This option is intended for networks with mixed rules. For a single rule network
(set in section 14.1), i.e. without a rulemix, any revision applies to the whole network. Note that
a rulemix where all the rule are the same can be set up as described in section 14.4.3.

A secondary window is presented in the lower right hand corner of the screen, with rule selection
prompts. The various methods for revising and re-selecting rules are described in chapter 16.

If a block is active and visible, the rule can be automatically copied to all cells in the block
which have the same k as the cell in question. The following prompt is presented in a top-right
window, showing the block coordinates and their 1d equivalent indexes in brackets (section 17.2),
for example,

Copy rule to 33-55 -c: (1d)
Copy rule to 2d range 0,22-39,33 (880-1359)-c: (2d, 4/0x40)
Copy rule to 3d range 0,0,8-19,19,12 (3200-5159)-c: (3d, 20x20x 20)

Enter ¢ to copy the rule within the block, to all cells with matching k. Once set (and copied),
the new rule is displayed in the rule window (section 16.19).

To change a rule to one with a different neighborhood size k, first change k in the rewiring
window (section17.9.8), then change the rule.

17.9.11 Transforming the rule

rcode set only — more options rcode-mix — more options k-mix — not in TFO-mode

If t is selected in section 17.4, the rcode for just the active cell may be transformed in the various
ways described in detail in chapter 18. This option is intended for networks with rcode-mix or
k-mix. For networks with homogeneous rcode any revision applies to the whole network.

A top-right window is presented with the transformation prompts. The rule may be transformed
to equivalent or related rules. For example the rule may be complemented, or transformed to an
equivalent rule by negative or reflection transformations. Canalyzing inputs may be set or amended
for the active cell or the whole network as described in section 15. A k-mix allows more options
— neutral transformations to rules with greater k, or k reduced to “effective k” for the particular
cell or for the whole network.

The network may be “reverse engineered” by loading an exhaustive mapping of transitions
(section 18.7.4) and automatically generating the minimal mixed-k network that satisfies the
mapping, (i.e. reduced to effective-k), one solution to the “inverse problem”.

17.9.12 Filing, from the wiring graphic

Enter f in section 17.4 for the network filing options where its possible to save, and load networks
that fit into the “base”, thus to combine networks and create networks of sub-networks, described
in chapter 19. To load a network file, first set up a compatible or “dummy” network (section 19.4).
The complete network architecture, or just its wiring or rulemix, can be saved, and loaded into a
base network. The options vary according to the k-mix, rules set, and other constraints.

When a file is loaded, it is automatically treated as a block and located by a prompt, for
example in a 2d network,

204 CHAPTER 17. REVIEWING NETWORK ARCHITECTURE

2d:i,j=40,40, file: i,j=11,11, enter start coords (def 14,14, max 29,29, rnd-r)
I. J:

Enter the lower coordinates of the block, r for a random position, or return for a central
position. Once loaded the block becomes active with its edges apparent in the wiring graphic,
framing the whole graphic for a file/base of equal size.

Network data can also be printed to a file, to the xterm window for Linux-like systems, or to
a printer for DOS (section 19.6).

17.9.13 The histogram of the network’s £ and output distribution

Enter I, O or B in section 17.4 to show a histogram of link frequency distribution. I gives the k
distribution — of inputs, O gives the output distribution, and B gives both the input and output,
i.e of all connections in the network. The k distribution can also be displayed from section 9.11.
Examples of power-law distributions are shown in figures 17.22. Random wiring without bias
would give a Poisson distribution as in figure 9.1.

The histogram plots each k or output (x axis), against its frequency in the network as a
percentage (y axis). The actual frequency, as a percentage and total, are shown under each
histogram bar. The following information and prompt is also shown,

63.4° 28.6°

it freq % 262 286 184 106 46 37 20 12 12 11 07 04 02 03 02 04 01 01

k ﬁ'ﬂl“m':ﬁzz‘i :3145 ;g: ;113 240 glﬁ ;: ;13 160 238 217 g'ﬁ 3'5 2'4 o mq(n(ak 419 457 294 170 73 39 32 20 19 18 11 7 3 3 3 7 2 1
k; 1 2 3 4 5 5 7 8 9 0 11 12 13 outpurs= 0 1 2 3 4 3 & 7 8 9 10 11 12 13 14 15 16 17

n=1600 av-k=2.05 save/load-s/1 cont-ret: n=1600 av-out=2.05 savesload-s/l cont-ret:

k (input) distribution output distribution

12.9%

in=out freq % o 11F 123 73 43 31 13 1€ 11 w7 0% @4 05 04 @4 0r 0E @4 0E NE 01 0E 01 01 01 0E 01 bm 01 0p 0@
o wohl= 0 37 4l4 235 456 100 K2 51 35 @ 26 1z 45 13 1z & 7 1% 7 35 I T S S
in-ouk= L 1 H E 4 5 5 kd # E ELE S - - I © O LA LI T T = - - S~ L - - - - -]

n=1600 av-in-out=4.09 savedoad-s/1 cont-ret:
both k and output distribution

Figure 17.22: Histograms of a power-law distribution of network links, (k) inputs, outputs, and both
combined. The power-law exponent was set to 2.0 in section 9.7.2 for a mixed=k network 40x40.
Random wiring was reset for the whole network with R (section 17.9.5), where outputs are preferentially
allocated according to k.

205

n=100 av-k=2.02 save/load-s/]1 cont-ret: (for ezample)

n is the network size which should equal the sum of all the frequency totals. av-k, av-out or
av-in-out is the average k, out-degree, or all links to a node.

Enter s or 1 to save or load the histogram data as a .his file (section 35.3). In both cases the
data appear in the xterm window (not for DOS), for example for figure 17.22 Top Left,

histogram: 1+13 columns
0 1015 254 113 64 41 29 21 16 13 11 9 8 6

17.9.14 Creating a vector PostScript file of the wiring graphic

Enter P in section 17.4 to save the wiring graphic image (1d, 2d or 3d) as a vector PostScript file
recording exactly what appears on the screen, including text data. The following top-right prompt
appears,

save wiring graphic to PostScript: greyscale-P color-p:

Select greyscale or color, then the filename — default my wgPS.ps. The